Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = EBL patterning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 267 KiB  
Review
Bovine Leukemia Virus: Origin, Prevalence, Phylogenetic Diversity, Risk Factors, and Strategies for Control
by Yuxi Zhao, Jiandong Wang, Jianguo Chen, Yingyu Chen, Changmin Hu, Xi Chen and Aizhen Guo
Animals 2025, 15(9), 1344; https://doi.org/10.3390/ani15091344 - 7 May 2025
Viewed by 1151
Abstract
Bovine leukemia virus (BLV) is classified as a Deltaretrovirus and shows close genomic and biological similarities with human T-cell leukemia viruses (HTLVs). It serves as the etiological agent for enzootic bovine leukosis (EBL), which stands as the most prevalent neoplastic disease affecting cattle [...] Read more.
Bovine leukemia virus (BLV) is classified as a Deltaretrovirus and shows close genomic and biological similarities with human T-cell leukemia viruses (HTLVs). It serves as the etiological agent for enzootic bovine leukosis (EBL), which stands as the most prevalent neoplastic disease affecting cattle globally. Additionally, BLV has been identified as a potential zoonotic pathogen, although the risk to human health remains a subject of ongoing research. The insidious nature of BLV lies in its predominantly subclinical presentation; the majority of BLV-infected cattle show no apparent symptoms. This subclinical nature poses challenges for disease detection and control, as infected animals can remain unnoticed carriers, contributing to the silent spread of the virus within herds. This characteristic also underscores the importance of surveillance and early detection strategies to monitor BLV prevalence and mitigate its spread. Despite concerted efforts in some regions to implement eradication programs, BLV continues to maintain a high prevalence worldwide. The persistence of BLV in cattle populations highlights the need for innovative and integrated approaches to control and manage the disease effectively. The development of a BLV vaccine represents a significant breakthrough in the fight against BLV transmission. A successful vaccine can not only reduce the incidence of BLV infection but also minimize the associated economic losses linked to reduced milk production, reproductive issues, and the premature culling of infected animals. Therefore, a comprehensive understanding of BLV, encompassing its origin, evolutionary patterns, epidemiology, risk factors, and control strategies, is pivotal. Such knowledge serves as the foundation for the development of effective vaccines, diagnostic tools, and control measures. Through this review, we aim to consolidate and present this multifaceted understanding of BLV, providing valuable insights and guidance for researchers, veterinarians, and policymakers involved in BLV prevention and control efforts globally. Full article
(This article belongs to the Section Cattle)
60 pages, 13122 KiB  
Review
Advancements in Lithography Techniques and Emerging Molecular Strategies for Nanostructure Fabrication
by Prithvi Basu, Jyoti Verma, Vishnuram Abhinav, Ratneshwar Kumar Ratnesh, Yogesh Kumar Singla and Vibhor Kumar
Int. J. Mol. Sci. 2025, 26(7), 3027; https://doi.org/10.3390/ijms26073027 - 26 Mar 2025
Cited by 5 | Viewed by 6394
Abstract
Lithography is crucial to semiconductor manufacturing, enabling the production of smaller, more powerful electronic devices. This review explores the evolution, principles, and advancements of key lithography techniques, including extreme ultraviolet (EUV) lithography, electron beam lithography (EBL), X-ray lithography (XRL), ion beam lithography (IBL), [...] Read more.
Lithography is crucial to semiconductor manufacturing, enabling the production of smaller, more powerful electronic devices. This review explores the evolution, principles, and advancements of key lithography techniques, including extreme ultraviolet (EUV) lithography, electron beam lithography (EBL), X-ray lithography (XRL), ion beam lithography (IBL), and nanoimprint lithography (NIL). Each method is analyzed based on its working principles, resolution, resist materials, and applications. EUV lithography, with sub-10 nm resolution, is vital for extending Moore’s Law, leveraging high-NA optics and chemically amplified resists. EBL and IBL enable high-precision maskless patterning for prototyping but suffer from low throughput. XRL, using synchrotron radiation, achieves deep, high-resolution features, while NIL provides a cost-effective, high-throughput method for replicating nanostructures. Alignment marks play a key role in precise layer-to-layer registration, with innovations enhancing accuracy in advanced systems. The mask fabrication process is also examined, highlighting materials like molybdenum silicide for EUV and defect mitigation strategies such as automated inspection and repair. Despite challenges in resolution, defect control, and material innovation, lithography remains indispensable in semiconductor scaling, supporting applications in integrated circuits, photonics, and MEMS/NEMS devices. Various molecular strategies, mechanisms, and molecular dynamic simulations to overcome the fundamental lithographic limits are also highlighted in detail. This review offers insights into lithography’s present and future, aiding researchers in nanoscale manufacturing advancements. Full article
Show Figures

