Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = ECFC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2158 KiB  
Article
Ticagrelor Induces Angiogenesis in Progenitor and Mature Endothelial Cells In Vitro: Investigation of the Possible Role of Adenosine
by Sofia Sidiropoulou, Aikaterini Gatsiou, Kenny M. Hansson, Aikaterini N. Tsouka, Konstantinos Stellos and Alexandros D. Tselepis
Int. J. Mol. Sci. 2024, 25(24), 13343; https://doi.org/10.3390/ijms252413343 - 12 Dec 2024
Viewed by 1584
Abstract
Ticagrelor, a reversible platelet P2Y12 receptor antagonist, exerts various pleiotropic actions, some of which are at least partially mediated through adenosine. We studied the ticagrelor and adenosine effect on the angiogenic properties of progenitor CD34+-derived endothelial colony-forming cells (ECFCs). Angiogenesis [...] Read more.
Ticagrelor, a reversible platelet P2Y12 receptor antagonist, exerts various pleiotropic actions, some of which are at least partially mediated through adenosine. We studied the ticagrelor and adenosine effect on the angiogenic properties of progenitor CD34+-derived endothelial colony-forming cells (ECFCs). Angiogenesis studies were performed in vitro using capillary-like tube formation and spheroid-based angiogenesis assays. The effects of adenosine receptor antagonists, including DPCPX (A1 antagonist), SCH58621 (A2A antagonist), MRS1706 (A2B inverse agonist and antagonist), MRS1220 (A3 antagonist) and adenosine deaminase (ADA), were also investigated. Ticagrelor, adenosine, and their combination increased capillary-like tube formation and spheroid sprout formation by ECFCs in a dose-dependent manner. This effect was significantly reduced by SCH58621, MRS1706, and their combination, as well as by ADA. By contrast, DPCPX and MRS1220 did not exhibit any inhibitory effects. Similar results were obtained when mature human umbilical vein endothelial cells (HUVECs) were studied. These results show that ticagrelor stimulates angiogenesis by progenitor and mature endothelial cells in an adenosine-dependent pathway in which the adenosine receptors A2A and A2B play major roles. The significance of these results at the clinical level in patients with atherothrombotic events and treated with ticagrelor needs to be investigated. Full article
Show Figures

