Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = EFNA5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2992 KB  
Article
Ephrin Receptors and Ephrin Ligands in Uveal Melanoma: A Big Data Analysis Using Web Resources
by Georgios Mandrakis, Christina-Maria Flessa, Panoraia Keratsa, Apostolos Zaravinos, Stamatios Theocharis and Alexandros G. Sykaras
Int. J. Mol. Sci. 2026, 27(1), 442; https://doi.org/10.3390/ijms27010442 - 31 Dec 2025
Viewed by 644
Abstract
Uveal melanoma (UVM) is a rare cancer that represents the second most common melanoma (after the cutaneous) and the most common primary intraocular malignancy in adults. Despite recent advances in the understanding of UVM pathogenesis, its prognosis remains unchanged, with half of patients [...] Read more.
Uveal melanoma (UVM) is a rare cancer that represents the second most common melanoma (after the cutaneous) and the most common primary intraocular malignancy in adults. Despite recent advances in the understanding of UVM pathogenesis, its prognosis remains unchanged, with half of patients dying because of liver metastasis. Erythropoietin-producing human hepatocellular receptors (EPHs) constitute the largest known family of tyrosine receptors, and, along with their ligands, EFNs, regulate key physiological processes and are implicated in cancer pathogenesis. In this study, we used open-access web bioinformatics platforms to explore and analyze big datasets provided by The Cancer Genome Atlas (TCGA) UVM cohort of patients. We profiled the genomic alterations present in a subset of UVM patients, highlighting a likely pathogenic deep deletion of EPHA7. Survival analysis showed that overexpression levels of EPHA4, EPHA5, EPHA8, EPHB2, and EFNB2 are significantly associated with poor overall survival. Additionally, high expression levels of EPHA4, EPHA5, EPHA7, EPHA8, EPHB2, EFNA2, and EFNB2 correlate with reduced progression-free interval and disease-free survival. Finally, we identified the EPHs (EPHA2, EPHA4, EPHA8, and EPHB4) and EFNs (EFNA1, EFNA3, EFNA4, and EFNB2) that are significantly overexpressed in the aggressive epithelioid histological subtype and revealed that the majority of EPHs/EFNs are overexpressed in metastatic disease. In conclusion, our results highlight that a subset of EPHs and EFNs may be associated with worse clinical outcomes (EPHA4, EPHA5, EPHA7, EPHA8, EPHB2, EFNA2, and EFNB2), and an aggressive histological subtype (EPHA2, EPHA4, EPHA8, EPHB4, EFNA1, EFNA3, EFNA4, and EFNB2). The potential correlation of these genes with clinicopathological parameters of UVM need to be evaluated and validated with bioinformatic and experimental approaches in well-characterized cohorts of UVM patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

24 pages, 13412 KB  
Article
Cross-Species Insights into In Vitro Maturation Defects of the Oocyte and Identification of Crucial Regulators for Sheep Oocyte Maturation
by Jian Cui, Xiurong Zhao, Jia Hao, Xingyuan Liu, Wenjing Wang, Lixia He, Yubing Wang, Jinfu Rong, Chunjuan Qiu, Dayong Chen, Lei Cheng, Jianhui Tian, Jiaxin Zhang and Guangyin Xi
Antioxidants 2025, 14(12), 1499; https://doi.org/10.3390/antiox14121499 - 13 Dec 2025
Viewed by 597
Abstract
The poor quality of oocytes matured in vitro seriously hinders the application in mammalian assisted reproductive technology (ART). Exploring the regulators and mechanisms influencing oocyte maturation is critical to improve the developmental competence of in vitro matured oocytes and the efficiency of ART. [...] Read more.
The poor quality of oocytes matured in vitro seriously hinders the application in mammalian assisted reproductive technology (ART). Exploring the regulators and mechanisms influencing oocyte maturation is critical to improve the developmental competence of in vitro matured oocytes and the efficiency of ART. Here, through comparative cross-species transcriptomic analyses, we reveal that impaired autocrine/paracrine signaling and disruption of ubiquitin-dependent protein catabolic process, which are often accompanied by severe endoplasmic reticulum stress, represent common potential defects during in vitro oocyte maturation. Moreover, we identified two previously unrecognized key factors missing in the current IVM system by ligand screening. We further determined that EFNA1 and NRXN1 alleviated the excessive accumulation of protein aggregates and endoplasmic reticulum stress by enhancing the oocyte antioxidant defense and maintaining lipid homeostasis, thereby improving the oocyte developmental potential. Our findings identified critical extrinsic regulators of oocyte developmental competence and provided a practical strategy to improve IVM efficiency in ART. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

22 pages, 5387 KB  
Article
EFNA5 as an Oocyte-Derived Factor Enhances Developmental Competence by Modulating Oxidative Stress, Inflammation, and Apoptosis During In Vitro Maturation
by Xingyuan Liu, Jian Cui, Yubing Wang, Jia Hao, Yingjie Wu, Yinjuan Wang, Lei An, Jianhui Tian and Guangyin Xi
Antioxidants 2025, 14(12), 1476; https://doi.org/10.3390/antiox14121476 - 9 Dec 2025
Viewed by 480
Abstract
In vitro maturation (IVM) of oocytes remains suboptimal due to oxidative stress and disrupted cumulus–oocyte communication. Oocyte-derived factors (ODFs) are key mediators of this crosstalk and crucial for oocyte competence. Here, we provide systematic evidence that ephrin-A5 (EFNA5) is an oocyte-derived membrane ligand [...] Read more.
