Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = E. coli Topoisomerase IV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8610 KB  
Article
Design, Synthesis, and In Silico Studies of New Norfloxacin Analogues with Broad Spectrum Antibacterial Activity via Topoisomerase II Inhibition
by Ahmed M. El-Saghier, Laila Abosella, Abdelfattah Hassan, Esmail O. Elakesh, Stefan Bräse, Gamal El-Din A. Abuo-Rahma and Hossameldin A. Aziz
Pharmaceuticals 2025, 18(4), 545; https://doi.org/10.3390/ph18040545 - 8 Apr 2025
Cited by 4 | Viewed by 2256
Abstract
Background: Novel norfloxacin derivatives were synthesized, characterized, and screened for their antibacterial activity against Gram-positive strain S. aureus ATCC 6538 and Gram-negative strains; E. coli ATCC 25923, K. pneumoniae ATCC 10031, and P. aeruginosa ATCC 27853 using the agar cup [...] Read more.
Background: Novel norfloxacin derivatives were synthesized, characterized, and screened for their antibacterial activity against Gram-positive strain S. aureus ATCC 6538 and Gram-negative strains; E. coli ATCC 25923, K. pneumoniae ATCC 10031, and P. aeruginosa ATCC 27853 using the agar cup diffusion method. Results: The results revealed that compounds 617 exhibited more potent activity towards S. aureus ATCC 6538 with MIC values of 0.21–3.61 µM than norfloxacin with a MIC of 7.83 µM. The most potent compound, 6, showed 37-fold more potency than norfloxacin. More importantly, compound 7 exhibited more potent activity against MRSA than norfloxacin, with MIC values of 0.80 and 1.96 µM, respectively. Meanwhile, compounds 15 and 16 have potent activity towards the Gram-negative strains with MIC values of 0.20–0.79 µM compared with norfloxacin with a MIC of 0.24 µM. Moreover, the potent compounds showed higher activity towards topoisomerase II enzymes, especially against topoisomerase IV, which confirms the docking study with the S. aureus gyrase enzyme active binding site (PDB ID: 2XCT). In addition, cytotoxicity assays of the most potent compounds showed that compounds 6, 7, 15, and 16 have negligible risks of toxic effects when evaluated against the normal cell line WI 38. Conclusions: The docking study of the most potent compounds 6, 7, 15, and 16 on the gyrase enzyme active site (PDB: 2XCT) aligns their antibacterial activity and topoisomerase inhibition. The physicochemical and pharmacokinetic characteristics of the target derivatives were forecasted via SwissADME. Hence, these compounds are considered promising antibacterial candidates that require further optimization. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 4037 KB  
Article
In Vitro Antibacterial Activity, Molecular Docking, and ADMET Analysis of Phytochemicals from Roots of Dovyalis abyssinica
by Dereilo Bekere Belitibo, Asfaw Meressa, Abiy Abebe, Temesgen Negassa, Milkyas Endale, Frehiwot Teka Assamo, Messay Wolde-Mariam, Temesgen Abdisa Ayana, Marcel Frese, Norbert Sewald and Negera Abdissa
Molecules 2024, 29(23), 5608; https://doi.org/10.3390/molecules29235608 - 27 Nov 2024
Cited by 5 | Viewed by 2277
Abstract
Dovyalis abyssinica is widely used in Ethiopia for treating various human ailments, yet its pharmacological properties and chemical composition remain largely unexplored. The chromatographic separation of D. abyssinica roots extract afforded five compounds, namely tremulacin (1), cochinchiside A (2), [...] Read more.
Dovyalis abyssinica is widely used in Ethiopia for treating various human ailments, yet its pharmacological properties and chemical composition remain largely unexplored. The chromatographic separation of D. abyssinica roots extract afforded five compounds, namely tremulacin (1), cochinchiside A (2), 5-methoxydurmillone (3), catechin-7-O-α-L-rhamnopyranoside (4), and stigmasterol (5), confirmed via IR, NMR, and MS spectral data. This is the first report of these compounds from this plant, except for compounds 1 and 5. The extracts and isolated compounds were tested for antibacterial activity against S. aureus, S. epidermidis, E. faecalis, E. coli, K. pneumoniae, and P. aeruginosa strains. Methanol roots extract exhibited significant antibacterial activity (MIC 0.195 mg/mL) against E. coli and P. aeruginosa. Compounds 1 and 3 showed remarkable antibacterial activity, with compound 1 (MIC 0.625 mg/mL) exhibiting antibacterial activity against S. aureus and S. epidermidis, whereas compound 3 (MIC 0.625 mg/mL) exhibited antibacterial activity against S. epidermidis and K. pneumoniae. Molecular docking analysis revealed better binding energies for compound 1 (−8.0, −9.7, and −8.0 kJ/mol) and compound 3 (−9.0, −8.7, and −8.4 kJ/mol), compared to ciprofloxacin (−8.3, −7.5, and −6.7 kJ/mol), in regard to S. aureus pyruvate kinase, S. epidermidis FtsZ, and K. pneumoniae Topoisomerase IV, respectively. ADME analysis also revealed good antibacterial candidacy of these compounds, provided that in vivo analysis is conducted for further confirmation of the results. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