Figure 1

16 pages, 4695 KiB  
Article
Regenerative and Anti-Senescence Potential of Extracts from Different Parts of Black Persimmon in an In Vitro Model of Vascular Endothelium
by Graziella Serio, Sina Naserian, Sawssen Ben Fraj, Georges Uzan and Carla Gentile
Foods 2024, 13(21), 3366; https://doi.org/10.3390/foods13213366 - 23 Oct 2024
Viewed by 1088
Abstract
Antioxidants are essential for mitigating oxidative stress and maintaining vascular health. Endothelial colony-forming cells (ECFCs) are pivotal in endothelial regeneration and angiogenesis and serve as a model to study the diversity of endothelial cells across various organs. This study evaluated the effects of [...] Read more.
Antioxidants are essential for mitigating oxidative stress and maintaining vascular health. Endothelial colony-forming cells (ECFCs) are pivotal in endothelial regeneration and angiogenesis and serve as a model to study the diversity of endothelial cells across various organs. This study evaluated the effects of peel, pulp, and seed extracts from Diospyros digyna Jacq. fruit (black persimmon) on human cord blood-derived ECFCs (CB-ECFCs) to determine how the distinct antioxidant profiles of the fruit’s different parts influence cellular functions. The extracts did not affect endothelial marker expression, cell proliferation, or nitric oxide production, indicating no cytotoxic or inflammatory effects. However, functional assays revealed that the seed extract significantly enhanced tube formation, increasing closed tubular networks by 1.5-fold. All extracts promoted cell migration, with the seed extract demonstrating the most substantial effect, surpassing even vascular endothelial growth factor (VEGF). Additionally, the seed extract exhibited the strongest reduction in cellular senescence, both before and after oxidative stress induction with H2O2. These findings underscore the potential of black persimmon extracts, especially from the seed, to enhance the regenerative capabilities of CB-ECFCs and reduce cellular senescence without affecting the normal endothelial phenotype. This positions them as promising candidates for developing endothelial cell therapies and advancing vascular regeneration. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 1630 KiB  
Article
Expression of Myeloperoxidase in Patient-Derived Endothelial Colony-Forming Cells—Associations with Coronary Artery Disease and Mitochondrial Function
by Weiqian Eugene Lee, Elijah Genetzakis, Giannie Barsha, Joshua Vescovi, Carmen Mifsud, Stephen T. Vernon, Tung Viet Nguyen, Michael P. Gray, Stuart M. Grieve and Gemma A. Figtree
Biomolecules 2024, 14(10), 1308; https://doi.org/10.3390/biom14101308 - 16 Oct 2024
Cited by 1 | Viewed by 2993
Abstract
Background and Aims: Myeloperoxidase (MPO) plays a critical role in the innate immune response and has been suggested to be a surrogate marker of oxidative stress and inflammation, with elevated levels implicated in cardiovascular diseases, such as atherosclerosis and heart failure, as well [...] Read more.
Background and Aims: Myeloperoxidase (MPO) plays a critical role in the innate immune response and has been suggested to be a surrogate marker of oxidative stress and inflammation, with elevated levels implicated in cardiovascular diseases, such as atherosclerosis and heart failure, as well as in conditions like rheumatoid arthritis and cancer. While MPO is well-known in leukocytes, its expression and function in human endothelial cells remain unclear. This study investigates MPO expression in patient-derived endothelial colony-forming cells (ECFCs) and its potential association with CAD and mitochondrial function. Methods: ECFCs were cultured from the peripheral blood of 93 BioHEART-CT patients. MPO expression and associated functions were examined using qRT-PCR, immunochemistry, flow cytometry, and MPO activity assays. CAD presence was defined using CT coronary angiography (CACS > 0). Results: We report MPO presence in patient-derived ECFCs for the first time. MPO protein expression occurred in 70.7% of samples (n = 41) which had nuclear co-localisation, an atypical observation given its conventional localisation in the granules of neutrophils and monocytes. This suggests potential alternative roles for MPO in nuclear processes. MPO mRNA expression was detected in 66.23% of samples (n = 77). CAD patients had a lower proportion of MPO-positive ECFCs compared to non-CAD controls (57.45% vs. 80%, p = 0.04), a difference that persisted in the statin-naïve sub-cohort (53.85% vs. 84.62%, p = 0.02). Non-CAD patients with MPO expression showed upregulated mitochondrial-antioxidant genes (AIFM2, TXNRD1, CAT, PRDX3, PRDX6). In contrast, CAD patients with MPO gene expression had heightened mROS production and mitochondrial mass and decreased mitochondrial function compared to that of CAD patients without MPO gene expression. Conclusions: MPO is present in the nucleus of ECFCs. In non-CAD ECFCs, MPO expression is linked to upregulated mitochondrial-antioxidant genes, whereas in CAD ECFCs, it is associated with greater mitochondrial dysfunction. Full article
Show Figures

Graphical abstract

19 pages, 5820 KiB  
Article
Unveiling the Role of Tryptophan 2,3-Dioxygenase in the Angiogenic Process
by Marta Cecchi, Cecilia Anceschi, Angela Silvano, Maria Luisa Coniglio, Aurora Chinnici, Lucia Magnelli, Andrea Lapucci, Anna Laurenzana and Astrid Parenti
Pharmaceuticals 2024, 17(5), 558; https://doi.org/10.3390/ph17050558 - 27 Apr 2024
Cited by 3 | Viewed by 2185
Abstract
Background: Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 [...] Read more.
Background: Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 in human umbilical venular endothelial cells (HUVECs) and human endothelial colony-forming cells (ECFCs). Methods: qRT-PCR and immunofluorescence were used for TDO and IDO1 expression while their activity was measured using ELISA assays. Cell proliferation was examined via MTT tests and in in vitro angiogenesis by capillary morphogenesis. Results: HUVECs and ECFCs expressed TDO and IDO1. Treatment with the selective TDO inhibitor 680C91 significantly impaired HUVEC proliferation and 3D-tube formation in response to VEGF-A, while IDO1 inhibition showed no effect. VEGF-induced mTor phosphorylation and Kyn production were hindered by 680C91. ECFC morphogenesis was also inhibited by 680C91. Co-culturing HUVECs with A375 induced TDO up-regulation in both cell types, whose inhibition reduced MMP9 activity and prevented c-Myc and E2f1 upregulation. Conclusions: HUVECs and ECFCs express the key enzymes of the kynurenine pathway. Significantly, TDO emerges as a pivotal player in in vitro proliferation and capillary morphogenesis, suggesting a potential pathophysiological role in angiogenesis beyond its well-known immunomodulatory effects. Full article
(This article belongs to the Special Issue Pharmacological Treatments for Melanoma)
Show Figures