In vitro maturation (IVM) of oocytes remains suboptimal due to oxidative stress and disrupted cumulus–oocyte communication. Oocyte-derived factors (ODFs) are key mediators of this crosstalk and crucial for oocyte competence. Here, we provide systematic evidence that ephrin-A5 (EFNA5) is an oocyte-derived membrane ligand capable of regulating oocyte quality during IVM. Cross-species transcriptomic analysis revealed that EFNA5 is stably enriched in mammalian oocytes but markedly reduced in in vitro-matured oocytes compared with in vivo counterparts. Using the ovine IVM model, supplementation with recombinant EFNA5 significantly improved blastocyst formation, increased total cell numbers, and reduced apoptosis. Mechanistically, EFNA5 promoted cumulus–oocyte complex expansion, reduced reactive oxygen species accumulation, activated NRF2-dependent antioxidant signaling, and suppressed NF-κB-driven inflammation. RNA-seq and functional validation further confirmed that EFNA5 enhanced redox homeostasis and decreased DNA damage, collectively improving oocyte developmental potential. These findings establish EFNA5 as a novel and conserved ODF that alleviates oxidative and inflammatory stress to enhance oocyte quality and embryo development, providing mechanistic insight and a potential strategy for improving assisted reproductive technologies. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

24 pages, 8383 KB  
Article
Idebenone Mitigates Traumatic-Brain-Injury-Triggered Gene Expression Changes to Ephrin-A and Dopamine Signaling Pathways While Increasing Microglial Genes
by Hyehyun Hwang, Chinmoy Sarkar, Boris Piskoun, Naibo Zhang, Apurva Borcar, Courtney L. Robertson, Marta M. Lipinski, Nagendra Yadava, Molly J. Goodfellow and Brian M. Polster
Cells 2025, 14(11), 824; https://doi.org/10.3390/cells14110824 - 1 Jun 2025
Cited by 1 | Viewed by 1789
Abstract
Traumatic brain injury (TBI) leads to persistent pro-inflammatory microglial activation implicated in neurodegeneration. Idebenone, a coenzyme Q10 analogue that interacts with both mitochondria and the tyrosine kinase adaptor SHC1, inhibits aspects of microglial activation in vitro. We used the NanoString Neuropathology Panel to [...] Read more.
Traumatic brain injury (TBI) leads to persistent pro-inflammatory microglial activation implicated in neurodegeneration. Idebenone, a coenzyme Q10 analogue that interacts with both mitochondria and the tyrosine kinase adaptor SHC1, inhibits aspects of microglial activation in vitro. We used the NanoString Neuropathology Panel to test the hypothesis that idebenone post-treatment mitigates TBI-pathology-associated acute gene expression changes by moderating the pro-inflammatory microglial response to injury. Controlled cortical impact to adult male mice increased the microglial activation signature in the peri-lesional cortex at 24 h post-TBI. Unexpectedly, several microglial signature genes upregulated by TBI were further increased by post-injury idebenone administration. However, idebenone significantly attenuated TBI-mediated perturbations to gene expression associated with behavior, particularly in the gene ontology–biological process (GO:BP) pathways “ephrin receptor signaling” and “dopamine metabolic process”. Gene co-expression analysis correlated levels of microglial complement component 1q (C1q) and the neurotrophin receptor gene Ntrk1 to large (>3-fold) TBI-induced decreases in dopamine receptor genes Drd1 and Drd2 that were mitigated by idebenone treatment. Bioinformatics analysis identified SUZ12 as a candidate transcriptional regulator of idebenone-modified gene expression changes. Overall, the results suggest that idebenone may enhance TBI-induced microglial number within the first 24 h of TBI and identify ephrin-A and dopamine signaling as novel idebenone targets. Full article
Show Figures

Graphical abstract

22 pages, 2923 KB  
Article
Crosstalk Among Gut Microbiota, Fecal Metabolites, and Amygdala Neuropathology Genes After Ginger Polyphenol Administration in Female Rats with Neuropathic Pain: Evidence for Microbiota–Gut–Brain Connection
by Chwan-Li Shen, Julianna Maria Santos, Moamen M. Elmassry, Fang Chen, Guangchen Ji, Peyton Presto, Takaki Kiritoshi, Xiaobo Liu and Volker Neugebauer
Nutrients 2025, 17(9), 1444; https://doi.org/10.3390/nu17091444 - 25 Apr 2025
Cited by 2 | Viewed by 1838
Abstract
Objectives. The relationships among neuropathic pain, gut microbiota, microbiome-derived metabolites, and neuropathology have received increasing attention. This study examined the effects of two dosages of gingerol-enriched ginger (GEG) on mechanical hypersensitivity, anxiety-like behavior, gut microbiome composition and its metabolites, and neuropathology markers in [...] Read more.
