Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = ER-resident proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2001 KiB  
Article
Testing Protein Stress Signals in Peripheral Immunocytes Under the Same Treatment Capable of Decreasing the Incidence of Alzheimer’s Disease in Bladder Cancer Patients
by Benjamin Y. Klein, Ofer N. Gofrit and Charles L. Greenblatt
Curr. Issues Mol. Biol. 2025, 47(6), 392; https://doi.org/10.3390/cimb47060392 - 26 May 2025
Cited by 1 | Viewed by 574
Abstract
Several studies showed that the incidence of Alzheimer’s disease (AD) is significantly lower in patients with non-muscle invasive bladder cancer (NMIBC) treated with intravesical bacillus Calmette–Guérin (BCG) instillations compared to treatment by alternative methods. Hypothetically, failure to clear misfolded and aggregated proteins (i.e., [...] Read more.
Several studies showed that the incidence of Alzheimer’s disease (AD) is significantly lower in patients with non-muscle invasive bladder cancer (NMIBC) treated with intravesical bacillus Calmette–Guérin (BCG) instillations compared to treatment by alternative methods. Hypothetically, failure to clear misfolded and aggregated proteins (i.e., beta-amyloid) in AD brains and peripheral blood mononuclear cells (PBMCs) implicates BCG in upgrading the unfolded protein response (UPR). To test this hypothesis, pre- versus post-BCG PBMC proteins of the UPR pathway were compared in six NMIBC patients by capillary immunoelectrophoresis on an Abby instrument. PERK, the endoplasmic reticulum (ER) resident kinase, a stress-activated sensor, and its substrate alpha component of the eIF2 translation factor (eIF2a) complex inactivation were considered as potentially proapoptotic via a downstream proapoptotic transcription factor only if persistently high. GAPDH, a glycolytic marker of innate immunocyte training by BCG, and eight other UPR proteins were considered antiapoptotic. Summation of antiapoptotic %change scores per patient showed that the older the age, the lower the antiapoptotic %change. Higher antiapoptotic scores were observed upon a longer time from BCG treatment (with the exception of the patient in her ninth decade of life). Studies with more individuals could substantiate that BCG enhances the antiapoptotic aggregate-clearance effect of the UPR in PBMCs of NMIBC patients, which hypothetically protects brain cells against AD. Full article
(This article belongs to the Special Issue Molecules at Play in Neurological Diseases)
Show Figures

Graphical abstract

30 pages, 7751 KiB  
Article
VPAC1 and VPAC2 Receptor Heterozygosity Confers Distinct Biological Properties to BV2 Microglial Cells
by Xin Ying Rachel Song, Margo Iris Jansen, Rubina Marzagalli, Giuseppe Musumeci, Velia D’Agata and Alessandro Castorina
Cells 2025, 14(11), 769; https://doi.org/10.3390/cells14110769 - 23 May 2025
Viewed by 654
Abstract
Microglial cells, the resident immune cells of the central nervous system (CNS), are essential for maintaining CNS homeostasis. Dysregulation of microglial function is implicated in the pathogenesis of various neurodegenerative diseases. Vasoactive intestinal polypeptide receptors 1 and 2 (VPAC1 and VPAC2) are G-protein-coupled [...] Read more.
Microglial cells, the resident immune cells of the central nervous system (CNS), are essential for maintaining CNS homeostasis. Dysregulation of microglial function is implicated in the pathogenesis of various neurodegenerative diseases. Vasoactive intestinal polypeptide receptors 1 and 2 (VPAC1 and VPAC2) are G-protein-coupled receptors (GPCRs) expressed by microglia, with their primary ligands being pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP). However, the specific roles of VPAC-type receptors in microglial regulation remain poorly understood. In this study, we generated VPAC1+/− and VPAC2+/− BV2 microglial cell lines using CRISPR-Cas9 gene editing and conducted a series of biological and molecular assays to elucidate the functions of these receptors. Our findings demonstrated that both mutant cell lines exhibited a polarized phenotype and increased migratory activity. VPAC1+/− cells showed enhanced survivability and baseline activation of the unfolded protein response (UPR), a protective mechanism triggered by endoplasmic reticulum (ER) stress, whereas this response appeared impaired in VPAC2+/− cells. In contrast, under lipopolysaccharide (LPS)-induced inflammatory conditions, UPR activation was impaired in VPAC1+/− cells but restored in VPAC2+/− cells, resulting in improved survival of VPAC2+/− cells, whereas VPAC1+/− cells exhibited reduced resilience. Overall, our findings suggest that VPAC1 and VPAC2 receptors play distinct yet complementary roles in BV2 microglia. VPAC2 is critical for regulating survival, ER stress responses, and polarization under basal conditions, while VPAC1 is essential for adaptive responses to inflammatory stimuli such as LPS. These insights advance our understanding of microglial receptor signaling and may inform therapeutic strategies targeting microglial dysfunction in neurodegenerative diseases. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