Figure 1

12 pages, 4132 KiB  
Article
Effects of Electron Beam Lithography Process Parameters on the Structure of Nanoscale Devices Across Three Substrate Materials
by Zhongyang Liu, Yue Chen, Xuanyu Li, Luwei Wang and Junle Qu
Photonics 2025, 12(3), 226; https://doi.org/10.3390/photonics12030226 - 1 Mar 2025
Cited by 1 | Viewed by 1478
Abstract
Electron beam lithography (EBL) is a pivotal technology in the fabrication of nanoscale devices, renowned for its high precision and resolution capabilities. This paper explores the effect of EBL process parameters on various substrate materials, including silicon dioxide, silicon-on-insulator (SOI), and silicon nitride. [...] Read more.
Electron beam lithography (EBL) is a pivotal technology in the fabrication of nanoscale devices, renowned for its high precision and resolution capabilities. This paper explores the effect of EBL process parameters on various substrate materials, including silicon dioxide, silicon-on-insulator (SOI), and silicon nitride. We specifically investigate the impact of the charging effect and reveal the narrow exposure dose windows necessary to achieve optimal pattern fidelity. Based on the measurement results of linewidth, the relationship between exposure dose and the width of the structure pattern after development was analyzed. The optimum exposure dose window for each substrate is identified. Furthermore, through simulations of the charge effect, we demonstrate strategies for mitigating this effect on different substrates, even in complex structural configurations. Our findings contribute to enhancing the capabilities of EBL in semiconductor and insulator manufacturing and research. Full article
Show Figures

Figure 1

23 pages, 128368 KiB  
Article
Optimization of Soft X-Ray Fresnel Zone Plate Fabrication Through Joint Electron Beam Lithography and Cryo-Etching Techniques
by Maha Labani, Vito Clericò, Enrique Diez, Giancarlo Gatti, Mario Amado and Ana Pérez-Rodríguez
Nanomaterials 2024, 14(23), 1898; https://doi.org/10.3390/nano14231898 - 26 Nov 2024
Cited by 1 | Viewed by 1474
Abstract
The ability to manufacture complex 3D structures with nanometer-scale resolution, such as Fresnel Zone Plates (FZPs), is crucial to achieve state-of-the-art control in X-ray sources for use in a diverse range of cutting-edge applications. This study demonstrates a novel approach combining Electron Beam [...] Read more.
The ability to manufacture complex 3D structures with nanometer-scale resolution, such as Fresnel Zone Plates (FZPs), is crucial to achieve state-of-the-art control in X-ray sources for use in a diverse range of cutting-edge applications. This study demonstrates a novel approach combining Electron Beam Lithography (EBL) and cryoetching to produce silicon-based FZP prototypes as a test bench to assess the strong points and limitations of this fabrication method. Through this method, we obtained FZPs with 100 zones, a diameter of 20 µm, and an outermost zone width of 50 nm, resulting in a high aspect ratio that is suitable for use across a range of photon energies. The process incorporates a chromium mask in the EBL stage, enhancing microstructure precision and mitigating pattern collapse challenges. This minimized issues of under- and over-etching, producing well-defined patterns with a nanometer-scale resolution and low roughness. The refined process thus holds promise for achieving improved optical resolution and efficiency in FZPs, making it viable for the fabrication of high-performance, nanometer-scale devices. Full article
(This article belongs to the Special Issue Mechanical Properties and Applications for Nanostructured Alloys)
Show Figures