Objectives. The relationships among neuropathic pain, gut microbiota, microbiome-derived metabolites, and neuropathology have received increasing attention. This study examined the effects of two dosages of gingerol-enriched ginger (GEG) on mechanical hypersensitivity, anxiety-like behavior, gut microbiome composition and its metabolites, and neuropathology markers in female rats in the spinal nerve ligation (SNL) model of neuropathic pain. Methods. Forty female rats were assigned to 4 groups: sham-vehicle, SNL-vehicle, SNL+GEG at 200 mg/kg BW, and SNL+GEG at 600 mg/kg BW via oral gavage. All animals were given an AIN-93G diet for 5 weeks. Mechanical hypersensitivity was assessed by the von Frey test. Anxiety-like behavior was assessed by the open field test. Fecal microbiota composition and metabolites were determined using 16S rRNA gene sequencing and GC-MS, respectively. Neuropathology gene expression profiling of the amygdala was assessed by an nCounter® Neuropathology pathway panel. Results. Both GEG-treated groups showed decreased mechanical hypersensitivity and anxiety-like behavior in the SNL model. Gut microbiome diversity in both GEG groups was decreased compared with untreated SNL rats. In the SNL model, phyla such as Bacteroidota, Proteobacteria and Verrucomicrobiota were decreased. Compared with the untreated SNL group, both GEG groups exhibited increased abundance of the phyla Bacteroidota (i.e., Rikenella, Alistipes, Muribaculaceae, Odoribacter), Firmicutes (i.e., UBA1819, Ruminococcaceae, Oscillospiraceae, Roseburia), and Verrucomicrobiota (i.e., Victivallis). GEG groups had higher levels of nine hydrophilic positive metabolites [val-glu, urocanic acid, oxazolidinone, L-threonine, L-norleucine, indole, imino-tryptophan, 2,3-octadiene-5,7-diyn-1-ol, and (2E)-3-(3-hydroxyphenyl) acrylaldehyde] and two hydrophilic negative metabolites [methylmalonic acid and metaphosphoric acid], as well as lower levels of five hydrophilic metabolites [xanthine, N-acetylmuramic acid, doxaprost, adenine, and 1-myristoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine]. Among the 770 neuropathology genes, 1 gene (PLA2G4A) was upregulated and 2 genes (CDK5R1 and SHH) were downregulated in SNL rats. GEG caused the upregulation of nine genes (APC, CCNH, EFNA5, GRN, HEXB, ITPR1, PCSK2, TAF9, and WFS1) and downregulation of three genes (AVP, C4A, and TSPO) in the amygdala. Conclusions. GEG supplementation mitigated pain-associated behaviors in female rats with neuropathic pain, in part by reversing the molecular neuropathology signature of the amygdala. This was associated with changes in the gut microbiome composition and fecal metabolites, which could play a role in mediating the effects of GEG on neuropathic pain. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

12 pages, 1807 KB  
Article
Genome-Wide Association Study Reveals Genetic Mechanisms Underlying Intersex and Aproctia in Large White Pigs
by Yajun Li, Jiaxin Shi, Yingshan Yang, Donglin Ruan, Jie Wu, Danyang Lin, Zihao Liao, Xinrun Hong, Fuchen Zhou, Langqing Liu, Jie Yang, Ming Yang, Enqin Zheng, Zhenfang Wu, Gengyuan Cai and Zebin Zhang
Animals 2025, 15(8), 1094; https://doi.org/10.3390/ani15081094 - 10 Apr 2025
Viewed by 1116
Abstract
Congenital developmental abnormalities in piglets, such as intersex and aproctia, adversely affect survival rates, growth performance, and genetic breeding efficiency in pig populations. To elucidate their genetic basis, we performed a genome-wide association study (GWAS) on 1030 Large White pigs. We combined 50 [...] Read more.