18 pages, 3494 KiB  
Article
Remodeling of Mitochondria–Endoplasmic Reticulum Contact Sites Accompanies LUHMES Differentiation
by Emad Norouzi Esfahani, Tomas Knedlik, Sang Hun Shin, Ana Paula Magalhães Rebelo, Agnese De Mario, Caterina Vianello, Luca Persano, Elena Rampazzo, Paolo Edomi, Camilla Bean, Dario Brunetti, Luca Scorrano, Samuele Greco, Marco Gerdol and Marta Giacomello
Biomolecules 2025, 15(1), 126; https://doi.org/10.3390/biom15010126 - 14 Jan 2025
Viewed by 1488
Abstract
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. [...] Read more.
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes. However, it is not clear whether and how the mitochondria–ER interactions differ between NPCs and their differentiated counterparts. Here we take advantage of the widely used NPC line LUHMES to provide hints on the mitochondrial dynamic trait changes that occur during the first stage of their maturation into dopaminergic-like neurons. We observed that the morphology of mitochondria, their interaction with the ER, and the expression of several mitochondria–ER contact site resident proteins change, which suggests the potential contribution of mitochondria dynamics to NPC differentiation. Further studies will be needed to explore in depth these changes, and their functional outcomes, which may be relevant to the scientific community focusing on embryonic neurogenesis and developmental neurotoxicity. Full article
(This article belongs to the Special Issue Mitochondria and Central Nervous System Disorders: 3rd Edition)
Show Figures

Figure 1

18 pages, 2224 KiB  
Communication
Distribution of the p66Shc Adaptor Protein Among Mitochondrial and Mitochondria—Associated Membranes Fractions in Normal and Oxidative Stress Conditions
by Magdalena Lebiedzinska-Arciszewska, Barbara Pakula, Massimo Bonora, Sonia Missiroli, Yaiza Potes, Patrycja Jakubek-Olszewska, Ines C. M. Simoes, Paolo Pinton and Mariusz R. Wieckowski
Int. J. Mol. Sci. 2024, 25(23), 12835; https://doi.org/10.3390/ijms252312835 - 29 Nov 2024
Cited by 2 | Viewed by 1440
Abstract
p66Shc is an adaptor protein and one of the cellular fate regulators since it modulates mitogenic signaling pathways, mitochondrial function, and reactive oxygen species (ROS) production. p66Shc is localized mostly in the cytosol and endoplasmic reticulum (ER); however, under oxidative stress, p66Shc is [...] Read more.
p66Shc is an adaptor protein and one of the cellular fate regulators since it modulates mitogenic signaling pathways, mitochondrial function, and reactive oxygen species (ROS) production. p66Shc is localized mostly in the cytosol and endoplasmic reticulum (ER); however, under oxidative stress, p66Shc is post-translationally modified and relocates to mitochondria. p66Shc was found in the intermembrane space, where it interacts with cytochrome c, contributing to the hydrogen peroxide generation by the mitochondrial respiratory chain. Our previous studies suggested that p66Shc is localized also in mitochondria-associated membranes (MAM). MAM fraction consists of mitochondria and mostly ER membranes. Contact sites between ER and mitochondria host proteins involved in multiple processes including calcium homeostasis, apoptosis, and autophagy regulation. Thus, p66Shc in MAM could participate in processes related to cell fate determination. Due to reports on various and conditional p66Shc intracellular localization, in the present paper, we describe the allocation of p66Shc pools in different subcellular compartments in mouse liver tissue and HepG2 cell culture. We provide additional evidence for p66Shc localization in MAM. In the present study, we use precisely purified subcellular fraction isolated by differential centrifugation-based protocol from control mouse liver tissue and HepG2 cells and from cells treated with hydrogen peroxide to promote mitochondrial p66Shc translocation. We performed controlled digestion of crude mitochondrial fraction, in which the degradation patterns of p66Shc and MAM fraction marker proteins were comparable. Moreover, we assessed the distribution of the individual ShcA isoforms (p46Shc, p52Shc, and p66Shc) in the subcellular fractions and their contribution to the total ShcA in control mice livers and HepG2 cells. In conclusion, we showed that a substantial pool of p66Shc protein resides in MAM in control conditions and after oxidative stress induction. Full article
(This article belongs to the Special Issue Mitochondrial Biology and Reactive Oxygen Species)
Show Figures

