Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = E. coli PFGE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2655 KiB  
Article
Advancing Understanding of Escherichia coli Pathogenicity in Preterm Neonatal Sepsis
by Oscar Villavicencio-Carrisoza, Orly Grobeisen-Duque, Ana Laura Garcia-Correa, Irma Eloisa Monroy-Muñoz, Graciela Villeda-Gabriel, Irma Elena Sosa-González, Hector Flores-Herrera, Ricardo Figueroa-Damian, Jorge Francisco Cerna-Cortes, Sandra Rivera-Gutierrez, Isabel Villegas-Mota, Veronica Zaga-Clavellina and Addy Cecilia Helguera-Repetto
Microorganisms 2025, 13(2), 219; https://doi.org/10.3390/microorganisms13020219 - 21 Jan 2025
Cited by 3 | Viewed by 1425
Abstract
Neonatal sepsis is a major cause of mortality in preterm infants, with Escherichia coli as one of the leading pathogens. Few studies have examined the interplay between virulence factors, resistance profiles, phylogroups, and clinical outcomes in this population. We analyzed 52 E. coli [...] Read more.
Neonatal sepsis is a major cause of mortality in preterm infants, with Escherichia coli as one of the leading pathogens. Few studies have examined the interplay between virulence factors, resistance profiles, phylogroups, and clinical outcomes in this population. We analyzed 52 E. coli strains isolated from 49 preterm neonates diagnosed with sepsis at a tertiary-level hospital in Mexico. Strains underwent phylogenetic classification, virulence gene profiling, and antimicrobial resistance testing. PFGE was used to assess genetic relatedness and outbreak clusters. Clinical data were correlated with molecular findings. Phylogroups A and B2 accounted for 46% of strains. Phylogroup A exhibited notable virulence, with high prevalence of the pathogenicity island described in virulent extra-intestinal E. coli strains (PAI), aerobactin siderophore receptor AerJ (iutA), and yersiniabactin siderophore receptor (fyuA) genes, alongside significant resistance profiles. PFGE identified two dominating branches. Branch A, comprising phylogroups A and B2, displayed high resistance and was prevalent in the neonatal intensive care unit. Branch C, with phylogroups A and D, showed less multidrug resistance but was significantly associated with maternal chorioamnionitis. This study redefines E. coli pathogenicity in neonatal sepsis, highlighting the virulence of traditionally non-pathogenic phylogroups. High virulence strains were associated with more severe outcomes. These findings underscore the need for enhanced strategies in targeted prevention, improved diagnostics, and tailored treatments for high-risk preterm populations. Full article
(This article belongs to the Special Issue Genomics and Epidemiology of Clinical Microorganisms)
Show Figures

Figure 1

16 pages, 1043 KiB  
Article
Dissemination of IncQ1 Plasmids Harboring NTEKPC-IId in a Brazilian Hospital
by Camila Maria dos Santos Boralli, Julian Andres Paganini, Rodrigo Silva Meneses, Camila Pacheco Silveira Martins da Mata, Edna Marilea Meireles Leite, Anita C. Schürch, Fernanda L. Paganelli, Rob J. L. Willems and Ilana L. B. C. Camargo
Microorganisms 2025, 13(1), 180; https://doi.org/10.3390/microorganisms13010180 - 16 Jan 2025
Viewed by 1155
Abstract
KPC is a clinically significant serine carbapenemase in most countries, and its rapid spread threatens global public health. blaKPC transmission is commonly mediated by Tn4401 transposons. The blaKPC gene has also been found in non-Tn4401 elements (NTEKPC). To [...] Read more.
KPC is a clinically significant serine carbapenemase in most countries, and its rapid spread threatens global public health. blaKPC transmission is commonly mediated by Tn4401 transposons. The blaKPC gene has also been found in non-Tn4401 elements (NTEKPC). To fill the gap in the understanding of the stability and dissemination of NTEKPC-carrying plasmids, we selected and characterized carbapenem-resistant bacteria isolated between 2009 and 2016 from a hospital for a retrospective study of their plasmids conjugation capacity, impact on fitness, and replication in different species. Different clones were selected using PFGE, and their genomes were sequenced using Illumina and Oxford Nanopore methods. Minimum inhibitory concentrations (MICs) were determined by broth microdilution. Plasmid copy numbers (PCNs) were determined using qPCR. Doubling time was used to analyze fitness change. Most isolates (67%, 33/49) carried blaKPC, of which 85% presented blaKPC in a NTEKPC. The 25 isolates selected presented the blaKPC gene in NTEKPC-IId in IncQ1-type plasmids, showing multispecies dissemination. IncQ1 plasmids were mobilizable and PCN seemed to be directly linked to the species, presenting a high-copy number, mainly in K. pneumoniae. No relationship was observed between IncQ1 PCN and carbapenems MIC values. IncQ1 and a conjugative plasmid from K. pneumoniae BHKPC10 were transferred to E. coli J53 without fitness changes, and MIC values were maintained for carbapenems despite the low transconjugant PCN. In addition to IncQ1 with NTEKPC, Enterobacter cloacae BHKPC28 contained the mcr-9 gene in an IncHI2/IncHI2A conjugative plasmid, which may help the mobility of IncQ1 and the dissemination of two resistance determinants to last-resort antibiotics. Understanding the interaction between plasmids and high-risk lineages can help develop new therapies to prevent the dissemination of resistance traits. Full article
Show Figures