Figure 1

19 pages, 7924 KiB  
Article
High-Throughput Measure of Mitochondrial Superoxide Levels as a Marker of Coronary Artery Disease to Accelerate Drug Translation in Patient-Derived Endothelial Cells Using Opera Phenix® Technology
by Weiqian E. Lee, Marie Besnier, Elijah Genetzakis, Owen Tang, Katharine A. Kott, Stephen T. Vernon, Michael P. Gray, Stuart M. Grieve, Michael Kassiou and Gemma A. Figtree
Int. J. Mol. Sci. 2024, 25(1), 22; https://doi.org/10.3390/ijms25010022 - 19 Dec 2023
Cited by 4 | Viewed by 4542
Abstract
Improved human-relevant preclinical models of coronary artery disease (CAD) are needed to improve translational research and drug discovery. Mitochondrial dysfunction and associated oxidative stress contribute to endothelial dysfunction and are a significant factor in the development and progression of CAD. Endothelial colony-forming cells [...] Read more.
Improved human-relevant preclinical models of coronary artery disease (CAD) are needed to improve translational research and drug discovery. Mitochondrial dysfunction and associated oxidative stress contribute to endothelial dysfunction and are a significant factor in the development and progression of CAD. Endothelial colony-forming cells (ECFCs) can be derived from peripheral blood mononuclear cells (PBMCs) and offer a unique potentially personalised means for investigating new potential therapies targeting important components of vascular function. We describe the application of the high-throughput and confocal Opera Phenix® High-Content Screening System to examine mitochondrial superoxide (mROS) levels, mitochondrial membrane potential, and mitochondrial area in both established cell lines and patient-derived ECFCs simultaneously. Unlike traditional plate readers, the Opera Phenix® is an imaging system that integrates automated confocal microscopy, precise fluorescent detection, and multi-parameter algorithms to visualize and precisely quantify targeted biological processes at a cellular level. In this study, we measured mROS production in human umbilical vein endothelial cells (HUVECs) and patient-derived ECFCs using the mROS production probe, MitoSOXTM Red. HUVECs exposed to oxidized low-density lipoprotein (oxLDL) increased mROS levels by 47.7% (p < 0.0001). A pooled group of patient-derived ECFCs from participants with CAD (n = 14) exhibited 30.9% higher mROS levels compared to patients with no CAD when stimulated with oxLDL (n = 14; p < 0.05). When tested against a small group of candidate compounds, this signal was attenuated by PKT-100 (36.22% reduction, p = 0.03), a novel P2X7 receptor antagonist. This suggests the P2X7 receptor as a valid target against excess mROS levels. As such, these findings highlight the potential of the MitoSOX-Opera Phenix technique to be used for drug discovery efforts in CAD. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease)
Show Figures