Figure 1

19 pages, 4153 KiB  
Article
N-SREBP2 Provides a Mechanism for Dynamic Control of Cellular Cholesterol Homeostasis
by Tozen Ozkan-Nikitaras, Dominika J. Grzesik, Lisa E. L. Romano, J. P. Chapple, Peter J. King and Carol C. Shoulders
Cells 2024, 13(15), 1255; https://doi.org/10.3390/cells13151255 - 25 Jul 2024
Cited by 3 | Viewed by 2148
Abstract
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are [...] Read more.
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells. Unexpectedly, we found that the transcriptionally active fragment of SREBP2 (N-SREBP2) was produced constitutively. Moreover, in the absence of an exogenous cholesterol supply, nuclear N-SREBP2 became resistant to proteasome-mediated degradation. This resistance was paired with increased occupancy at the HMGCR promoter and HMGCR expression. Inhibiting nuclear N-SREBP2 degradation did not increase HMGCR RNA levels; this increase required cholesterol depletion. Our findings, combined with previous physiological and biophysical investigations, suggest a new model of SREBP2-mediated regulation of cholesterol biosynthesis in the organ that handles large and rapid fluctuations in the dietary supply of this key lipid. Specifically, in the nucleus, cholesterol and the ubiquitin–proteasome system provide a short-loop system that modulates the rate of cholesterol biosynthesis via regulation of nuclear N-SREBP2 turnover and HMGCR expression. Our findings have important implications for maintaining cellular cholesterol homeostasis and lowering blood cholesterol via the SREBP2-HMGCR axis. Full article
(This article belongs to the Special Issue Cellular Homeostasis and Quality Control)
Show Figures

Graphical abstract

26 pages, 1600 KiB  
Review
A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson’s Disease
by Peter A. Barbuti
Int. J. Mol. Sci. 2024, 25(12), 6525; https://doi.org/10.3390/ijms25126525 - 13 Jun 2024
Cited by 3 | Viewed by 2112
Abstract
Parkinson’s disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between [...] Read more.
Parkinson’s disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies. Full article
(This article belongs to the Special Issue The Structure and Function of Synuclein)
Show Figures