Figure 1

11 pages, 2043 KiB  
Article
Diversity and Resistance Profiles of ESBL-Producing Gram-Negative Bacteria from Dairy Farms in Southern Türkiye
by Cemil Kürekci, Murat Yüksel, Büşra Gülay Celil Ozaslan, Sait Tan, Claudia Jäckel, Mirjam Grobbel and Jens Andre Hammerl
Antibiotics 2024, 13(12), 1134; https://doi.org/10.3390/antibiotics13121134 - 25 Nov 2024
Cited by 2 | Viewed by 1314
Abstract
Background/Objectives: The increasing occurrence of extended-spectrum β-lactamase (ESBL)–producing Enterobacterales, most commonly Escherichia coli, has become a serious problem. The aim of this study was to determine the presence of ESBL-producing Gram-negative bacteria in dairy cattle, goat and sheep farms located in [...] Read more.
Background/Objectives: The increasing occurrence of extended-spectrum β-lactamase (ESBL)–producing Enterobacterales, most commonly Escherichia coli, has become a serious problem. The aim of this study was to determine the presence of ESBL-producing Gram-negative bacteria in dairy cattle, goat and sheep farms located in southern Türkiye. Methods: Samples (409 quarter milk samples and 110 fresh faecal samples from cattle, 75 bulk tank milk samples and 225 rectal swab samples from goats and sheep) were subjected to selective isolation on MacConkey agar with ceftazidime (2 µg/mL). Isolates were identified by MALDI-ToF MS. The antimicrobial susceptibility profile of the isolates was determined by the broth microdilution method. To obtain a deeper insight into the genetic diversity of isolates substantially contributing to an efficient spread of their ESBL-determinants (23-MO00001: an E. coli from mastitis and 23-MO00002 Citrobacter freundii), the transmission potential and the genetic background of the plasmid carrying the blaCTX-M determinant was studied with whole genome analysis using Illumina sequencing. Results: Of the samples tested, 47 from the bovine faecal samples, 1 from the subclinical mastitis milk sample, 9 from the goat/sheep rectal swab samples and 5 from the goat/sheep bulk tank milk samples had ceftazidime-resistant Gram-negative strains with the ESBL phenotype. Of the 33 ESBL-producing E. coli isolates, 66.6% were resistant to tetracycline, 57.6% to sulfamethoxazole, 48.9% to nalidixic acid, 42.4% to ciprofloxacin and 33.3% to trimethoprim. Pulsed field gel electrophoresis (PFGE) results showed that the majority of E. coli isolates (16/33) and all Enterobacter spp. isolates (n = 5) were not clonally related (80% similarity cut value). The sequenced strains were observed to efficiently transfer their ceftazidime resistance to the recipient strain E. coli J53 at 37 °C (transfer rates: 101–102 transconjugants per donor cell). S1-PFGE showed that the transconjugants J53(p23MO01-T1) and J53(p23MO02-T1) had acquired plasmids of about 82 kb and 55 kb plasmids, respectively. According to WGS results, the E. coli isolate was assigned to ST162, while the C. freundii isolate was assigned to ST95. Conclusions: This study demonstrates that dairy animals are reservoirs of ESBL-producing bacteria. Full article
(This article belongs to the Special Issue Mastitis: Causative Agents, Drug Resistance, and Treatment Approaches)
Show Figures

Figure 1

16 pages, 3771 KiB  
Article
A Longitudinal Study of Escherichia coli Clinical Isolates from the Tracheal Aspirates of a Paediatric Patient—Strain Type Similar to Pandemic ST131
by Brankica Filipic, Milan Kojic, Zorica Vasiljevic, Aleksandar Sovtic, Ivica Dimkic, Emily Wood and Alfonso Esposito
Microorganisms 2024, 12(10), 1990; https://doi.org/10.3390/microorganisms12101990 - 30 Sep 2024
Viewed by 1601
Abstract
Escherichia coli is a Gram-negative bacterium and part of the intestinal microbiota. However, it can cause various diarrhoeal illnesses, i.e., traveller’s diarrhoea, dysentery, and extraintestinal infections when the bacteria are translocated from the intestine to other organs, such as urinary tract infections, abdominal [...] Read more.
Escherichia coli is a Gram-negative bacterium and part of the intestinal microbiota. However, it can cause various diarrhoeal illnesses, i.e., traveller’s diarrhoea, dysentery, and extraintestinal infections when the bacteria are translocated from the intestine to other organs, such as urinary tract infections, abdominal and pelvic infections, pneumonia, bacteraemia, and meningitis. It is also an important pathogen in intensive care units where cross-infection may cause intrahospital spread with serious consequences. Within this study, four E. coli isolates from the tracheal aspirates of a tracheotomised paediatric patient on chronic respiratory support were analysed and compared for antibiotic resistance and virulence potential. Genomes of all four isolates (5381a, 5381b, 5681, 5848) were sequenced using Oxford Nanopore Technology. According to PFGE analysis, the clones of isolates 5681 and 5848 were highly similar, and differ from 5381a and 5381b which were isolated first chronologically. All four E. coli isolates belonged to an unknown sequence type, related to the E. coli ST131, a pandemic clone that is evolving rapidly with increasing levels of antimicrobial resistance. All four E. coli isolates in this study exhibited a multidrug-resistant phenotype as, according to MIC data, they were resistant to ceftriaxone, ciprofloxacin, doxycycline, minocycline, and tetracycline. In addition, principal component analyses revealed that isolates 5681 and 5848, which were recovered later than 5381a and 5381b (two weeks and three weeks, respectively) possessed more complex antibiotic resistance genes and virulence profiles, which is concerning considering the short time period during which the strains were isolated. Full article
(This article belongs to the Special Issue Overviews of Clinical Microbial Infection)
Show Figures