Figure 1

15 pages, 4396 KiB  
Article
Nano Hotplate Fabrication for Metal Oxide-Based Gas Sensors by Combining Electron Beam and Focused Ion Beam Lithography
by Zhifu Feng, Damiano Giubertoni, Alessandro Cian, Matteo Valt, Mario Barozzi, Andrea Gaiardo and Vincenzo Guidi
Micromachines 2023, 14(11), 2060; https://doi.org/10.3390/mi14112060 - 4 Nov 2023
Viewed by 1797
Abstract
Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits [...] Read more.
Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits the portable application of MOS gas sensors. The miniaturization of the hotplate geometry is one of the most effective methods used to reduce its power consumption. In this work, a new method is presented, combining electron beam lithography (EBL) and focused ion beam (FIB) technologies to obtain low power consumption. EBL is used to define the low-resolution section of the electrode, and FIB technology is utilized to pattern the high-resolution part. Different Au++ ion fluences in FIBs are tested in different milling strategies. The resulting devices are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS). Furthermore, the electrical resistance of the hotplate is measured at different voltages, and the operational temperature is calculated based on the Pt temperature coefficient of resistance value. In addition, the thermal heater and electrical stability is studied at different temperatures for 110 h. Finally, the implementation of the fabricated hotplate in ZnO gas sensors is investigated using ethanol at 250 °C. Full article
(This article belongs to the Special Issue MEMS in Italy 2023)
Show Figures

Figure 1

20 pages, 8008 KiB  
Article
Interplay between IL-10, IFN-γ, IL-17A and PD-1 Expressing EBNA1-Specific CD4+ and CD8+ T Cell Responses in the Etiologic Pathway to Endemic Burkitt Lymphoma
by Catherine S. Forconi, David H. Mulama, Priya Saikumar Lakshmi, Joslyn Foley, Juliana A. Otieno, Jonathan D. Kurtis, Leslie J. Berg, John M. Ong’echa, Christian Münz and Ann M. Moormann
Cancers 2021, 13(21), 5375; https://doi.org/10.3390/cancers13215375 - 27 Oct 2021
Cited by 4 | Viewed by 3245
Abstract
Children diagnosed with endemic Burkitt lymphoma (eBL) are deficient in interferon-γ (IFN-γ) responses to Epstein–Barr Nuclear Antigen1 (EBNA1), the viral protein that defines the latency I pattern in this B cell tumor. However, the contributions of immune-regulatory cytokines and phenotypes of the EBNA1-specific [...] Read more.
Children diagnosed with endemic Burkitt lymphoma (eBL) are deficient in interferon-γ (IFN-γ) responses to Epstein–Barr Nuclear Antigen1 (EBNA1), the viral protein that defines the latency I pattern in this B cell tumor. However, the contributions of immune-regulatory cytokines and phenotypes of the EBNA1-specific T cells have not been characterized for eBL. Using a bespoke flow cytometry assay we measured intracellular IFN-γ, IL-10, IL-17A expression and phenotyped CD4+ and CD8+ T cell effector memory subsets specific to EBNA1 for eBL patients compared to two groups of healthy children with divergent malaria exposures. In response to EBNA1 and a malaria antigen (PfSEA-1A), the three study groups exhibited strikingly different cytokine expression and T cell memory profiles. EBNA1-specific IFN-γ-producing CD4+ T cell response rates were lowest in eBL (40%) compared to children with high malaria (84%) and low malaria (66%) exposures (p < 0.0001 and p = 0.0004, respectively). However, eBL patients did not differ in CD8+ T cell response rates or the magnitude of IFN-γ expression. In contrast, eBL children were more likely to have EBNA1-specific CD4+ T cells expressing IL-10, and less likely to have polyfunctional IFN-γ+IL-10+ CD4+ T cells (p = 0.02). They were also more likely to have IFN-γ+IL-17A+, IFN-γ+ and IL-17A+ CD8+ T cell subsets compared to healthy children. Cytokine-producing T cell subsets were predominantly CD45RA+CCR7+ TNAIVE-LIKE cells, yet PD-1, a marker of persistent activation/exhaustion, was more highly expressed by the central memory (TCM) and effector memory (TEM) T cell subsets. In summary, our study suggests that IL-10 mediated immune regulation and depletion of IFN-γ+ EBNA1-specific CD4+ T cells are complementary mechanisms that contribute to impaired T cell cytotoxicity in eBL pathogenesis. Full article
(This article belongs to the Special Issue Epstein-Barr Virus Infection in Cancer)
Show Figures