Figure 1

11 pages, 5216 KiB  
Article
Producing and Testing Prototype Tissue-Engineered 3D Tri-Leaflet Valved Stents on Biodegradable Poly-ε-Caprolactone Scaffolds
by Georg Lutter, Nina Sophie Pommert, Xiling Zhang, Jette Seiler, Monireh Saeid Nia, David Meier, Stephanie L. Sellers, Stanislav N. Gorb, Jan-Hinnerk Hansen, Hatim Seoudy, Oliver J. Müller, Mohammed Saad, Assad Haneya, Derk Frank, Thomas Puehler and Janarthanan Sathananthan
Int. J. Mol. Sci. 2023, 24(24), 17357; https://doi.org/10.3390/ijms242417357 - 11 Dec 2023
Cited by 1 | Viewed by 1921
Abstract
Transcatheter pulmonary valve replacement is a minimally-invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly evolving over the past years. Heart valve prostheses currently available still have major limitations. Therefore, one of the significant challenges for the future is [...] Read more.
Transcatheter pulmonary valve replacement is a minimally-invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly evolving over the past years. Heart valve prostheses currently available still have major limitations. Therefore, one of the significant challenges for the future is the roll out of transcatheter tissue engineered pulmonary valve replacement to more patients. In the present study, biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds in the form of a 3D leaflet matrix were successfully seeded with human endothelial colony-forming cells (ECFCs), human induced pluripotent stem cell-derived MSCs (hMSCs), and porcine MSCs (pMSCs) for three weeks for the generation of 3D tissue-engineered tri-leaflet valved stent grafts. The cell adhesion, proliferation, and distribution of these 3D heart leaflets was analyzed using fluorescence microscopy and scanning electron microscopy (SEM). All cell lineages were able to increase the overgrown leaflet area within the three-week timeframe. While hMSCs showed a consistent growth rate over the course of three weeks, ECFSs showed almost no increase between days 7 and 14 until a growth spurt appeared between days 14 and 21. More than 90% of heart valve leaflets were covered with cells after the full three-week culturing cycle in nearly all leaflet areas, regardless of which cell type was used. This study shows that seeded biodegradable PCL nanofiber scaffolds incorporated in nitinol or biodegradable stents will offer a new therapeutic option in the future. Full article
(This article belongs to the Special Issue Development and Biomedical Application of Nanofibers)
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
PLAC8-Mediated Activation of NOX4 Signalling Restores Angiogenic Function of Endothelial Colony-Forming Cells in Experimental Hypoxia
by Shun Hay Pun, Karla M. O’Neill, Kevin S. Edgar, Eleanor K. Gill, Arya Moez, Hojjat Naderi-Meshkin, Sudhir B. Malla, Michelle B. Hookham, Mohammed Alsaggaf, Vinuthna Vani Madishetti, Bianca Botezatu, William King, Coy Brunssen, Henning Morawietz, Philip D. Dunne, Derek P. Brazil, Reinhold J. Medina, Chris J. Watson and David J. Grieve
Cells 2023, 12(18), 2220; https://doi.org/10.3390/cells12182220 - 6 Sep 2023
Cited by 3 | Viewed by 3272
Abstract
Ischaemic cardiovascular disease is associated with tissue hypoxia as a significant determinant of angiogenic dysfunction and adverse remodelling. While cord blood-derived endothelial colony-forming cells (CB-ECFCs) hold clear therapeutic potential due to their enhanced angiogenic and proliferative capacity, their impaired functionality within the disease [...] Read more.
Ischaemic cardiovascular disease is associated with tissue hypoxia as a significant determinant of angiogenic dysfunction and adverse remodelling. While cord blood-derived endothelial colony-forming cells (CB-ECFCs) hold clear therapeutic potential due to their enhanced angiogenic and proliferative capacity, their impaired functionality within the disease microenvironment represents a major barrier to clinical translation. The aim of this study was to define the specific contribution of NOX4 NADPH oxidase, which we previously reported as a key CB-ECFC regulator, to hypoxia-induced dysfunction and its potential as a therapeutic target. CB-ECFCs exposed to experimental hypoxia demonstrated downregulation of NOX4-mediated reactive oxygen species (ROS) signalling linked with a reduced tube formation, which was partially restored by NOX4 plasmid overexpression. siRNA knockdown of placenta-specific 8 (PLAC8), identified by microarray analysis as an upstream regulator of NOX4 in hypoxic versus normoxic CB-ECFCs, enhanced tube formation, NOX4 expression and hydrogen peroxide generation, and induced several key transcription factors associated with downstream Nrf2 signalling. Taken together, these findings indicated that activation of the PLAC8–NOX4 signalling axis improved CB-ECFC angiogenic functions in experimental hypoxia, highlighting this pathway as a potential target for protecting therapeutic cells against the ischaemic cardiovascular disease microenvironment. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

13 pages, 1608 KiB  
Article
Development of Personalized Thrombogenesis and Thrombin Generation Assays to Assess Endothelial Dysfunction in Cardiovascular Diseases
by Monica Bacci, Assunta Cancellara, Roberta Ciceri, Erica Romualdi, Valentina Pessi, Fabio Tumminello, Martina Fantuzzi, Marco Paolo Donadini, Corrado Lodigiani, Silvia Della Bella, Francesca Calcaterra and Domenico Mavilio
Biomedicines 2023, 11(6), 1669; https://doi.org/10.3390/biomedicines11061669 - 8 Jun 2023
Cited by 4 | Viewed by 1858
Abstract
The study of endothelial dysfunction (ED) is crucial to identify the pathogenetic mechanism(s) and provide indications for patient management in cardiovascular diseases. It is currently hindered by the limited availability of patient-specific primary endothelial cells (ECs). Endothelial colony-forming cells (ECFCs) represent an optimal [...] Read more.
The study of endothelial dysfunction (ED) is crucial to identify the pathogenetic mechanism(s) and provide indications for patient management in cardiovascular diseases. It is currently hindered by the limited availability of patient-specific primary endothelial cells (ECs). Endothelial colony-forming cells (ECFCs) represent an optimal non-invasive tool to overcome this issue. Therefore, we investigated the use of ECFCs as a substrate in thrombogenesis and thrombin generation assay (TGA) to assess ED. Both assays were set up on human umbilical vein endothelial cells (HUVECs) and then tested on ECFCs obtained from healthy donors. To prove the ability of the assays to detect endothelial activation, ECs stimulated with TNFα were compared with unstimulated ECs. EC activation was confirmed by the upregulation of VCAM-1 and Tissue Factor expression. Both assays discriminated between unstimulated and activated HUVECs and ECFCs, as significantly higher platelet deposition and fibrin formation in thrombogenesis assay, and thrombin generation in TGA, were observed when TNFα-activated ECs were used as a substrate. The amount of fibrin and thrombin measured in the two assays were directly correlated. Our results support the combined use of a thrombogenesis assay and TGA performed on patient-derived ECFCs to provide a personalized global assessment of ED relevant to the patient’s hemostatic profile. Full article
(This article belongs to the Special Issue Adult Stem Cells and Endothelial Progenitor Cells in Diseases)
Show Figures