10 pages, 1911 KB  
Article
Role of Supercoiling and Topoisomerases in DNA Knotting
by Jorge Cebrián, María-Luisa Martínez-Robles, Victor Martínez, Pablo Hernández, Dora B. Krimer, Jorge B. Schvartzman and María-José Fernández-Nestosa
DNA 2024, 4(2), 170-179; https://doi.org/10.3390/dna4020010 - 27 May 2024
Cited by 2 | Viewed by 5131
Abstract
DNA knots are deleterious for living cells if not removed. Several theoretical and simulation approaches address the question of how topoisomerases select the intermolecular passages that preferentially lead to unknotting rather than to the knotting of randomly fluctuating DNA molecules, but the formation [...] Read more.
DNA knots are deleterious for living cells if not removed. Several theoretical and simulation approaches address the question of how topoisomerases select the intermolecular passages that preferentially lead to unknotting rather than to the knotting of randomly fluctuating DNA molecules, but the formation of knots in vivo remains poorly understood. DNA knots form in vivo in non-replicating and replicating molecules, and supercoiling as well as intertwining are thought to play a crucial role in both the formation and resolution of DNA knots by topoisomerase IV. To confirm this idea, we used two-dimensional agarose gel electrophoresis run with different concentrations of chloroquine to demonstrate that non-replicating pBR322 plasmids grown in a topoisomerase I-defective E. coli strain (RS2λ) were more negatively supercoiled than in a wild-type strain (W3110) and, concurrently, showed significantly fewer knots. In this way, using wild-type and E. coli mutant strains, we confirmed that one of the biological functions of DNA supercoiling is to reduce the formation of DNA knots. Full article
Show Figures