Graphical abstract

17 pages, 6649 KiB  
Article
Silicon Metalens Fabrication from Electron Beam to UV-Nanoimprint Lithography
by Angela Mihaela Baracu, Marius Andrei Avram, Carmen Breazu, Mihaela-Cristina Bunea, Marcela Socol, Anca Stanculescu, Elena Matei, Paul Conrad Vaagen Thrane, Christopher Andrew Dirdal, Adrian Dinescu and Oana Rasoga
Nanomaterials 2021, 11(9), 2329; https://doi.org/10.3390/nano11092329 - 7 Sep 2021
Cited by 26 | Viewed by 7184
Abstract
This study presents the design and manufacture of metasurface lenses optimized for focusing light with 1.55 µm wavelength. The lenses are fabricated on silicon substrates using electron beam lithography, ultraviolet-nanoimprint lithography and cryogenic deep reactive-ion etching techniques. The designed metasurface makes use of [...] Read more.
This study presents the design and manufacture of metasurface lenses optimized for focusing light with 1.55 µm wavelength. The lenses are fabricated on silicon substrates using electron beam lithography, ultraviolet-nanoimprint lithography and cryogenic deep reactive-ion etching techniques. The designed metasurface makes use of the geometrical phase principle and consists of rectangular pillars with target dimensions of height h = 1200 nm, width w = 230 nm, length l = 354 nm and periodicity p = 835 nm. The simulated efficiency of the lens is 60%, while the master lenses obtained by using electron beam lithography are found to have an efficiency of 45%. The lenses subsequently fabricated via nanoimprint are characterized by an efficiency of 6%; the low efficiency is mainly attributed to the rounding of the rectangular nanostructures during the pattern transfer processes from the resist to silicon due to the presence of a thicker residual layer. Full article
(This article belongs to the Special Issue Metalens: Applications and Manufacturing)
Show Figures

Figure 1

17 pages, 3809 KiB  
Article
Responses of Sap Flux Densities of Different Plant Functional Types to Environmental Variables Are Similar in Both Dry and Wet Seasons in a Subtropical Mixed Forest
by Kechao Huang, Quan Wang and Dennis Otieno
Forests 2021, 12(8), 1007; https://doi.org/10.3390/f12081007 - 29 Jul 2021
Cited by 4 | Viewed by 3015
Abstract
Subtropical mixed forest ecosystems are experiencing dramatic changes in precipitation and different plant functional types growing here are expected to respond differently. This study aims to unravel the water use patterns of different plant functional types and their responses to environmental changes in [...] Read more.
Subtropical mixed forest ecosystems are experiencing dramatic changes in precipitation and different plant functional types growing here are expected to respond differently. This study aims to unravel the water use patterns of different plant functional types and their responses to environmental changes in a typical subtropical mixed forest in southern China. Diurnal and seasonal sap flux densities of evergreen broad-leaved trees (EBL), deciduous broad-leaved trees (DBL), and conifers (CON), as well as environmental variables, were recorded simultaneously from May 2016 to March 2019. The results showed that the sap flux density of EBL was significantly higher than those of CON and DBL in all seasons, irrespective of dry or wet seasons. Path analysis revealed that seasonal differences in sap flux density were mainly due to variations in photosynthetic photon flux density (PPFD). At saturating PPFD, changes in sap flux density during the day were in response to vapor pressure deficit (VPD). Regression analyses showed that sap flux density increased logarithmically with PPFD, irrespective of functional type. The hysteresis loops of sap flux density and VPD were different among different plant functional types in wet and dry seasons. Our results demonstrated converging response patterns to environmental variables among the three plant functional types considered in this study. Our findings contribute to a better understanding of the water use strategies of different plant functional types in subtropical mixed forests. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