Figure 1

18 pages, 18838 KiB  
Article
Resveratrol Reverses Endothelial Colony-Forming Cell Dysfunction in Adulthood in a Rat Model of Intrauterine Growth Restriction
by Estelle Guillot, Anna Lemay, Manon Allouche, Sara Vitorino Silva, Hanna Coppola, Florence Sabatier, Françoise Dignat-George, Alexandre Sarre, Anne-Christine Peyter, Stéphanie Simoncini and Catherine Yzydorczyk
Int. J. Mol. Sci. 2023, 24(11), 9747; https://doi.org/10.3390/ijms24119747 - 5 Jun 2023
Cited by 7 | Viewed by 1908
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at risk of developing cardiovascular diseases (CVDs). Endothelial dysfunction plays a role in the pathogenesis of CVDs; and endothelial colony-forming cells (ECFCs) have been identified as key factors in endothelial repair. In a rat model [...] Read more.
Individuals born after intrauterine growth restriction (IUGR) are at risk of developing cardiovascular diseases (CVDs). Endothelial dysfunction plays a role in the pathogenesis of CVDs; and endothelial colony-forming cells (ECFCs) have been identified as key factors in endothelial repair. In a rat model of IUGR induced by a maternal low-protein diet, we observed an altered functionality of ECFCs in 6-month-old males, which was associated with arterial hypertension related to oxidative stress and stress-induced premature senescence (SIPS). Resveratrol (R), a polyphenol compound, was found to improve cardiovascular function. In this study, we investigated whether resveratrol could reverse ECFC dysfunctions in the IUGR group. ECFCs were isolated from IUGR and control (CTRL) males and were treated with R (1 μM) or dimethylsulfoxide (DMSO) for 48 h. In the IUGR-ECFCs, R increased proliferation (5′-bromo-2′-deoxyuridine (BrdU) incorporation, p < 0.001) and improved capillary-like outgrowth sprout formation (in Matrigel), nitric oxide (NO) production (fluorescent dye, p < 0.01), and endothelial nitric oxide synthase (eNOS) expression (immunofluorescence, p < 0.001). In addition, R decreased oxidative stress with reduced superoxide anion production (fluorescent dye, p < 0.001); increased Cu/Zn superoxide dismutase expression (Western blot, p < 0.05); and reversed SIPS with decreased beta-galactosidase activity (p < 0.001), and decreased p16ink4a (p < 0.05) and increased Sirtuin-1 (p < 0.05) expressions (Western blot). No effects of R were observed in the CTRL-ECFCs. These results suggest that R reverses long-term ECFC dysfunctions related to IUGR. Full article
(This article belongs to the Special Issue Angiogenic and Pathological Performance of Vascular Endothelial Cells)
Show Figures