Congenital developmental abnormalities in piglets, such as intersex and aproctia, adversely affect survival rates, growth performance, and genetic breeding efficiency in pig populations. To elucidate their genetic basis, we performed a genome-wide association study (GWAS) on 1030 Large White pigs. We combined 50 K SNP chip data with SWIM-based genotype imputation to enhance the resolution of genetic variation detection, followed by MLM analysis. Our results identified 53 significant SNPs, with 52 associated with intersex and 1 with aproctia. Key candidate genes included MAD1L1, ID4, EFNA5, and PPP1R16B for intersex and ARNT2 for aproctia. Functional enrichment analysis highlighted pathways related to gonadal development (e.g., progesterone-mediated oocyte maturation) and embryonic morphogenesis. Collectively, the identification of these SNPs and candidate genes advances our understanding of the genetic architecture of intersex and aproctia in piglets. These findings provide actionable insights for optimizing genetic breeding strategies and improving health management in Large White pig production, with potential implications for reducing economic losses caused by congenital disorders. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 297 KB  
Article
Genetic Variants in RASSF1 (rs2073498), SERPINE1 (rs1799889), and EFNA1 (rs12904) Are Associated with Susceptibility in Mexican Patients with Colorectal Cancer: Clinical Associations and Their Analysis In Silico
by César de Jesús Tovar-Jácome, Clara Ibet Juárez-Vázquez, Martha Patricia Gallegos-Arreola, José Elías García-Ortiz, María Eugenia Marín-Contreras, Tomás Daniel Pineda-Razo, Ignacio Mariscal-Ramírez, Oscar Durán-Anguiano, Aldo Antonio Alcaraz-Wong, Rubria Alicia González-Sánchez, Marina Lizbeth Mundaca-Rodríguez, Miriam Yadira Godínez-Rodríguez, Marlín Corona-Padilla and Mónica Alejandra Rosales-Reynoso
Genes 2025, 16(2), 223; https://doi.org/10.3390/genes16020223 - 15 Feb 2025
Viewed by 1463
Abstract
Background/Objectives: Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Variants in genes that regulate processes such as apoptosis and angiogenesis play a significant role in CRC. The objective of this study is to investigate the possible association between RASSF1 [...] Read more.
Background/Objectives: Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Variants in genes that regulate processes such as apoptosis and angiogenesis play a significant role in CRC. The objective of this study is to investigate the possible association between RASSF1 (rs2073498), SERPINE1 (rs1799889), EFNA1 (rs12904), and RAD51 (rs1801320) variants and clinicopathological characteristics of Mexican patients with CRC. Methods: DNA of peripheral blood samples was obtained from 631 individuals (349 patients and 282 control individuals). The RASSF1 (rs2073498), SERPINE1 (rs1799889), EFNA1 (rs12904), and RAD51 (rs1801320) variants were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The association was calculated using the odds ratio (OR) test. p-values were adjusted by the Bonferroni test (0.0125). In silico analysis programs, including Combined Annotation Dependent Depletion (CADD), Polymorphism Phenotyping-2 (PolyPhen-2), and Gene Expression Profiling Interactive Analysis (GEPIA), were conducted to predict the functional impact of these variants. Results: Patients carrying the G/A genotype of the RASSF1 (rs2073498) variant showed an association with CRC characteristics, including TNM stages and tumor location (OR > 2.5, p = 0.001). Regarding the SERPINE1 (rs1799889) variant, patients carrying the 5G/4G genotype showed an association between TNM stages and tumor location in the rectum (OR > 1.5, p ≤ 0.05). Patients with the G/G genotype for the EFNA1 (rs12904) variant showed an association with TNM stages and rectal tumor location (OR > 2.0, p = 0.001). The RAD51 (rs1801320) variant had no association with colorectal cancer. Conclusions: RASSF1 (rs2073498), SERPINE1 (rs1799889), and EFNA1 (rs12904) variants significantly influence colorectal cancer risk. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
15 pages, 20405 KB  
Article
Relative Quantitation of EFNA1 Expression in Mouse Heart Tissue Histologic Sections Using MALDI-MSI
by Maria Torres, Laura Gruer, Smrithi Valsaraj, Shaun Reece, Jeremy Prokop, Tonya Zeczycki, Cameron Taylor, Taylor Byers, William Cruz, Kim Kew, Lisandra de Castro Braz and Jitka Virag
Int. J. Mol. Sci. 2025, 26(4), 1398; https://doi.org/10.3390/ijms26041398 - 7 Feb 2025
Viewed by 1533
Abstract
EFNA1 (ephrinA1), a highly expressed tyrosine kinase receptor-ligand in healthy cardiomyocytes, is reduced following myocardial infarction (MI). A single intramyocardial injection of chimeric EFNA1-Fc at the time of ischemia mitigates the injury in both reperfused and non-reperfused mouse myocardium by reducing apoptosis, necrosis, [...] Read more.