Figure 1

18 pages, 5663 KiB  
Article
AUP1 Regulates the Endoplasmic Reticulum-Associated Degradation and Polyubiquitination of NKCC2
by Nadia Frachon, Sylvie Demaretz, Elie Seaayfan, Lydia Chelbi, Dalal Bakhos-Douaihy and Kamel Laghmani
Cells 2024, 13(5), 389; https://doi.org/10.3390/cells13050389 - 24 Feb 2024
Cited by 3 | Viewed by 2642
Abstract
Inactivating mutations of kidney Na-K-2Cl cotransporter NKCC2 lead to antenatal Bartter syndrome (BS) type 1, a life-threatening salt-losing tubulopathy. We previously reported that this serious inherited renal disease is linked to the endoplasmic reticulum-associated degradation (ERAD) pathway. The purpose of this work is [...] Read more.
Inactivating mutations of kidney Na-K-2Cl cotransporter NKCC2 lead to antenatal Bartter syndrome (BS) type 1, a life-threatening salt-losing tubulopathy. We previously reported that this serious inherited renal disease is linked to the endoplasmic reticulum-associated degradation (ERAD) pathway. The purpose of this work is to characterize further the ERAD machinery of NKCC2. Here, we report the identification of ancient ubiquitous protein 1 (AUP1) as a novel interactor of NKCC2 ER-resident form in renal cells. AUP1 is also an interactor of the ER lectin OS9, a key player in the ERAD of NKCC2. Similar to OS9, AUP1 co-expression decreased the amount of total NKCC2 protein by enhancing the ER retention and associated protein degradation of the cotransporter. Blocking the ERAD pathway with the proteasome inhibitor MG132 or the α-mannosidase inhibitor kifunensine fully abolished the AUP1 effect on NKCC2. Importantly, AUP1 knock-down or inhibition by overexpressing its dominant negative form strikingly decreased NKCC2 polyubiquitination and increased the protein level of the cotransporter. Interestingly, AUP1 co-expression produced a more profound impact on NKCC2 folding mutants. Moreover, AUP1 also interacted with the related kidney cotransporter NCC and downregulated its expression, strongly indicating that AUP1 is a common regulator of sodium-dependent chloride cotransporters. In conclusion, our data reveal the presence of an AUP1-mediated pathway enhancing the polyubiquitination and ERAD of NKCC2. The characterization and selective regulation of specific ERAD constituents of NKCC2 and its pathogenic mutants could open new avenues in the therapeutic strategies for type 1 BS treatment. Full article
(This article belongs to the Special Issue Cellular and Molecular Basis in Chronic Kidney Disease)
Show Figures

Figure 1

23 pages, 8935 KiB  
Article
Analysis of the Mouse Hepatic Peroxisome Proteome—Identification of Novel Protein Constituents Using a Semi-Quantitative SWATH-MS Approach
by Öznur Singin, Artur Astapenka, Victor Costina, Sandra Kühl, Nina Bonekamp, Oliver Drews and Markus Islinger
Cells 2024, 13(2), 176; https://doi.org/10.3390/cells13020176 - 17 Jan 2024
Cited by 5 | Viewed by 2486
Abstract
Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a [...] Read more.
Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a mitochondria- and a microsome-enriched prefraction, combining density-gradient centrifugation with a semi-quantitative SWATH-MS proteomics approach to unveil novel peroxisomal or peroxisome-associated proteins. In total, 1071 proteins were identified using MS and assessed in terms of their distribution in either high-density peroxisomal or low-density gradient fractions, containing the bulk of organelle material. Combining the data from both fractionation approaches allowed for the identification of specific protein profiles characteristic of mitochondria, the ER and peroxisomes. Among the proteins significantly enriched in the peroxisomal cluster were several novel peroxisomal candidates. Five of those were validated by colocalization in peroxisomes, using confocal microscopy. The peroxisomal import of HTATIP2 and PAFAH2, which contain a peroxisome-targeting sequence 1 (PTS1), could be confirmed by overexpression in HepG2 cells. The candidates SAR1B and PDCD6, which are known ER-exit-site proteins, did not directly colocalize with peroxisomes, but resided at ER sites, which frequently surrounded peroxisomes. Hence, both proteins might concentrate at presumably co-purified peroxisome-ER membrane contacts. Intriguingly, the fifth candidate, OCIA domain-containing protein 1, was previously described as decreasing mitochondrial network formation. In this work, we confirmed its peroxisomal localization and further observed a reduction in peroxisome numbers in response to OCIAD1 overexpression. Hence, OCIAD1 appears to be a novel protein, which has an impact on both mitochondrial and peroxisomal maintenance. Full article
Show Figures