Figure 1

20 pages, 5604 KiB  
Article
Augmenting the Angiogenic Profile and Functionality of Cord Blood Endothelial Colony-Forming Cells by Indirect Priming with Bone-Marrow-Derived Mesenchymal Stromal Cells
by Ashutosh Bansal, Archna Singh, Tapas Chandra Nag, Devyani Sharma, Bhavuk Garg, Neerja Bhatla, Saumitra Dey Choudhury and Lakshmy Ramakrishnan
Biomedicines 2023, 11(5), 1372; https://doi.org/10.3390/biomedicines11051372 - 5 May 2023
Cited by 1 | Viewed by 1976
Abstract
Cellular therapy has shown promise as a strategy for the functional restoration of ischemic tissues through promoting vasculogenesis. Therapy with endothelial progenitor cells (EPCs) has shown encouraging results in preclinical studies, but the limited engraftment, inefficient migration, and poor survival of patrolling endothelial [...] Read more.
Cellular therapy has shown promise as a strategy for the functional restoration of ischemic tissues through promoting vasculogenesis. Therapy with endothelial progenitor cells (EPCs) has shown encouraging results in preclinical studies, but the limited engraftment, inefficient migration, and poor survival of patrolling endothelial progenitor cells at the injured site hinder its clinical utilization. These limitations can, to some extent, be overcome by co-culturing EPCs with mesenchymal stem cells (MSCs). Studies on the improvement in functional capacity of late EPCs, also referred to as endothelial colony-forming cells (ECFCs), when cultured with MSCs have mostly focused on the angiogenic potential, although migration, adhesion, and proliferation potential also determine effective physiological vasculogenesis. Alteration in angiogenic proteins with co-culturing has also not been studied. We co-cultured ECFCs with MSCs via both direct and indirect means, and studied the impact of the resultant contact-mediated and paracrine-mediated impact of MSCs over ECFCs, respectively, on the functional aspects and the angiogenic protein signature of ECFCs. Both directly and indirectly primed ECFCs significantly restored the adhesion and vasculogenic potential of impaired ECFCs, whereas indirectly primed ECFCs showed better proliferation and migratory potential than directly primed ECFCs. Additionally, indirectly primed ECFCs, in their angiogenesis proteomic signature, showed alleviated inflammation, along with the balanced expression of various growth factors and regulators of angiogenesis. Full article
(This article belongs to the Special Issue Adult Stem Cells and Endothelial Progenitor Cells in Diseases)
Show Figures

Figure 1

24 pages, 4829 KiB  
Article
HIV Promotes Atherosclerosis via Circulating Extracellular Vesicle MicroRNAs
by Andrea Da Fonseca Ferreira, Jianqin Wei, Lukun Zhang, Conrad J. Macon, Bernard Degnan, Dushyantha Jayaweera, Joshua M. Hare, Michael A. Kolber, Michael Bellio, Aisha Khan, Yue Pan, Derek M. Dykxhoorn, Liyong Wang and Chunming Dong
Int. J. Mol. Sci. 2023, 24(8), 7567; https://doi.org/10.3390/ijms24087567 - 20 Apr 2023
Cited by 8 | Viewed by 2991
Abstract
People living with HIV (PLHIV) are at a higher risk of having cerebrocardiovascular diseases (CVD) compared to HIV negative (HIVneg) individuals. The mechanisms underlying this elevated risk remains elusive. We hypothesize that HIV infection results in modified microRNA (miR) content in [...] Read more.
People living with HIV (PLHIV) are at a higher risk of having cerebrocardiovascular diseases (CVD) compared to HIV negative (HIVneg) individuals. The mechanisms underlying this elevated risk remains elusive. We hypothesize that HIV infection results in modified microRNA (miR) content in plasma extracellular vesicles (EVs), which modulates the functionality of vascular repairing cells, i.e., endothelial colony-forming cells (ECFCs) in humans or lineage negative bone marrow cells (lin BMCs) in mice, and vascular wall cells. PLHIV (N = 74) have increased atherosclerosis and fewer ECFCs than HIVneg individuals (N = 23). Plasma from PLHIV was fractionated into EVs (HIVposEVs) and plasma depleted of EVs (HIV PLdepEVs). HIVposEVs, but not HIV PLdepEVs or HIVnegEVs (EVs from HIVneg individuals), increased atherosclerosis in apoE−/− mice, which was accompanied by elevated senescence and impaired functionality of arterial cells and lin BMCs. Small RNA-seq identified EV-miRs overrepresented in HIVposEVs, including let-7b-5p. MSC (mesenchymal stromal cell)-derived tailored EVs (TEVs) loaded with the antagomir for let-7b-5p (miRZip-let-7b) counteracted, while TEVs loaded with let-7b-5p recapitulated the effects of HIVposEVs in vivo. Lin BMCs overexpressing Hmga2 (a let-7b-5p target gene) lacking the 3′UTR and as such is resistant to miR-mediated regulation showed protection against HIVposEVs-induced changes in lin BMCs in vitro. Our data provide a mechanism to explain, at least in part, the increased CVD risk seen in PLHIV. Full article
(This article belongs to the Special Issue Extracellular Vesicles: The Biology and Therapeutic Applications)
Show Figures