EFNA1 (ephrinA1), a highly expressed tyrosine kinase receptor-ligand in healthy cardiomyocytes, is reduced following myocardial infarction (MI). A single intramyocardial injection of chimeric EFNA1-Fc at the time of ischemia mitigates the injury in both reperfused and non-reperfused mouse myocardium by reducing apoptosis, necrosis, and inflammation. Recently, we have successfully imaged and qualitatively identified endogenous EFNA1 pre- and post-MI using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) coupled with a time-of-flight mass spectrometer (MALDI/TOF MS). Building on our previous work, we are currently focused on understanding and characterizing EFNA1’s role in cardiac tissue by developing an integrated quantitative method to determine endogenous levels of EFNA1 using MALDI-MSI technologies. Herein, we have optimized a method for the relative quantitation of endogenous tryptic EFNA1 peptides detected in the murine heart as compared with routine western blotting. In healthy myocardium, there was approximately 50 ng of endogenous EFNA1 per section of 9.43 mm3 tissue, or roughly 12 pg/µg of homogenized tissue. MALDI-MSI thus provides a tool for determining the anatomical distribution and relative quantitation of endogenous EFNA1 in cardiac tissue. Future applications of these tools will allow us to investigate the dynamic changes in EFNA1 expression profile that occur in pathological states such as myocardial infarction and upon therapeutic treatments. Full article
(This article belongs to the Special Issue Research Progress on the Mechanism and Treatment of Cardiomyopathy)
Show Figures

Figure 1

15 pages, 3549 KB  
Article
Transcriptomic Analysis of PDCoV-Infected HIEC-6 Cells and Enrichment Pathways PI3K-Akt and P38 MAPK
by Yuhang Jiang, Guoqing Zhang, Letian Li, Maopeng Wang, Jing Chen, Pengfei Hao, Zihan Gao, Jiayi Hao, Chang Li and Ningyi Jin
Viruses 2024, 16(4), 579; https://doi.org/10.3390/v16040579 - 9 Apr 2024
Cited by 2 | Viewed by 2625
Abstract
Porcine Deltacoronavirus (PDCoV) is a newly identified coronavirus that causes severe intestinal lesions in piglets. However, the understanding of how PDCoV interacts with human hosts is limited. In this study, we aimed to investigate the interactions between PDCoV and human intestinal cells (HIEC-6) [...] Read more.
Porcine Deltacoronavirus (PDCoV) is a newly identified coronavirus that causes severe intestinal lesions in piglets. However, the understanding of how PDCoV interacts with human hosts is limited. In this study, we aimed to investigate the interactions between PDCoV and human intestinal cells (HIEC-6) by analyzing the transcriptome at different time points post-infection (12 h, 24 h, 48 h). Differential gene analysis revealed a total of 3560, 5193, and 4147 differentially expressed genes (DEGs) at 12 h, 24 h, and 48 h, respectively. The common genes among the DEGs at all three time points were enriched in biological processes related to cytokine production, extracellular matrix, and cytokine activity. KEGG pathway analysis showed enrichment of genes involved in the p53 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway. Further analysis of highly expressed genes among the DEGs identified significant changes in the expression levels of BUB1, DDIT4, ATF3, GBP2, and IRF1. Comparison of transcriptome data at 24 h with other time points revealed 298 DEGs out of a total of 6276 genes. KEGG analysis of these DEGs showed significant enrichment of pathways related to viral infection, specifically the PI3K-Akt and P38 MAPK pathways. Furthermore, the genes EFNA1 and KITLG, which are associated with viral infection, were found in both enriched pathways, suggesting their potential as therapeutic or preventive targets for PDCoV infection. The enhancement of PDCoV infection in HIEC-6 was observed upon inhibition of the PI3K-Akt and P38 MAPK signaling pathways using sophoridine. Overall, these findings contribute to our understanding of the molecular mechanisms underlying PDCoV infection in HIEC-6 cells and provide insights for developing preventive and therapeutic strategies against PDCoV infection. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

21 pages, 5284 KB  
Article
Unlocking Overexpressed Membrane Proteins to Guide Breast Cancer Precision Medicine
by Júlia Badaró Mendonça, Priscila Valverde Fernandes, Danielle C. Fernandes, Fabiana Resende Rodrigues, Mariana Caldas Waghabi and Tatiana Martins Tilli
Cancers 2024, 16(7), 1402; https://doi.org/10.3390/cancers16071402 - 3 Apr 2024
Cited by 4 | Viewed by 3721
Abstract
Breast cancer (BC) is a prevalent form of cancer affecting women worldwide. However, the effectiveness of current BC drugs is limited by issues such as systemic toxicity, drug resistance, and severe side effects. Consequently, there is an urgent need for new therapeutic targets [...] Read more.