Figure 1

30 pages, 9895 KB  
Article
Validating Interactions of Pathogenic Proteins of Staphylococcus aureus and E. coli with Phytochemicals of Ziziphus jujube and Acacia nilotica
by Wen Zou, Iram Hassan, Bushra Akram, Huma Sattar, Awais Altaf, Amjad Islam Aqib, Hassaan Bin Aslam, Mikhlid H. Almutairi and Kun Li
Microorganisms 2023, 11(10), 2450; https://doi.org/10.3390/microorganisms11102450 - 29 Sep 2023
Cited by 8 | Viewed by 2690
Abstract
This study focused on the assessment of the antimicrobial resistance of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) isolated from bovine mastitis milk samples and the revealing anti-mastitis potential of phytocompounds of Ziziphus jujube and Acacia nilotica [...] Read more.
This study focused on the assessment of the antimicrobial resistance of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) isolated from bovine mastitis milk samples and the revealing anti-mastitis potential of phytocompounds of Ziziphus jujube and Acacia nilotica through molecular docking analysis. The mastitis milk samples were collected from various dairy farms for the isolation of the bacteria (S. aureus and E. coli) and their response to antibiotics. Ethanolic extracts of both plants were prepared. Their antibacterial activity was evaluated, and they were processed for phytochemical analysis after which, molecular docking analysis with pathogenic proteins of the bacteria was carried out. Parametric and non-parametric statistical analyses were performed to reach the conclusions of this study. The findings of the study revealed a higher drug resistance (≥40%) of E. coli against ampicillin, amikacin, and vancomycin, while S. aureus exhibited the highest resistance to ampicillin, erythromycin, and ciprofloxacin. The ethanolic extracts of the Ziziphus jujube and Acacia nilotica plants produced a ZOI between 18 and 23 mm against multidrug-resistant S. aureus and E. coli. Gas chromatography–mass spectrophotometry (GC–MS) was used to explore 15 phytocompounds from Ziziphus jujube and 18 phytocompounds from Acacia nilotica. The molecular docking analysis of 2cyclopenten−1-one,3,4,4 trimethyl and Bis (2ethylhexyl) phthalate of Ziziphus jujube showed a binding affinity of −4.8 kcal/mol and −5.3 kcal/mol and −5.9 kcal/mol and −7.1 kcal/mol against the DNA Gyrase and toxic shock syndrome toxin-1 proteins of S. aureus and E. coli, respectively. The suberic acid monomethyl ester of Acacia nilotica showed a binding affinity of −5.9 kcal/mol and −5 kcal/mol against the outer membrane protein A and Topoisomerase IV protein of E. coli and −5.1 kcal/mol and −5.8 kcal/mol against the toxic shock syndrome toxin-1 and Enterotoxin B proteins of S. aureus. Similarly, 2,2,4-trimethyl-1,3-pentanediol di-iso-butyrate showed a binding affinity of −6.5 kcal/mol and −5.3 kcal/mol against the outer membrane protein A and Topoisomerase IV of E. coli and −5.2 kcal/mol and −5.9 kcal/mol against the toxic shock syndrome toxin-1 and Enterotoxin B proteins of S. aureus, respectively. The study concluded that there was an increasing trend for the antimicrobial resistance of S. aureus and E. coli, while the Ziziphus jujube and Acacia nilotica plant extracts expressed significant affinity to tackle this resistance; hence, this calls for the development of novel evidence-based therapeutics. Full article
(This article belongs to the Special Issue Staphylococcal Infections (Host and Pathogenic Factors) 3.0)
Show Figures

Figure 1

10 pages, 275 KB  
Opinion
Commensal Fitness Advantage May Contribute to the Global Dissemination of Multidrug-Resistant Lineages of Bacteria—The Case of Uropathogenic E. coli
by Miklos Fuzi and Evgeni Sokurenko
Pathogens 2023, 12(9), 1150; https://doi.org/10.3390/pathogens12091150 - 10 Sep 2023
Cited by 11 | Viewed by 1932
Abstract
It is widely accepted that favorable fitness in commensal colonization is one of the prime facilitators of clonal dissemination in bacteria. The question arises as to what kind of fitness advantage may be wielded by uropathogenic strains of the two predominant fluoroquinolone- and [...] Read more.
It is widely accepted that favorable fitness in commensal colonization is one of the prime facilitators of clonal dissemination in bacteria. The question arises as to what kind of fitness advantage may be wielded by uropathogenic strains of the two predominant fluoroquinolone- and multidrug-resistant clonal groups of E. coli—ST131-H30 and ST1193, which has permitted their unprecedented pandemic-like global expansion in the last few decades. The colonization-associated genes’ content, carriage of low-cost plasmids, and integrons with weak promoters could certainly contribute to the fitness of the pandemic groups, although those genetic factors are common among other clonal groups as well. Also, ST131-H30 and ST1193 strains harbor fluoroquinolone-resistance conferring mutations targeting serine residues in DNA gyrase (GyrA-S83) and topoisomerase IV (ParC-S80) that, in those clonal backgrounds, might result in a commensal fitness benefit, i.e., beyond the antibiotic resistance per se. This fitness gain might have contributed not only to the widespread dissemination of these major clones in the healthcare setting but also to their long-term colonization of healthy individuals and, thus, circulation in the community, even in a low or no fluoroquinolone use environment. This evolutionary shift affecting commensal E. coli, initiated by mutations co-favorable in both antibiotics-treated patients and healthy individuals warrants more in-depth studies to monitor further changes in the epidemiological situation and develop effective measures to reduce the antibiotic resistance spread. Full article
12 pages, 2886 KB  
Article
Role of the Water–Metal Ion Bridge in Quinolone Interactions with Escherichia coli Gyrase
by Hannah E. Carter, Baylee Wildman, Heidi A. Schwanz, Robert J. Kerns and Katie J. Aldred
Int. J. Mol. Sci. 2023, 24(3), 2879; https://doi.org/10.3390/ijms24032879 - 2 Feb 2023
Cited by 7 | Viewed by 3145
Abstract
Fluoroquinolones are an important class of antibacterials, and rising levels of resistance threaten their clinical efficacy. Gaining a more full understanding of their mechanism of action against their target enzymes—the bacterial type II topoisomerases gyrase and topoisomerase IV—may allow us to rationally design [...] Read more.
Fluoroquinolones are an important class of antibacterials, and rising levels of resistance threaten their clinical efficacy. Gaining a more full understanding of their mechanism of action against their target enzymes—the bacterial type II topoisomerases gyrase and topoisomerase IV—may allow us to rationally design quinolone-based drugs that overcome resistance. As a step toward this goal, we investigated whether the water–metal ion bridge that has been found to mediate the major point of interaction between Escherichia coli topoisomerase IV and Bacillus anthracis topoisomerase IV and gyrase, as well as Mycobacterium tuberculosis gyrase, exists in E. coli gyrase. This is the first investigation of the water–metal ion bridge and its function in a Gram-negative gyrase. Evidence suggests that the water–metal ion bridge does exist in quinolone interactions with this enzyme and, unlike the Gram-positive B. anthracis gyrase, does use both conserved residues (serine and acidic) as bridge anchors. Furthermore, this interaction appears to play a positioning role. These findings raise the possibility that the water–metal ion bridge is a universal point of interaction between quinolones and type II topoisomerases and that it functions primarily as a binding contact in Gram-positive species and primarily as a positioning interaction in Gram-negative species. Future studies will explore this possibility. Full article
Show Figures