Graphical abstract

15 pages, 1855 KiB  
Article
Inherited Retinal Degeneration Caused by Dehydrodolichyl Diphosphate Synthase Mutation–Effect of an ALG6 Modifier Variant
by Elisha Monson, Artur V. Cideciyan, Alejandro J. Roman, Alexander Sumaroka, Malgorzata Swider, Vivian Wu, Iryna Viarbitskaya, Samuel G. Jacobson, Steven J. Fliesler and Steven J. Pittler
Int. J. Mol. Sci. 2024, 25(2), 1004; https://doi.org/10.3390/ijms25021004 - 13 Jan 2024
Cited by 4 | Viewed by 2444
Abstract
Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in [...] Read more.
Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes DHDDS-IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)). Apart from a retinal phenotype, however, DHDDS-IRD is surprisingly non-syndromic (i.e., without any systemic manifestations). To explore disease pathology, we selected five glycosylation-related genes for analysis that are suggested to have disease modifier variants. These genes encode glycosyltransferases (ALG6, ALG8), an ER resident protein (DDOST), a high-mannose oligosaccharyl transferase (MPDU1), and a protein N-glycosylation regulatory protein (TNKS). DNA samples from 11 confirmed DHDDS (K42E)-IRD patients were sequenced at the site of each candidate genetic modifier. Quantitative measures of retinal structure and function were performed across five decades of life by evaluating foveal photoreceptor thickness, visual acuity, foveal sensitivity, macular and extramacular rod sensitivity, and kinetic visual field extent. The ALG6 variant, (F304S), was correlated with greater macular cone disease severity and less peripheral rod disease severity. Thus, modifier gene polymorphisms may account for a significant portion of phenotypic variation observed in human genetic disease. However, the consequences of the polymorphisms may be counterintuitively complex in terms of rod and cone populations affected in different regions of the retina. Full article
(This article belongs to the Special Issue Retinal Degeneration—from Genetics to Therapy: Second Edition)
Show Figures

Figure 1

13 pages, 2215 KiB  
Article
Control of CCR5 Cell-Surface Targeting by the PRAF2 Gatekeeper
by Elisa Da Silva, Mark G. H. Scott, Hervé Enslen and Stefano Marullo
Int. J. Mol. Sci. 2023, 24(24), 17438; https://doi.org/10.3390/ijms242417438 - 13 Dec 2023
Cited by 1 | Viewed by 1820
Abstract
The cell-surface targeting of neo-synthesized G protein-coupled receptors (GPCRs) involves the recruitment of receptors into COPII vesicles budding at endoplasmic reticulum exit sites (ERESs). This process is regulated for some GPCRs by escort proteins, which facilitate their export, or by gatekeepers that retain [...] Read more.
The cell-surface targeting of neo-synthesized G protein-coupled receptors (GPCRs) involves the recruitment of receptors into COPII vesicles budding at endoplasmic reticulum exit sites (ERESs). This process is regulated for some GPCRs by escort proteins, which facilitate their export, or by gatekeepers that retain the receptors in the ER. PRAF2, an ER-resident four trans- membrane domain protein with cytoplasmic extremities, operates as a gatekeeper for the GB1 protomer of the heterodimeric GABAB receptor, interacting with a tandem di-leucine/RXR retention motif in the carboxyterminal tail of GB1. PRAF2 was also reported to interact in a two-hybrid screen with a peptide corresponding to the carboxyterminal tail of the chemokine receptor CCR5 despite the absence of RXR motifs in its sequence. Using a bioluminescence resonance energy transfer (BRET)-based subcellular localization system, we found that PRAF2 inhibits, in a concentration-dependent manner, the plasma membrane export of CCR5. BRET-based proximity assays and Co-IP experiments demonstrated that PRAF2/CCR5 interaction does not require the presence of a receptor carboxyterminal tail and involves instead the transmembrane domains of both proteins. The mutation of the potential di-leucine/RXR motif contained in the third intracellular loop of CCR5 does not affect PRAF2-mediated retention. It instead impairs the cell-surface export of CCR5 by inhibiting CCR5’s interaction with its private escort protein, CD4. PRAF2 and CD4 thus display opposite roles on the cell-surface export of CCR5, with PRAF2 inhibiting and CD4 promoting this process, likely operating at the level of CCR5 recruitment into COPII vesicles, which leave the ER. Full article
Show Figures