9 pages, 3187 KiB  
Article
Fabrication and Characterization of Nanonet-Channel LTPS TFTs Using a Nanosphere-Assisted Patterning Technique
by Gilsang Yoon, Donghoon Kim, Iksoo Park, Bo Jin and Jeong-Soo Lee
Micromachines 2021, 12(7), 741; https://doi.org/10.3390/mi12070741 - 24 Jun 2021
Cited by 3 | Viewed by 2885
Abstract
We present the fabrication and electrical characteristics of nanonet-channel (NET) low-temperature polysilicon channel (LTPS) thin-film transistors (TFTs) using a nanosphere-assisted patterning (NAP) technique. The NAP technique is introduced to form a nanonet-channel instead of the electron beam lithography (EBL) or conventional photolithography method. [...] Read more.
We present the fabrication and electrical characteristics of nanonet-channel (NET) low-temperature polysilicon channel (LTPS) thin-film transistors (TFTs) using a nanosphere-assisted patterning (NAP) technique. The NAP technique is introduced to form a nanonet-channel instead of the electron beam lithography (EBL) or conventional photolithography method. The size and space of the holes in the nanonet structure are well controlled by oxygen plasma treatment and a metal lift-off process. The nanonet-channel TFTs show improved electrical characteristics in terms of the ION/IOFF, threshold voltage, and subthreshold swing compared with conventional planar devices. The nanonet-channel devices also show a high immunity to hot-carrier injection and a lower variation of electrical characteristics. The standard deviation of VTH (σVTH) is reduced by 33% for a nanonet-channel device with a gate length of 3 μm, which is mainly attributed to the reduction of the grain boundary traps and enhanced gate controllability. These results suggest that the cost-effective NAP technique is promising for manufacturing high-performance nanonet-channel LTPS TFTs with lower electrical variations. Full article
(This article belongs to the Special Issue Thin Film Transistors: Material, Structure and Application)
Show Figures

Graphical abstract

14 pages, 4815 KiB  
Article
Room Temperature Direct Electron Beam Lithography in a Condensed Copper Carboxylate
by Luisa Berger, Jakub Jurczyk, Katarzyna Madajska, Iwona B. Szymańska, Patrik Hoffmann and Ivo Utke
Micromachines 2021, 12(5), 580; https://doi.org/10.3390/mi12050580 - 20 May 2021
Cited by 10 | Viewed by 4324
Abstract
High-resolution metallic nanostructures can be fabricated with multistep processes, such as electron beam lithography or ice lithography. The gas-assisted direct-write technique known as focused electron beam induced deposition (FEBID) is more versatile than the other candidates. However, it suffers from low throughput. This [...] Read more.
High-resolution metallic nanostructures can be fabricated with multistep processes, such as electron beam lithography or ice lithography. The gas-assisted direct-write technique known as focused electron beam induced deposition (FEBID) is more versatile than the other candidates. However, it suffers from low throughput. This work presents the combined approach of FEBID and the above-mentioned lithography techniques: direct electron beam lithography (D-EBL). A low-volatility copper precursor is locally condensed onto a room temperature substrate and acts as a positive tone resist. A focused electron beam then directly irradiates the desired patterns, leading to local molecule dissociation. By rinsing or sublimation, the non-irradiated precursor is removed, leaving copper-containing structures. Deposits were formed with drastically enhanced growth rates than FEBID, and their composition was found to be comparable to gas-assisted FEBID structures. The influence of electron scattering within the substrate as well as implementing a post-purification protocol were studied. The latter led to the agglomeration of high-purity copper crystals. We present this as a new approach to electron beam-induced fabrication of metallic nanostructures without the need for cryogenic or hot substrates. D-EBL promises fast and easy fabrication results. Full article
(This article belongs to the Special Issue Nanofabrication with Focused Electron/Ion Beam Induced Processing)
Show Figures

Figure 1

17 pages, 1725 KiB  
Article
Assessment of Mixed Plasmodium falciparum sera5 Infection in Endemic Burkitt Lymphoma: A Case-Control Study in Malawi
by Nobuko Arisue, George Chagaluka, Nirianne Marie Q. Palacpac, W. Thomas Johnston, Nora Mutalima, Sally Peprah, Kishor Bhatia, Eric Borgstein, George N. Liomba, Steve Kamiza, Nyengo Mkandawire, Collins Mitambo, James J. Goedert, Elizabeth M. Molyneux, Robert Newton, Toshihiro Horii and Sam M. Mbulaiteye
Cancers 2021, 13(7), 1692; https://doi.org/10.3390/cancers13071692 - 2 Apr 2021
Cited by 9 | Viewed by 3206
Abstract
Background: Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is [...] Read more.
Background: Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is unclear. A potential role of Pf genetic diversity in eBL has been suggested by a correlation of age-specific patterns of eBL with the complexity of Pf infection in Ghana, Uganda, and Tanzania, as well as a finding of significantly higher Pf genetic diversity, based on a sensitive molecular barcode assay, in eBL cases than matched controls in Malawi. We examined this hypothesis by measuring diversity in Pf-serine repeat antigen-5 (Pfsera5), an antigenic target of blood-stage immunity to malaria, among 200 eBL cases and 140 controls, all Pf polymerase chain reaction (PCR)-positive, in Malawi. Methods: We performed Pfsera5 PCR and sequencing (~3.3 kb over exons II–IV) to determine single or mixed PfSERA5 infection status. The patterns of Pfsera5 PCR positivity, mixed infection, sequence variants, and haplotypes among eBL cases, controls, and combined/pooled were analyzed using frequency tables. The association of mixed Pfsera5 infection with eBL was evaluated using logistic regression, controlling for age, sex, and previously measured Pf genetic diversity. Results: Pfsera5 PCR was positive in 108 eBL cases and 70 controls. Mixed PfSERA5 infection was detected in 41.7% of eBL cases versus 24.3% of controls; the odds ratio (OR) was 2.18, and the 95% confidence interval (CI) was 1.12–4.26, which remained significant in adjusted results (adjusted odds ratio [aOR] of 2.40, 95% CI of 1.11–5.17). A total of 29 nucleotide variations and 96 haplotypes were identified, but these were unrelated to eBL. Conclusions: Our results increase the evidence supporting the hypothesis that infection with mixed Pf infection is increased with eBL and suggest that measuring Pf genetic diversity may provide new insights into the role of Pf infection in eBL. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Graphical abstract