Figure 1

13 pages, 2709 KB  
Article
Design and Synthesis of Thionated Levofloxacin: Insights into a New Generation of Quinolones with Potential Therapeutic and Analytical Applications
by Ali I. M. Ibrahim, Hassan Abul-Futouh, Laurance M. S. Bourghli, Mohammad Abu-Sini, Suhair Sunoqrot, Balqis Ikhmais, Vibhu Jha, Qusai Sarayrah, Dina H. Abulebdah and Worood H. Ismail
Curr. Issues Mol. Biol. 2022, 44(10), 4626-4638; https://doi.org/10.3390/cimb44100316 - 3 Oct 2022
Cited by 12 | Viewed by 4183
Abstract
Levofloxacin is a widely used fluoroquinolone in several infectious diseases. The structure–activity relationship of levofloxacin has been studied. However, the effect of changing the carbonyl into thiocarbonyl of levofloxacin has not been investigated up to the date of this report. In this work, [...] Read more.
Levofloxacin is a widely used fluoroquinolone in several infectious diseases. The structure–activity relationship of levofloxacin has been studied. However, the effect of changing the carbonyl into thiocarbonyl of levofloxacin has not been investigated up to the date of this report. In this work, levofloxacin structure was slightly modified by making a thionated form (compound 3), which was investigated for its antibacterial activity, biocompatibility, and cytotoxicity, as well as spectroscopic properties. The antibacterial susceptibility testing against five different bacteria showed promising minimum inhibitory concentrations (MICs), particularly against B. spizizenii and E. coli, with an MIC value of 1.9 µM against both bacteria, and 7.8 µM against P. mirabilis. The molecular docking experiment showed similar binding interactions of both levofloxacin and compound 3 with the active site residues of topoisomerase IV. The biocompatibility and cytotoxicity results revealed that compound 3 was more biocompatible with normal cells and more cytotoxic against cancer cells, compared to levofloxacin. Interestingly, compound 3 also showed an excitation profile with a distinctive absorption peak at λmax 404 nm. Overall, our results suggest that the thionation of quinolones may provide a successful approach toward a new generation with enhanced pharmacokinetic and safety profiles and overall activity as potential antibacterial agents. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