Breast cancer (BC) is a prevalent form of cancer affecting women worldwide. However, the effectiveness of current BC drugs is limited by issues such as systemic toxicity, drug resistance, and severe side effects. Consequently, there is an urgent need for new therapeutic targets and improved tumor tracking methods. This study aims to address these challenges by proposing a strategy for identifying membrane proteins in tumors that can be targeted for specific BC therapy and diagnosis. The strategy involves the analyses of gene expressions in breast tumor and non-tumor tissues and other healthy tissues by using comprehensive bioinformatics analysis from The Cancer Genome Atlas (TCGA), UALCAN, TNM Plot, and LinkedOmics. By employing this strategy, we identified four transcripts (LRRC15, EFNA3, TSPAN13, and CA12) that encoded membrane proteins with an increased expression in BC tissue compared to healthy tissue. These four transcripts also demonstrated high accuracy, specificity, and accuracy in identifying tumor samples, as confirmed by the ROC curve. Additionally, tissue microarray (TMA) analysis revealed increased expressions of the four proteins in tumor tissues across all molecular subtypes compared to the adjacent breast tissue. Moreover, the analysis of human interactome data demonstrated the important roles of these proteins in various cancer-related pathways. Taken together, these findings suggest that LRRC15, EFNA3, TSPAN13, and CA12 can serve as potential biomarkers for improving cancer diagnosis screening and as suitable targets for therapy with reduced side effects and enhanced efficacy. Full article
(This article belongs to the Special Issue Biomarkers for the Early Detection and Treatment of Cancers)
Show Figures

Figure 1

16 pages, 1854 KB  
Article
Association of the rs1966265 and rs351855 FGFR4 Variants with Colorectal Cancer in a Mexican Population and Their Analysis In Silico
by Irving Alejandro Carrillo-Dávila, Asbiel Felipe Garibaldi-Ríos, Luis E. Figuera, Belinda Claudia Gómez-Meda, Guillermo M. Zúñiga-González, Ana María Puebla-Pérez, Patricia Montserrat García-Verdín, Paola Beatriz Castro-García, Itzae Adonai Gutiérrez-Hurtado, Blanca Miriam Torres-Mendoza and Martha Patricia Gallegos-Arreola
Biomedicines 2024, 12(3), 602; https://doi.org/10.3390/biomedicines12030602 - 7 Mar 2024
Cited by 1 | Viewed by 2553
Abstract
The aim of this study was to associate FGFR4 rs1966265 and rs351855 variants with colorectal cancer (CRC) in a Mexican population and to perform in silico analysis. Genomic DNA from 412 healthy individuals and 475 CRC patients was analyzed. In silico analysis was [...] Read more.
The aim of this study was to associate FGFR4 rs1966265 and rs351855 variants with colorectal cancer (CRC) in a Mexican population and to perform in silico analysis. Genomic DNA from 412 healthy individuals and 475 CRC patients was analyzed. In silico analysis was performed using the PolyPhen-V2, GEPIA, GTEx, and Cytoscape platforms. The GA genotype dominant model (GAAA) of rs1966265 and the AA genotype dominant and recessive models of rs351855 were identified as CRC risk factors (p < 0.05). CRC patients aged ≥ 50 years at diagnosis who consumed alcohol had a higher incidence of the rs351855 GA genotype than the control group (p < 0.05). Associations were observed between the rs1966265 GA genotype and patients with rectal cancer and stage III–IV disease. The rs351855 AA genotype was a risk factor for partial chemotherapy response, and the GA + AA genotype for age ≥ 50 years at diagnosis and rectal cancer was associated with a partial response to chemotherapy (p < 0.05). The AA haplotype was associated with increased susceptibility to CRC. In silico analysis indicated that the rs351855 variant is likely pathogenic (score = 0.998). Genotypic expression analysis in blood samples showed statistically significant differences (p < 0.05). EFNA4, SLC3A2, and HNF1A share signaling pathways with FGFR4. Therefore, rs1966265 and rs351855 may be potential CRC risk factors. Full article
(This article belongs to the Special Issue Genetic Research on Colorectal Cancer)
Show Figures

Figure 1

17 pages, 24953 KB  
Article
Integrated Bioinformatics Analysis Identified ASNS and DDIT3 as the Therapeutic Target in Castrate-Resistant Prostate Cancer
by Ae Ryang Jung, Sun Shin, Mee Young Kim, U-Syn Ha, Sung-Hoo Hong, Ji Youl Lee, Sae Woong Kim, Yeun-Jun Chung and Yong Hyun Park
Int. J. Mol. Sci. 2024, 25(5), 2836; https://doi.org/10.3390/ijms25052836 - 29 Feb 2024
Cited by 3 | Viewed by 2973
Abstract
Many studies have demonstrated the mechanisms of progression to castration-resistant prostate cancer (CRPC) and novel strategies for its treatment. Despite these advances, the molecular mechanisms underlying the progression to CRPC remain unclear, and currently, no effective treatments for CRPC are available. Here, we [...] Read more.