Figure 1

24 pages, 7474 KiB  
Article
Convolutional Neural Network Model Based on 2D Fingerprint for Bioactivity Prediction
by Hamza Hentabli, Billel Bengherbia, Faisal Saeed, Naomie Salim, Ibtehal Nafea, Abdelmoughni Toubal and Maged Nasser
Int. J. Mol. Sci. 2022, 23(21), 13230; https://doi.org/10.3390/ijms232113230 - 30 Oct 2022
Cited by 10 | Viewed by 3183
Abstract
Determining and modeling the possible behaviour and actions of molecules requires investigating the basic structural features and physicochemical properties that determine their behaviour during chemical, physical, biological, and environmental processes. Computational approaches such as machine learning methods are alternatives to predicting the physiochemical [...] Read more.
Determining and modeling the possible behaviour and actions of molecules requires investigating the basic structural features and physicochemical properties that determine their behaviour during chemical, physical, biological, and environmental processes. Computational approaches such as machine learning methods are alternatives to predicting the physiochemical properties of molecules based on their structures. However, the limited accuracy and high error rates of such predictions restrict their use. In this paper, a novel technique based on a deep learning convolutional neural network (CNN) for the prediction of chemical compounds’ bioactivity is proposed and developed. The molecules are represented in the new matrix format Mol2mat, a molecular matrix representation adapted from the well-known 2D-fingerprint descriptors. To evaluate the performance of the proposed methods, a series of experiments were conducted using two standard datasets, namely the MDL Drug Data Report (MDDR) and Sutherland, datasets comprising 10 homogeneous and 14 heterogeneous activity classes. After analysing the eight fingerprints, all the probable combinations were investigated using the five best descriptors. The results showed that a combination of three fingerprints, ECFP4, EPFP4, and ECFC4, along with a CNN activity prediction process, achieved the highest performance of 98% AUC when compared to the state-of-the-art ML algorithms NaiveB, LSVM, and RBFN. Full article
(This article belongs to the Special Issue In Vitro Models of Tissue and Organ Regeneration)
Show Figures

Figure 1

14 pages, 2010 KiB  
Article
Cell Contact with Endothelial Cells Favors the In Vitro Maintenance of Human Chronic Myeloid Leukemia Stem and Progenitor Cells
by Patricia Torres-Barrera, Dafne Moreno-Lorenzana, José Antonio Alvarado-Moreno, Elena García-Ruiz, Cesar Lagunas, Hector Mayani and Antonieta Chávez-González
Int. J. Mol. Sci. 2022, 23(18), 10326; https://doi.org/10.3390/ijms231810326 - 7 Sep 2022
Cited by 2 | Viewed by 2798
Abstract
Chronic Myeloid Leukemia (CML) originates in a leukemic stem cell that resides in the bone marrow microenvironment, where they coexist with cellular and non-cellular elements. The vascular microenvironment has been identified as an important element in CML development since an increase in the [...] Read more.
Chronic Myeloid Leukemia (CML) originates in a leukemic stem cell that resides in the bone marrow microenvironment, where they coexist with cellular and non-cellular elements. The vascular microenvironment has been identified as an important element in CML development since an increase in the vascularization has been suggested to be related with poor prognosis; also, using murine models, it has been reported that bone marrow endothelium can regulate the quiescence and proliferation of leukemic stem and progenitor cells. This observation, however, has not been evaluated in primary human cells. In this report, we used a co-culture of primitive (progenitor and stem) CML cells with endothelial colony forming cells (ECFC) as an in vitro model to evaluate the effects of the vascular microenvironment in the leukemic hematopoiesis. Our results show that this interaction allows the in vitro maintenance of primitive CML cells through an inflammatory microenvironment able to regulate the proliferation of progenitor cells and the permanence in a quiescent state of leukemic stem cells. Full article
(This article belongs to the Special Issue Intercellular Communications in Tumor Microenvironment)
Show Figures