15 pages, 3726 KB  
Article
Experimental and Molecular Docking Studies of Cyclic Diphenyl Phosphonates as DNA Gyrase Inhibitors for Fluoroquinolone-Resistant Pathogens
by Neveen M. Saleh, Yasmine S. Moemen, Sara H. Mohamed, Ghady Fathy, Abdullah A. S. Ahmed, Ahmed A. Al-Ghamdi, Sami Ullah and Ibrahim El-Tantawy El Sayed
Antibiotics 2022, 11(1), 53; https://doi.org/10.3390/antibiotics11010053 - 1 Jan 2022
Cited by 16 | Viewed by 4148
Abstract
DNA gyrase and topoisomerase IV are proven to be validated targets in the design of novel antibacterial drugs. In this study, we report the antibacterial evaluation and molecular docking studies of previously synthesized two series of cyclic diphenylphosphonates (1ae and [...] Read more.
DNA gyrase and topoisomerase IV are proven to be validated targets in the design of novel antibacterial drugs. In this study, we report the antibacterial evaluation and molecular docking studies of previously synthesized two series of cyclic diphenylphosphonates (1ae and 2ae) as DNA gyrase inhibitors. The synthesized compounds were screened for their activity (antibacterial and DNA gyrase inhibition) against ciprofloxacin-resistant E.coli and Klebsiella pneumoniae clinical isolates having mutations (deletion and substitution) in QRDR region of DNA gyrase. The target compound (2a) that exhibited the most potent activity against ciprofloxacin Gram-negative clinical isolates was selected to screen its inhibitory activity against DNA gyrase displayed IC50 of 12.03 µM. In addition, a docking study was performed with inhibitor (2a), to illustrate its binding mode in the active site of DNA gyrase and the results were compatible with the observed inhibitory potency. Furthermore, the docking study revealed that the binding of inhibitor (2a) to DNA gyrase is mediated and modulated by divalent Mg2+ at good binding energy (–9.08 Kcal/mol). Moreover, structure-activity relationships (SARs) demonstrated that the combination of hydrazinyl moiety in conjunction with the cyclic diphenylphosphonate based scaffold resulted in an optimized molecule that inhibited the bacterial DNA gyrase by its detectable effect in vitro on gyrase-catalyzed DNA supercoiling activity. Full article
Show Figures

Graphical abstract

17 pages, 1792 KB  
Article
Two-Dimensional Gel Electrophoresis to Study the Activity of Type IIA Topoisomerases on Plasmid Replication Intermediates
by Jorge Cebrián, Victor Martínez, Pablo Hernández, Dora B. Krimer, María-José Fernández-Nestosa and Jorge B. Schvartzman
Biology 2021, 10(11), 1195; https://doi.org/10.3390/biology10111195 - 17 Nov 2021
Cited by 3 | Viewed by 5229
Abstract
DNA topoisomerases are the enzymes that regulate DNA topology in all living cells. Since the discovery and purification of ω (omega), when the first were topoisomerase identified, the function of many topoisomerases has been examined. However, their ability to relax supercoiling and unlink [...] Read more.
DNA topoisomerases are the enzymes that regulate DNA topology in all living cells. Since the discovery and purification of ω (omega), when the first were topoisomerase identified, the function of many topoisomerases has been examined. However, their ability to relax supercoiling and unlink the pre-catenanes of partially replicated molecules has received little attention. Here, we used two-dimensional agarose gel electrophoresis to test the function of three type II DNA topoisomerases in vitro: the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α. We examined the proficiency of these topoisomerases on a partially replicated bacterial plasmid: pBR-TerE@AatII, with an unidirectional replicating fork, stalled when approximately half of the plasmid had been replicated in vivo. DNA was isolated from two strains of Escherichia coli: DH5αF’ and parE10. These experiments allowed us to assess, for the first time, the efficiency of the topoisomerases examined to resolve supercoiling and pre-catenanes in partially replicated molecules and fully replicated catenanes formed in vivo. The results obtained revealed the preferential functions and also some redundancy in the abilities of these DNA topoisomerases in vitro. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3488 KB  
Article
Synthesis, Molecular Docking, and Biofilm Formation Inhibitory Activity of Bis(Indolyl)Pyridines Analogues of the Marine Alkaloid Nortopsentin
by Heba M. Abo-Salem, Hayam A. Abd El Salam, Anhar Abdel-Aziem, Mohamed S. Abdel-Aziz and Eslam Reda El-Sawy
Molecules 2021, 26(14), 4112; https://doi.org/10.3390/molecules26144112 - 6 Jul 2021
Cited by 32 | Viewed by 3644
Abstract
An efficient and simple protocol for the synthesis of a new class of diverse bis(indolyl)pyridines analogues of the marine alkaloid nortopsentin has been reported. A one-pot four-component condensation of 3-cyanocarbomethylindole, various aldehyde, 3-acetylindole, and ammonium acetate in glacial acetic acid led to the [...] Read more.
An efficient and simple protocol for the synthesis of a new class of diverse bis(indolyl)pyridines analogues of the marine alkaloid nortopsentin has been reported. A one-pot four-component condensation of 3-cyanocarbomethylindole, various aldehyde, 3-acetylindole, and ammonium acetate in glacial acetic acid led to the formation of 2,6-bis(1H-indol-3-yl)-4-(substituted-phenyl)pyridine-5-carbonitriles. Additionally, 2,6-bis(1H-indol-3-yl)-4-(benzofuran) pyridine-5-carbonitriles were prepared via a one-pot four-component condensation of 3-cyanocarbomethylindole, various N-substituted-indole-3-aldehydes, 2-acetylbenzofuran, and ammonium acetate. The synthesized compounds were evaluated for their ability to inhibit biofilm formation against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 6538 and the Gram-negative strain Escherichia coli ATCC 25922. Some of the new compounds showed a marked selectivity against the Gram-positive and Gram-negative strains. Remarkably, five compounds 4b, 7a, 7c, 7d and 8e demonstrated good antibiofilm formation against S. aureus and E. coli. On the other hand, the release of reducing sugars and proteins from the treated bacterial strains over the untreated strains was considered to explain the disruption effect of the selected compound on the contact cells of S. aureus and E. coli. Out of all studied compounds, the binding energies and binding mode of bis-indole derivatives 7c and 7d were theoretically the best thymidylate kinase, DNA gyrase B and DNA topoisomerase IV subunit B inhibitors. Full article
Show Figures