Many studies have demonstrated the mechanisms of progression to castration-resistant prostate cancer (CRPC) and novel strategies for its treatment. Despite these advances, the molecular mechanisms underlying the progression to CRPC remain unclear, and currently, no effective treatments for CRPC are available. Here, we characterized the key genes involved in CRPC progression to gain insight into potential therapeutic targets. Bicalutamide-resistant prostate cancer cells derived from LNCaP were generated and named Bical R. RNA sequencing was used to identify differentially expressed genes (DEGs) between LNCaP and Bical R. In total, 631 DEGs (302 upregulated genes and 329 downregulated genes) were identified. The Cytohubba plug-in in Cytoscape was used to identify seven hub genes (ASNS, AGT, ATF3, ATF4, DDIT3, EFNA5, and VEGFA) associated with CRPC progression. Among these hub genes, ASNS and DDIT3 were markedly upregulated in CRPC cell lines and CRPC patient samples. The patients with high expression of ASNS and DDIT3 showed worse disease-free survival in patients with The Cancer Genome Atlas (TCGA)-prostate adenocarcinoma (PRAD) datasets. Our study revealed a potential association between ASNS and DDIT3 and the progression to CRPC. These results may contribute to the development of potential therapeutic targets and mechanisms underlying CRPC progression, aiming to improve clinical efficacy in CRPC treatment. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 12731 KB  
Article
Transcriptome Data Revealed the circRNA–miRNA–mRNA Regulatory Network during the Proliferation and Differentiation of Myoblasts in Shitou Goose
by Rongqin Huang, Jiahui Chen, Xu Dong, Xiquan Zhang and Wen Luo
Animals 2024, 14(4), 576; https://doi.org/10.3390/ani14040576 - 8 Feb 2024
Cited by 8 | Viewed by 2678
Abstract
CircRNA, a recently characterized non-coding RNA (ncRNA) variant, functions as a molecular sponge, exerting regulatory control by binding to microRNA (miRNA) and modulating the expression of downstream proteins, either promoting or inhibiting their expression. Among poultry species, geese hold significant importance, prized by [...] Read more.
CircRNA, a recently characterized non-coding RNA (ncRNA) variant, functions as a molecular sponge, exerting regulatory control by binding to microRNA (miRNA) and modulating the expression of downstream proteins, either promoting or inhibiting their expression. Among poultry species, geese hold significant importance, prized by consumers for their delectable taste and rich nutritional content. Despite the prominence of geese, research on the growth and development of goose muscle, particularly the regulatory role of circRNAs in goose muscle formation, remains insufficiently explored. In this study, we constructed comprehensive expression profiles of circRNAs and messenger RNAs (mRNAs) within the myoblasts and myotubes of Shitou geese. We identified a total of 96 differentially expressed circRNAs (DEcircRNAs) and 880 differentially expressed mRNAs (DEmRNAs). Notably, the parental genes of DEcircRNAs and DEmRNAs exhibited enrichment in the Wnt signaling pathway, highlighting its potential impact on the proliferation and differentiation of goose myoblasts. Employing RNAhybrid and miRDB, we identified circRNA-miRNA pairs and mRNA-miRNA pairs that may play a role in regulating myogenic differentiation or muscle growth. Subsequently, utilizing Cytoscape, we constructed a circRNA–miRNA–mRNA interaction network aimed at unraveling the intricate regulatory mechanisms involved in goose muscle growth and development, which comprises 93 circRNAs, 351 miRNAs, and 305 mRNAs. Moreover, the identification of 10 hub genes (ACTB, ACTN1, BDNF, PDGFRA, MYL1, EFNA5, MYSM1, THBS1, ITGA8, and ELN) potentially linked to myogenesis, along with the exploration of their circRNA–miRNA–hub gene regulatory axis, was also conducted. These competitive endogenous RNA (ceRNA) regulatory networks elucidate the molecular regulatory mechanisms associated with muscle growth in Shitou geese, providing deeper insights into the reciprocal regulation of circRNA, miRNA, and mRNA in the context of goose muscle formation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 5428 KB  
Article
Gene Signature Associated with Nervous System in an Experimental Radiation- and Estrogen-Induced Breast Cancer Model
by Gloria M. Calaf, Debasish Roy, Lilian Jara, Francisco Aguayo and Leodan A. Crispin
Biomedicines 2023, 11(12), 3111; https://doi.org/10.3390/biomedicines11123111 - 22 Nov 2023
Cited by 1 | Viewed by 2256
Abstract
Breast cancer is frequently the most diagnosed female cancer in the world. The experimental studies on cancer seldom focus on the relationship between the central nervous system and cancer. Despite extensive research into the treatment of breast cancer, chemotherapy resistance is an important [...] Read more.