Figure 1

13 pages, 2819 KiB  
Article
Calreticulin Regulates SARS-CoV-2 Spike Protein Turnover and Modulates SARS-CoV-2 Infectivity
by Nader Rahimi, Mitchell R. White, Razie Amraei, Saran Lotfollahzadeh, Chaoshuang Xia, Marek Michalak, Catherine E. Costello and Elke Mühlberger
Cells 2023, 12(23), 2694; https://doi.org/10.3390/cells12232694 - 23 Nov 2023
Viewed by 2345
Abstract
Cardiovascular complications are major clinical hallmarks of acute and post-acute coronavirus disease 2019 (COVID-19). However, the mechanistic details of SARS-CoV-2 infectivity of endothelial cells remain largely unknown. Here, we demonstrate that the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein shares [...] Read more.
Cardiovascular complications are major clinical hallmarks of acute and post-acute coronavirus disease 2019 (COVID-19). However, the mechanistic details of SARS-CoV-2 infectivity of endothelial cells remain largely unknown. Here, we demonstrate that the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein shares a similarity with the proline-rich binding ena/VASP homology (EVH1) domain and identified the endoplasmic reticulum (ER) resident calreticulin (CALR) as an S-RBD interacting protein. Our biochemical analysis showed that CALR, via its proline-rich (P) domain, interacts with S-RBD and modulates proteostasis of the S protein. Treatment of cells with the proteasomal inhibitor bortezomib increased the expression of the S protein independent of CALR, whereas the lysosomal/autophagy inhibitor bafilomycin 1A, which interferes with the acidification of lysosome, selectively augmented the S protein levels in a CALR-dependent manner. More importantly, the shRNA-mediated knockdown of CALR increased SARS-CoV-2 infection and impaired calcium homeostasis of human endothelial cells. This study provides new insight into the infectivity of SARS-CoV-2, calcium hemostasis, and the role of CALR in the ER-lysosome-dependent proteolysis of the spike protein, which could be associated with cardiovascular complications in COVID-19 patients. Full article
Show Figures

Graphical abstract

14 pages, 2576 KiB  
Article
Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3
by Anastasia D. Teplova, Artemii A. Pigidanov, Marina V. Serebryakova, Sergei A. Golyshev, Raisa A. Galiullina, Nina V. Chichkova and Andrey B. Vartapetian
Int. J. Mol. Sci. 2023, 24(22), 16527; https://doi.org/10.3390/ijms242216527 - 20 Nov 2023
Cited by 2 | Viewed by 1573
Abstract
Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with [...] Read more.
Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 6447 KiB  
Article
Pan-Inhibition of Protein Disulfide Isomerase Caused Cell Death through Disrupting Cellular Proteostasis in Pancreatic Ductal Adenocarcinoma Cells
by Ching-Sheng Hung, Kun-Lin Lee, Wei-Jan Huang, Fang-He Su and Yu-Chih Liang
Int. J. Mol. Sci. 2023, 24(22), 16467; https://doi.org/10.3390/ijms242216467 - 17 Nov 2023
Cited by 5 | Viewed by 2876
Abstract
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer [...] Read more.
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer therapy. In this study, we found that a potent pan-PDI inhibitor, E64FC26, significantly decreased the proliferation of pancreatic ductal adenocarcinoma (PDAC) cells. As expected, E64FC26 treatment increased ER stress and the unfolded protein response (UPR), as evidenced by upregulation of glucose-regulated protein, 78-kDa (GRP78), phosphorylated (p)-PKR-like ER kinase (PERK), and p-eukaryotic initiation factor 2α (eIF2α). Persistent ER stress was found to lead to apoptosis, ferroptosis, and autophagy, all of which are dependent on lysosomal functions. First, there was little cleaved caspase-3 in E64FC26-treated cells according to Western blotting, but a higher dose of E64FC26 was needed to induce caspase activity. Then, E64FC26-induced cell death could be reversed by adding the iron chelator, deferoxamine, and the reactive oxygen species scavengers, ferrostatin-1 and N-acetylcysteine. Furthermore, the autophagosome-specific marker, light chain 3B (LC3B)-II, increased, but the autolysosome marker, sequestosome 1 (SQSTM1)/p62, was not degraded in E64FC26-treated cells. Using the FUW mCherry-LC3 plasmid and acridine orange staining, we also discovered a lower number of acidic vesicles, such as autolysosomes and mature lysosomes, in E64FC26-treated cells. Finally, E64FC26 treatment increased the cathepsin L precursor (pre-CTSL) but decreased mature CTSL expression according to Western blotting, indicating a defective lysosome. These results suggested that the PDI inhibitor, E64FC26, might initially impede proper folding of proteins, and then induce ER stress and disrupt proteostasis, subsequently leading to lysosomal defects. Due to defective lysosomes, the extents of apoptosis and ferroptosis were limited, and fusion with autophagosomes was blocked in E64FC26-treated cells. Blockade of autolysosomal formation further led to the autophagic cell death of PDAC cells. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