Graphical abstract

15 pages, 2412 KB  
Article
Mutations in bdcA and valS Correlate with Quinolone Resistance in Wastewater Escherichia coli
by Negin Malekian, Ali Al-Fatlawi, Thomas U. Berendonk and Michael Schroeder
Int. J. Mol. Sci. 2021, 22(11), 6063; https://doi.org/10.3390/ijms22116063 - 4 Jun 2021
Cited by 5 | Viewed by 3347
Abstract
Single mutations can confer resistance to antibiotics. Identifying such mutations can help to develop and improve drugs. Here, we systematically screen for candidate quinolone resistance-conferring mutations. We sequenced highly diverse wastewater E. coli and performed a genome-wide association study (GWAS) to determine associations [...] Read more.
Single mutations can confer resistance to antibiotics. Identifying such mutations can help to develop and improve drugs. Here, we systematically screen for candidate quinolone resistance-conferring mutations. We sequenced highly diverse wastewater E. coli and performed a genome-wide association study (GWAS) to determine associations between over 200,000 mutations and quinolone resistance phenotypes. We uncovered 13 statistically significant mutations including 1 located at the active site of the biofilm dispersal gene bdcA and 6 silent mutations in the aminoacyl-tRNA synthetase valS. The study also recovered the known mutations in the topoisomerases gyrase (gyrA) and topoisomerase IV (parC). In summary, we demonstrate that GWAS effectively and comprehensively identifies resistance mutations without a priori knowledge of targets and mode of action. The results suggest that mutations in the bdcA and valS genes, which are involved in biofilm dispersal and translation, may lead to novel resistance mechanisms. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3499 KB  
Article
Hybrid Inhibitors of DNA Gyrase A and B: Design, Synthesis and Evaluation
by Martina Durcik, Žiga Skok, Janez Ilaš, Nace Zidar, Anamarija Zega, Petra Éva Szili, Gábor Draskovits, Tamás Révész, Danijel Kikelj, Akos Nyerges, Csaba Pál, Lucija Peterlin Mašič and Tihomir Tomašič
Pharmaceutics 2021, 13(1), 6; https://doi.org/10.3390/pharmaceutics13010006 - 22 Dec 2020
Cited by 12 | Viewed by 5331
Abstract
The discovery of multi-targeting ligands of bacterial enzymes is an important strategy to combat rapidly spreading antimicrobial resistance. Bacterial DNA gyrase and topoisomerase IV are validated targets for the development of antibiotics. They can be inhibited at their catalytic sites or at their [...] Read more.
The discovery of multi-targeting ligands of bacterial enzymes is an important strategy to combat rapidly spreading antimicrobial resistance. Bacterial DNA gyrase and topoisomerase IV are validated targets for the development of antibiotics. They can be inhibited at their catalytic sites or at their ATP binding sites. Here we present the design of new hybrids between the catalytic inhibitor ciprofloxacin and ATP-competitive inhibitors that show low nanomolar inhibition of DNA gyrase and antibacterial activity against Gram-negative pathogens. The most potent hybrid 3a has MICs of 0.5 µg/mL against Klebsiella pneumoniae, 4 µg/mL against Enterobacter cloacae, and 2 µg/mL against Escherichia coli. In addition, inhibition of mutant E. coli strains shows that these hybrid inhibitors interact with both subunits of DNA gyrase (GyrA, GyrB), and that binding to both of these sites contributes to their antibacterial activity. Full article
(This article belongs to the Special Issue Recent Trends in Antibiotic Drug Development)
Show Figures