Figure 1

16 pages, 2143 KiB  
Article
Functional Impairment of Endothelial Colony Forming Cells (ECFC) in Patients with Severe Atherosclerotic Cardiovascular Disease (ASCVD)
by Stéphanie Simoncini, Simon Toupance, Carlos Labat, Sylvie Gautier, Chloé Dumoulin, Laurent Arnaud, Maria G. Stathopoulou, Sophie Visvikis-Siest, Pascal M. Rossi, Athanase Benetos, Françoise Dignat-George and Florence Sabatier
Int. J. Mol. Sci. 2022, 23(16), 8969; https://doi.org/10.3390/ijms23168969 - 11 Aug 2022
Cited by 14 | Viewed by 2832
Abstract
Endothelial dysfunction is a key factor in atherosclerosis. However, the link between endothelial repair and severity of atherosclerotic cardiovascular disease (ASCVD) is unclear. This study investigates the relationship between ASCVD, markers of inflammation, and circulating endothelial progenitor cells, namely hematopoietic cells with paracrine [...] Read more.
Endothelial dysfunction is a key factor in atherosclerosis. However, the link between endothelial repair and severity of atherosclerotic cardiovascular disease (ASCVD) is unclear. This study investigates the relationship between ASCVD, markers of inflammation, and circulating endothelial progenitor cells, namely hematopoietic cells with paracrine angiogenic activity and endothelial colony forming cells (ECFC). Two hundred and forty-three subjects from the TELARTA study were classified according to the presence of clinical atherosclerotic disease. ASCVD severity was assessed by the number of involved vascular territories. Flow cytometry was used to numerate circulating progenitor cells (PC) expressing CD34 and those co-expressing CD45, CD34, and KDR. Peripheral blood mononuclear cells ex vivo culture methods were used to determine ECFC and Colony Forming Unit- endothelial cells (CFU-EC). The ECFC subpopulation was analyzed for proliferation, senescence, and vasculogenic properties. Plasma levels of IL-6 and VEGF-A were measured using Cytokine Array. Despite an increased number of circulating precursors in ASCVD patients, ASCVD impaired the colony forming capacity and the angiogenic properties of ECFC in a severity-dependent manner. Alteration of ECFC was associated with increased senescent phenotype and IL-6 levels. Our study demonstrates a decrease in ECFC repair capacity according to ASCVD severity in an inflammatory and senescence-associated secretory phenotype context. Full article
(This article belongs to the Special Issue Endothelial Progenitor Cells in Health and Disease 2.0)
Show Figures

Graphical abstract

10 pages, 559 KiB  
Article
Association between Functional Connectivity of Entorhinal Cortex and Olfactory Performance in Parkinson’s Disease
by Wentao Fan, Hui Li, Haoyuan Li, Ying Li, Jing Wang, Xiuqin Jia and Qi Yang
Brain Sci. 2022, 12(8), 963; https://doi.org/10.3390/brainsci12080963 - 22 Jul 2022
Cited by 5 | Viewed by 2534
Abstract
The present study aimed to investigate the association between the functional connectivity (FC) of the olfactory cortex and olfactory performance in Parkinson’s disease (PD). Eighty-two early PD patients and twenty-one healthy controls underwent structural and resting-state functional MRI scans, as well as neuropsychological [...] Read more.
The present study aimed to investigate the association between the functional connectivity (FC) of the olfactory cortex and olfactory performance in Parkinson’s disease (PD). Eighty-two early PD patients and twenty-one healthy controls underwent structural and resting-state functional MRI scans, as well as neuropsychological assessments from the Parkinson’s Progression Markers Initiative database. A whole brain voxel-wise regression analysis was conducted to evaluate the relationship between the FC of the entorhinal cortex (EC-FC) and olfactory performance. Then, a one-way ANCOVA, based on the regions of interest, was performed with SPSS to investigate the group differences and correlation analysis that were used to analyze the relationships between the FC and neuropsychological assessments. In addition, regression models were used to evaluate the risk factors for the decreased olfactory function. A significantly negative correlation was observed between the olfactory performance and the left EC-FC in the right dorsal cingulate gyrus (dCC) in patients. The PD patients with anosmia exhibited significantly higher FC values than the PD patients with normal olfaction or the PD patients with mild to moderate microsomia. Except for the olfactory performance, no significant correlation was detected between the neuropsychological assessments and the FC values. A linear regression analysis revealed that the increased FC and Geriatric Depression Scale are independently associated with lower the University of Pennsylvania Smell Identification Test scores. The current findings enhanced the understanding of olfactory dysfunction-related pathophysiological mechanisms in early PD and suggested that the left EC-FC in the right dCC may be a potential neuroimaging biomarker for olfactory performance. Full article
(This article belongs to the Topic Pathophysiology of Aging and Age-related Diseases)
Show Figures

Figure 1

Back to TopTop