43 pages, 4739 KiB  
Review
The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress
by Irina V. Kholodenko, Roman V. Kholodenko and Konstantin N. Yarygin
Int. J. Mol. Sci. 2023, 24(20), 15212; https://doi.org/10.3390/ijms242015212 - 16 Oct 2023
Cited by 10 | Viewed by 3525
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of [...] Read more.
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ’s own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte–MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange. Full article
(This article belongs to the Special Issue Stem Cells in Health and Disease)
Show Figures

Figure 1

18 pages, 2999 KiB  
Article
The Endoplasmic Reticulum Is a Key Battleground between Phytoplasma Aggression and Host Plant Defense
by Junichi Inaba, Bo Min Kim, Yan Zhao, Andrew M. Jansen and Wei Wei
Cells 2023, 12(16), 2110; https://doi.org/10.3390/cells12162110 - 21 Aug 2023
Cited by 3 | Viewed by 2212
Abstract
Phytoplasmas are intracellular plant pathogens that heavily rely on host cell nutrients for survival and propagation due to their limited ability to synthesize essential substrates. The endoplasmic reticulum (ER), which plays a vital role in various cellular processes, including lipid and protein biosynthesis, [...] Read more.
Phytoplasmas are intracellular plant pathogens that heavily rely on host cell nutrients for survival and propagation due to their limited ability to synthesize essential substrates. The endoplasmic reticulum (ER), which plays a vital role in various cellular processes, including lipid and protein biosynthesis, is an attractive target for numerous intracellular pathogens to exploit. This study investigated the impact of potato purple top (PPT) phytoplasma infection on the ER in tomato plants. Abnormal accumulation of ER-resident proteins, disrupted ER network structures, and formation of protein aggregates in the phloem were observed using confocal microscopy and transmission electron microscopy, indicating a phytoplasma-infection-induced disturbance in ER homeostasis. The colocalization of phytoplasmas with the accumulated ER-resident proteins suggests an association between ER stress, unfolded protein response (UPR) induction, and phytoplasma infection and colonization, with the ER stress response likely contributing to the host plant’s defense mechanisms. Quantitative real-time PCR revealed a negative correlation between ER stress/UPR activation and PPT phytoplasma titer, implying the involvement of UPR in curbing phytoplasma proliferation. Inducing ER stress and activating the UPR pathway effectively decreased phytoplasma titer, while suppressing the ER-resident protein, binding immunoglobulin protein (BiP) increased phytoplasma titer. These results highlight the ER as an intracellular battleground where phytoplasmas exploit host components for survival and multiplication, while host plants deploy defense mechanisms to counteract the invasion. Understanding the intricate interactions between phytoplasmas and plant hosts at the subcellular level, particularly within the ER, provides valuable insights for developing new strategies to control phytoplasma diseases. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Graphical abstract

Back to TopTop