Figure 1

14 pages, 649 KB  
Article
Evaluation of Fluoroquinolone Resistance in Clinical Avian Pathogenic Escherichia coli Isolates from Flanders (Belgium)
by Robin Temmerman, An Garmyn, Gunther Antonissen, Gerty Vanantwerpen, Mia Vanrobaeys, Freddy Haesebrouck and Mathias Devreese
Antibiotics 2020, 9(11), 800; https://doi.org/10.3390/antibiotics9110800 - 12 Nov 2020
Cited by 21 | Viewed by 3134
Abstract
Fluoroquinolones are frequently used antimicrobials for the treatment of avian pathogenic Escherichia coli (APEC) infections. However, rapid development and selection of resistance to this class of antimicrobial drugs is a significant problem. The aim of this study was to investigate the occurrence and [...] Read more.
Fluoroquinolones are frequently used antimicrobials for the treatment of avian pathogenic Escherichia coli (APEC) infections. However, rapid development and selection of resistance to this class of antimicrobial drugs is a significant problem. The aim of this study was to investigate the occurrence and mechanisms of antimicrobial resistance against enrofloxacin (ENRO) in APEC strains in Flanders, Belgium. One hundred and twenty-five APEC strains from broilers with clinical colibacillosis were collected in Flanders from November 2017 to June 2018. The minimum inhibitory concentration (MIC) of all strains and the mutant prevention concentration (MPC) of a sample of sensitive isolates were determined using a commercial gradient strip test and via the agar dilution method, respectively. Non-wild type (NWT) isolates were further characterized using polymerase chain reaction (PCR), gel electrophoresis and gene sequencing. Forty percent of the APEC strains were NWT according to the epidemiological cut-off (ECOFF) measure (MIC > 0.125 μg/mL). With respect to clinical breakpoints, 21% were clinically intermediate (0.5 ≤ MIC ≤ 1 μg/mL) and 10% were clinically resistant (MIC ≥ 2). The MPC values of the tested strains ranged from 0.064 to 1 μg/mL, resulting in MPC/MIC ratios varying from 4 to 32. The majority (92%) of the NWT strains carried one or two mutations in gyrA. Less than a quarter (22%) manifested amino acid substitutions in the topoisomerase IV parC subunit. Only three of the NWT strains carried a mutation in parE. Plasmid mediated quinolone resistance (PMQR) associated genes were detected in 18% of the NWT strains. In contrast to the relatively large number of NWT strains, only a small percentage of APEC isolates was considered clinically resistant. The most common MPC value for sensitive strains was 0.125 μg/mL. Some isolates showed higher values, producing wide mutant selection windows (MSW). Chromosomal mutations in DNA gyrase and topoisomerase IV were confirmed as the main source of decreased antimicrobial fluoroquinolone susceptibility, de-emphasizing the role of PMQR mechanisms. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