Breast cancer is frequently the most diagnosed female cancer in the world. The experimental studies on cancer seldom focus on the relationship between the central nervous system and cancer. Despite extensive research into the treatment of breast cancer, chemotherapy resistance is an important issue limiting the efficacy of treatment. Novel biomarkers to predict prognosis or sensitivity to chemotherapy are urgently needed. This study examined nervous-system-related genes. The profiling of differentially expressed genes indicated that high-LET radiation, such as that emitted by radon progeny, in the presence of estrogen, induced a cascade of events indicative of tumorigenicity in human breast epithelial cells. Bioinformatic tools allowed us to analyze the genes involved in breast cancer and associated with the nervous system. The results indicated that the gene expression of the Ephrin A1 gene (EFNA1), the roundabout guidance receptor 1 (ROBO1), and the kallikrein-related peptidase 6 (KLK6) was greater in T2 and A5 than in the A3 cell line; the LIM domain kinase 2 gene (LIMK2) was greater in T2 than A3 and A5; the kallikrein-related peptidase 7 (KLK7), the neuroligin 4 X-linked gene (NLGN4X), and myelin basic protein (MBP) were greater than A3 only in T2; and the neural precursor cell expressed, developmentally down-regulated 9 gene (NEDD9) was greater in A5 than in the A3 and E cell lines. Concerning the correlation, it was found a positive correlation between ESR1 and EFNA1 in BRCA-LumA patients; with ROBO1 in BRCA-Basal patients, but this correlation was negative with the kallikrein-related peptidase 6 (KLK6) in BRCA-LumA and –LumB, as well as with LIMK2 and ROBO1 in all BRCA. It was also positive with neuroligin 4 X-linked (NLGN4X) in BRCA-Her2 and BRCA-LumB, and with MBP in BRCA-LumA and –LumB, but negative with KLK7 in all BRCA and BRCA-LumA and NEDD9 in BRCA-Her2. The differential gene expression levels between the tumor and adjacent tissue indicated that the ROBO1, KLK6, LIMK2, KLK7, NLGN4X, MBP, and NEDD9 gene expression levels were higher in normal tissues than in tumors; however, EFNA1 was higher in the tumor than the normal ones. EFNA1, LIMK2, ROBO1, KLK6, KLK7, and MBP gene expression had a negative ER status, whereas NEDD9 and NLGN4X were not significant concerning ER status. In conclusion, important markers have been analyzed concerning genes related to the nervous system, opening up a new avenue of studies in breast cancer therapy. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Graphical abstract

15 pages, 11736 KB  
Article
An Integrative ATAC-Seq and RNA-Seq Analysis of the Endometrial Tissues of Meishan and Duroc Pigs
by Han Zhang, Zhexi Liu, Ji Wang, Tong Zeng, Xiaohua Ai and Keliang Wu
Int. J. Mol. Sci. 2023, 24(19), 14812; https://doi.org/10.3390/ijms241914812 - 30 Sep 2023
Cited by 9 | Viewed by 4623
Abstract
Meishan pigs are a well-known indigenous pig breed in China characterized by a high fertility. Notably, the number of endometrial grands is significantly higher in Meishan pigs than Duroc pigs. The characteristics of the endometrial tissue are related to litter size. Therefore, we [...] Read more.
Meishan pigs are a well-known indigenous pig breed in China characterized by a high fertility. Notably, the number of endometrial grands is significantly higher in Meishan pigs than Duroc pigs. The characteristics of the endometrial tissue are related to litter size. Therefore, we used the assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-sequencing (RNA-seq) to analyze the mechanisms underlying the differences in fecundity between the breeds. We detected the key transcription factors, including Double homeobox (Dux), Ladybird-like homeobox gene 2 (LBX2), and LIM homeobox 8 (Lhx8), with potentially pivotal roles in the regulation of the genes related to endometrial development. We identified the differentially expressed genes between the breeds, including SOX17, ANXA4, DLX3, DMRT1, FLNB, IRF6, CBFA2T2, TFCP2L1, EFNA5, SLIT2, and CYFIP2, with roles in epithelial cell differentiation, fertility, and ovulation. Interestingly, ANXA4, CBFA2T2, and TFCP2L1, which were upregulated in the Meishan pigs in the RNA-seq analysis, were identified again by the integration of the ATAC-seq and RNA-seq data. Moreover, we identified genes in the cancer or immune pathways, FoxO signaling, Wnt signaling, and phospholipase D signaling pathways. These ATAC-seq and RNA-seq analyses revealed the accessible chromatin and potential mechanisms underlying the differences in the endometrial tissues between the two types of pigs. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop