Producing and Testing Prototype Tissue-Engineered 3D Tri-Leaflet Valved Stents on Biodegradable Poly-ε-Caprolactone Scaffolds
Abstract
:1. Introduction
2. Results
2.1. Biodegradable Poly-ε-Caprolactone (PCL) Nanofiber Scaffold
2.2. Growth Analysis of Different Cell Lineages
2.3. Mechanical Characterization of Native Porcine Heart Valves and Colonized PCL Scaffolds
3. Discussion
3.1. Summary of Main Findings
3.2. Poly-ε-Caprolactone (PCL) for Heart Valve Tissue Engineering—Advantages and Challenges
3.3. Generation of Transcatheter 3D Tissue-Engineered Tricuspid Valved Stents
3.3.1. Different Sources of Stem Cells, Advantages and Challenges for Heart Valve Tissue Engineering
3.3.2. Comparisons with Other Studies Using Stem Cells for Heart Valve Tissue Engineering
4. Materials and Methods
4.1. Ethics Statement
4.2. Endothelial Colony Forming Cells (ECFC) Isolation and Culture
4.3. Characterization of ECFCs
4.4. Characterization of Mesenchymal Stem Cells (iMSCs)
4.5. Porcine Mesenchymal Stem Cells (pMSCs)
4.6. Electrospun PCL Scaffolds
4.7. PCL Heart Valved Stents
4.8. Dynamic Cell Seeding onto PCL Scaffolds
4.9. Fluorescent Staining
4.10. Biomechanical Examination
4.11. Scanning Electron Microscopic (SEM) Analysis
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciubotaru, A.; Cebotari, S.; Tudorache, I.; Beckmann, E.; Hilfiker, A.; Haverich, A. Biological heart valves. Biomed. Tech. Eng. 2013, 58, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, E.; Castelli, G.; Testa, U. Endothelial progenitors. Blood Cells Mol. Dis. 2014, 52, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Yoder, M.C. Human Endothelial Progenitor Cells. Cold Spring Harb. Perspect. Med. 2012, 2, a006692. [Google Scholar] [CrossRef] [PubMed]
- Tasev, D.; Koolwijk, P.; van Hinsbergh, V.W.M. Therapeutic Potential of Human-Derived Endothelial Colony-Forming Cells in Animal Models. Tissue Eng. Part B Rev. 2016, 22, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Glynn, J.J.; Hinds, M.T. Endothelial Outgrowth Cells: Function and Performance in Vascular Grafts. Tissue Eng. Part B Rev. 2014, 20, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Iop, L.; Renier, V.; Naso, F.; Piccoli, M.; Bonetti, A.; Gandaglia, A.; Pozzobon, M.; Paolin, A.; Ortolani, F.; Marchini, M.; et al. The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials 2009, 30, 4104–4116. [Google Scholar] [CrossRef] [PubMed]
- Latif, N.; Sarathchandra, P.; Thomas, P.S.; Antoniw, J.; Batten, P.; Chester, A.H.; Taylor, P.M.; Yacoub, M.H. Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J. Heart Valve Dis. 2007, 16, 56–66. [Google Scholar] [PubMed]
- Hashi, C.K.; Zhu, Y.; Yang, G.-Y.; Young, W.L.; Hsiao, B.S.; Wang, K.; Chu, B.; Li, S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc. Natl. Acad. Sci. USA 2007, 104, 11915–11920. [Google Scholar] [CrossRef] [PubMed]
- Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Sackett, S.D.; Brown, M.E.; Tremmel, D.M.; Ellis, T.; Burlingham, W.J.; Odorico, J.S. Modulation of human allogeneic and syngeneic pluripotent stem cells and immunological implications for transplantation. Transplant. Rev. 2016, 30, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Lutter, G.; Puehler, T.; Cyganek, L.; Seiler, J.; Rogler, A.; Herberth, T.; Knueppel, P.; Gorb, S.N.; Sathananthan, J.; Sellers, S.; et al. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. Int. J. Mol. Sci. 2022, 23, 527. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofacial Res. 2020, 10, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhou, D.; Xu, X.; Zhang, F.; He, L.; Ye, R.; Zhu, Z.; Zuo, B.; Zhang, H. Optimization of electrospun TSF nanofiber alignment and diameter to promote growth and migration of mesenchymal stem cells. Appl. Surf. Sci. 2012, 261, 320–326. [Google Scholar] [CrossRef]
- Kutikhin, A.G.; Tupikin, A.E.; Matveeva, V.G.; Shishkova, D.K.; Antonova, L.V.; Kabilov, M.R.; Velikanova, E.A. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells 2020, 9, 876. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutter, G.; Pommert, N.S.; Zhang, X.; Seiler, J.; Saeid Nia, M.; Meier, D.; Sellers, S.L.; Gorb, S.N.; Hansen, J.-H.; Seoudy, H.; et al. Producing and Testing Prototype Tissue-Engineered 3D Tri-Leaflet Valved Stents on Biodegradable Poly-ε-Caprolactone Scaffolds. Int. J. Mol. Sci. 2023, 24, 17357. https://doi.org/10.3390/ijms242417357
Lutter G, Pommert NS, Zhang X, Seiler J, Saeid Nia M, Meier D, Sellers SL, Gorb SN, Hansen J-H, Seoudy H, et al. Producing and Testing Prototype Tissue-Engineered 3D Tri-Leaflet Valved Stents on Biodegradable Poly-ε-Caprolactone Scaffolds. International Journal of Molecular Sciences. 2023; 24(24):17357. https://doi.org/10.3390/ijms242417357
Chicago/Turabian StyleLutter, Georg, Nina Sophie Pommert, Xiling Zhang, Jette Seiler, Monireh Saeid Nia, David Meier, Stephanie L. Sellers, Stanislav N. Gorb, Jan-Hinnerk Hansen, Hatim Seoudy, and et al. 2023. "Producing and Testing Prototype Tissue-Engineered 3D Tri-Leaflet Valved Stents on Biodegradable Poly-ε-Caprolactone Scaffolds" International Journal of Molecular Sciences 24, no. 24: 17357. https://doi.org/10.3390/ijms242417357
APA StyleLutter, G., Pommert, N. S., Zhang, X., Seiler, J., Saeid Nia, M., Meier, D., Sellers, S. L., Gorb, S. N., Hansen, J.-H., Seoudy, H., Müller, O. J., Saad, M., Haneya, A., Frank, D., Puehler, T., & Sathananthan, J. (2023). Producing and Testing Prototype Tissue-Engineered 3D Tri-Leaflet Valved Stents on Biodegradable Poly-ε-Caprolactone Scaffolds. International Journal of Molecular Sciences, 24(24), 17357. https://doi.org/10.3390/ijms242417357