19 pages, 5481 KB  
Article
Synthesis and Biological Evaluation of New Pyridothienopyrimidine Derivatives as Antibacterial Agents and Escherichia coli Topoisomerase II Inhibitors
by Eman M. Mohi El-Deen, Eman A. Abd El-Meguid, Eman A. Karam, Eman S. Nossier and Marwa F. Ahmed
Antibiotics 2020, 9(10), 695; https://doi.org/10.3390/antibiotics9100695 - 14 Oct 2020
Cited by 43 | Viewed by 4308
Abstract
The growing resistance of bacteria to many antibiotics that have been in use for several decades has generated the need to discover new antibacterial agents with structural features qualifying them to overcome the resistance mechanisms. Thus, novel pyridothienopyrimidine derivatives (2a,b [...] Read more.
The growing resistance of bacteria to many antibiotics that have been in use for several decades has generated the need to discover new antibacterial agents with structural features qualifying them to overcome the resistance mechanisms. Thus, novel pyridothienopyrimidine derivatives (2a,ba,b) were synthesized by a series of various reactions, starting with 3-aminothieno[2,3-b]pyridine-2-carboxamides (1a,b). Condensation of compounds 1a,b with cyclohexanone gave 1’H-spiro[cyclohexane-1,2’-pyrido[3’,2’:4,5]thieno[3,2-d]pyrimidin]-4’(3’H)-ones (2a,b), which in turn were utilized to afford the target 4-substituted derivatives (3a,b8a,b). In vitro antibacterial activity evaluations of all the new compounds (2a,b8a,b) were performed against six strains of Gram-negative and Gram-positive bacteria. The target compounds showed significant antibacterial activity, especially against Gram-negative strains. Moreover, the compounds (2a,b; 3a,b; 4a,b; and 5a,b) that exhibited potent activity against Escherichia coli were selected to screen their inhibitory activity against Escherichia coli topoisomerase II (DNA gyrase and topoisomerase IV) enzymes. Compounds 4a and 4b showed potent dual inhibition of the two enzymes with IC50 values of 3.44 µΜ and 5.77 µΜ against DNA gyrase and 14.46 µΜ and 14.89 µΜ against topoisomerase IV, respectively. In addition, docking studies were carried out to give insight into the binding mode of the tested compounds within the E. coli DNA gyrase B active site compared with novobiocin. Full article
(This article belongs to the Special Issue Design and Synthesis of Antibacterial Heterocycle-Based Compounds)
Show Figures

Graphical abstract

18 pages, 2968 KB  
Article
Synthesis, Antimicrobial Activity and Molecular Docking of Novel Thiourea Derivatives Tagged with Thiadiazole, Imidazole and Triazine Moieties as Potential DNA Gyrase and Topoisomerase IV Inhibitors
by Heba E. Hashem, Abd El-Galil E. Amr, Eman S. Nossier, Elsayed A. Elsayed and Eman M. Azmy
Molecules 2020, 25(12), 2766; https://doi.org/10.3390/molecules25122766 - 15 Jun 2020
Cited by 78 | Viewed by 6869
Abstract
To develop new antimicrobial agents, a series of novel thiourea derivatives incorporated with different moieties 2–13 was designed and synthesized and their biological activities were evaluated. Compounds 7a, 7b and 8 exhibited excellent antimicrobial activity against all Gram-positive and Gram-negative bacteria, and [...] Read more.
To develop new antimicrobial agents, a series of novel thiourea derivatives incorporated with different moieties 2–13 was designed and synthesized and their biological activities were evaluated. Compounds 7a, 7b and 8 exhibited excellent antimicrobial activity against all Gram-positive and Gram-negative bacteria, and the fungal Aspergillus flavus with minimum inhibitory concentration (MIC) values ranged from 0.95 ± 0.22 to 3.25 ± 1.00 μg/mL. Furthermore, cytotoxicity studies against MCF-7 cells revealed that compounds 7a and 7b were the most potent with IC50 values of 10.17 ± 0.65 and 11.59 ± 0.59 μM, respectively. On the other hand, the tested compounds were less toxic against normal kidney epithelial cell lines (Vero cells). The in vitro enzyme inhibition assay of 8 displayed excellent inhibitory activity against Escherichia coli DNA B gyrase and moderate one against E. coli Topoisomerase IV (IC50 = 0.33 ± 1.25 and 19.72 ± 1.00 µM, respectively) in comparison with novobiocin (IC50 values 0.28 ± 1.45 and 10.65 ± 1.02 µM, respectively). Finally, the molecular docking was done to position compound 8 into the E. coli DNA B and Topoisomerase IV active pockets to explore the probable binding conformation. In summary, compound 8 may serve as a potential dual E. coli DNA B and Topoisomerase IV inhibitor. Full article
(This article belongs to the Special Issue Design, Synthesis, and Biological Evaluation of Enzyme Inhibitors)
Show Figures

Figure 1

Back to TopTop