22 pages, 2851 KiB  
Article
CuO/PMMA Polymer Nanocomposites as Novel Resist Materials for E-Beam Lithography
by Georgia Geka, George Papageorgiou, Margarita Chatzichristidi, Andreas Germanos Karydas, Vassilis Psycharis and Eleni Makarona
Nanomaterials 2021, 11(3), 762; https://doi.org/10.3390/nano11030762 - 17 Mar 2021
Cited by 8 | Viewed by 3239
Abstract
Polymer nanocomposites have emerged as a new powerful class of materials because of their versatility, adaptability and wide applicability to a variety of fields. In this work, a facile and cost-effective method to develop poly(methyl methacrylate) (PMMA)-based polymer nanocomposites with copper oxide (CuO) [...] Read more.
Polymer nanocomposites have emerged as a new powerful class of materials because of their versatility, adaptability and wide applicability to a variety of fields. In this work, a facile and cost-effective method to develop poly(methyl methacrylate) (PMMA)-based polymer nanocomposites with copper oxide (CuO) nanofillers is presented. The study concentrates on finding an appropriate methodology to realize CuO/PMMA nanocomposites that could be used as resist materials for e-beam lithography (EBL) with the intention of being integrated into nanodevices. The CuO nanofillers were synthesized via a low-cost chemical synthesis, while several loadings, spin coating conditions and two solvents (acetone and methyl ethyl ketone) were explored and assessed with regards to their effect on producing CuO/PMMA nanocomposites. The nanocomposite films were patterned with EBL and contrast curve data and resolution analysis were used to evaluate their performance and suitability as a resist material. Micro-X-ray fluorescence spectroscopy (μ-XRF) complemented with XRF measurements via a handheld instrument (hh-XRF) was additionally employed as an alternative rapid and non-destructive technique in order to investigate the uniform dispersion of the nanofillers within the polymer matrix and to assist in the selection of the optimum preparation conditions. This study revealed that it is possible to produce low-cost CuO/PMMA nanocomposites as a novel resist material without resorting to complicated preparation techniques. Full article
(This article belongs to the Special Issue Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

10 pages, 5742 KiB  
Article
Complex Analysis of Emission Properties of LEDs with 1D and 2D PhC Patterned by EBL
by Lubos Suslik, Jaroslava Skriniarova, Jaroslav Kovac, Dusan Pudis, Anton Kuzma and Jaroslav Kovac
Coatings 2020, 10(8), 748; https://doi.org/10.3390/coatings10080748 - 30 Jul 2020
Cited by 1 | Viewed by 4129
Abstract
In this paper, we present the optical and electrical properties of surface-patterned GaAs-based Multiquantum Well (MQW) light emitting diodes (LEDs) with one- and two-dimensional photonic crystal (PhC) structures. Optical properties were analyzed in the near and far field, measured by a near-field scanning [...] Read more.
In this paper, we present the optical and electrical properties of surface-patterned GaAs-based Multiquantum Well (MQW) light emitting diodes (LEDs) with one- and two-dimensional photonic crystal (PhC) structures. Optical properties were analyzed in the near and far field, measured by a near-field scanning optical microscope and with a goniophotometer. We demonstrated a strong effect of patterned PhC on the radiation properties and the light extraction efficiency. Enormous surface emission enhancement reaching 110% confirmed the strong effect of the patterned structure on the coupling of the guided modes into the surface emission. Additionally, the considerable effect of the PhC structure diffraction on radiation pattern was confirmed in the near and far field and is in good agreement with the simulated shape of the optical field. Full article
(This article belongs to the Special Issue Thin Films and Coatings for Energy Storage and Conversion)
Show Figures

Figure 1

22 pages, 2074 KiB  
Article
Frequency of EBV LMP-1 Promoter and Coding Variations in Burkitt Lymphoma Samples in Africa and South America and Peripheral Blood in Uganda
by Hsiao-Mei Liao, Hebing Liu, Heiyan Lei, Bingjie Li, Pei-Ju Chin, Shien Tsai, Kishor Bhatia, Marina Gutierrez, Sidnei Epelman, Robert J. Biggar, Francis Nkrumah, Janet Neequaye, Martin D. Ogwang, Steven J. Reynolds, Shyh-Ching Lo and Sam M. Mbulaiteye
Cancers 2018, 10(6), 177; https://doi.org/10.3390/cancers10060177 - 2 Jun 2018
Cited by 9 | Viewed by 5237
Abstract
Epstein-Barr virus (EBV) is linked to several cancers, including endemic Burkitt lymphoma (eBL), but causal variants are unknown. We recently reported novel sequence variants in the LMP-1 gene and promoter in EBV genomes sequenced from 13 of 14 BL biopsies. Alignments of the [...] Read more.
Epstein-Barr virus (EBV) is linked to several cancers, including endemic Burkitt lymphoma (eBL), but causal variants are unknown. We recently reported novel sequence variants in the LMP-1 gene and promoter in EBV genomes sequenced from 13 of 14 BL biopsies. Alignments of the novel sequence variants for 114 published EBV genomes, including 27 from BL cases, revealed four LMP-1 variant patterns, designated A to D. Pattern A variant was found in 48% of BL EBV genomes. Here, we used PCR-Sanger sequencing to evaluate 50 additional BL biopsies from Ghana, Brazil, and Argentina, and peripheral blood samples from 113 eBL cases and 115 controls in Uganda. Pattern A was found in 60.9% of 64 BL biopsies evaluated. Compared to PCR-negative subjects in Uganda, detection of Pattern A in peripheral blood was associated with eBL case status (odds ratio [OR] 31.7, 95% confidence interval: 6.8–149), controlling for relevant confounders. Variant Pattern A and Pattern D were associated with eBL case status, but with lower ORs (9.7 and 13.6, respectively). Our results support the hypothesis that EBV LMP-1 Pattern A may be associated with eBL, but it is not the sole associated variant. Further research is needed to replicate and elucidate our findings. Full article
(This article belongs to the Special Issue Epstein–Barr Virus Associated Cancers)
Show Figures

Figure 1

12 pages, 6041 KiB  
Article
An Investigation of Polyoxometalate Hybrid Materials as Patternable Dielectrics and Lithographic Resists
by Brandon Hardie and Mark Roll
Materials 2017, 10(11), 1309; https://doi.org/10.3390/ma10111309 - 15 Nov 2017
Viewed by 4378
Abstract
Polyoxometalate (POM) hybrid materials have shown potential as spin-coatable, patternable dielectric thin-films and components for lithographic resists. In particular, the octamolybdate cluster has been shown to possess good spin-coating properties and the patterning capabilities of hybrid octamolybdate thin-films were explored using a combination [...] Read more.
Polyoxometalate (POM) hybrid materials have shown potential as spin-coatable, patternable dielectric thin-films and components for lithographic resists. In particular, the octamolybdate cluster has been shown to possess good spin-coating properties and the patterning capabilities of hybrid octamolybdate thin-films were explored using a combination of broadband UV and electron beam lithography (EBL) techiniques. Dielectric properties of these films were determined by ellipsometry, and octamolybdate clusters were subsequently investigated as negative resists in various blends for potential uses in next-generation photolithography, where contrast, sensitivity, and line edge roughness characteristics were determined. Preliminary evidence for the suppression of the diffusion of photo-generated acids is presented. Full article
(This article belongs to the Special Issue Polyoxometalate and Nanohybrid Materials)
Show Figures

Figure 1

Back to TopTop