Figure 1

10 pages, 1617 KiB  
Article
Prevalence and Characteristics of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 among Salmonella Enteritidis Isolates from Retail Chickens and Children with Gastroenteritis in China
by Liyuan Liu, Shanrong Yi, Xuebin Xu, Liya Zheng, Hong Liu and Xiujuan Zhou
Pathogens 2024, 13(9), 816; https://doi.org/10.3390/pathogens13090816 - 21 Sep 2024
Viewed by 1566
Abstract
A total of 265 Salmonella Enteritidis isolates collected from retail markets and children’s hospitals in Shanghai were used to investigate the prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes. Nine of the isolates—7 from the 146 (4.79%) retail chicken-related samples and 2 [...] Read more.
A total of 265 Salmonella Enteritidis isolates collected from retail markets and children’s hospitals in Shanghai were used to investigate the prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes. Nine of the isolates—7 from the 146 (4.79%) retail chicken-related samples and 2 from the 119 (1.68%) samples from clinical children—were fosfomycin-resistant (FosR). The fosA3 gene was detected in all of the nine FosR isolates, which were located on Inc F-type (8/9, 88.9%) and unknown-type (1/9, 11.1%) transferable plasmids. In total, five plasmid types, namely Inc HI2 (1/9, 11.1%), Inc I1 (3/9, 33.3%), Inc X (8/9, 88.9%), Inc FIIs (9/9, 100%), and Inc FIB (9/9, 100%), were detected in these FosR isolates, which possessed five S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) profiles. The extended-spectrum β-lactamase determinant blaCTX-M-14 subtype was identified in one FosR S. Enteritidis isolate, which was located in a transferable unknown-type plasmid co-carrying fosA3 and tetR genes. Sequence homology analysis showed that this plasmid possessed high sequence similarity to previously reported blaCTX-M-14- and fosA3-positive plasmids from E. coli strains, implying that plasmids carrying the fosA3 gene might be disseminated among Enterobacterales. These findings highlight further challenges in the prevention and treatment of Enterobacteriaceae infections caused by plasmids containing fosA3. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

17 pages, 1069 KiB  
Article
Epidemiology, Virulence and Antimicrobial Resistance of Escherichia coli Isolated from Small Brazilian Farms Producers of Raw Milk Fresh Cheese
by Laryssa Freitas Ribeiro, Gabriel Augusto Marques Rossi, Rafael Akira Sato, Andressa de Souza Pollo, Marita Vedovelli Cardozo, Luiz Augusto do Amaral and John Morris Fairbrother
Microorganisms 2024, 12(8), 1739; https://doi.org/10.3390/microorganisms12081739 - 22 Aug 2024
Cited by 2 | Viewed by 1818
Abstract
This study aimed to identify contamination sources in raw milk and cheese on small farms in Brazil by isolating Escherichia coli at various stages of milk production and cheese manufacturing. The study targeted EAEC, EIEC, ETEC, EPEC, STEC, and ExPEC pathotypes, characterizing isolates [...] Read more.
This study aimed to identify contamination sources in raw milk and cheese on small farms in Brazil by isolating Escherichia coli at various stages of milk production and cheese manufacturing. The study targeted EAEC, EIEC, ETEC, EPEC, STEC, and ExPEC pathotypes, characterizing isolates for the presence of virulence genes, phylogroups, antimicrobial susceptibility, and phylogenetic relationships using PFGE and MLST. The presence of antimicrobial resistance genes and serogroups was also determined. Three categories of E. coli were identified: pathogenic, commensal, and ceftriaxone-resistant (ESBL) strains. Pathogenic EPEC, STEC, and ExPEC isolates were detected in milk and cheese samples. Most isolates belonged to phylogroups A and B1 and were resistant to antimicrobials such as nalidixic acid, ampicillin, kanamycin, streptomycin, sulfisoxazole, and tetracycline. Genetic analysis revealed that E. coli with identical virulence genes were present at different stages within the same farm. The most frequently identified serogroup was O18, and MLST identified ST131 associated with pathogenic isolates. The study concluded that E. coli was present at multiple points in milk collection and cheese production, with significant phylogroups and high antimicrobial resistance. These findings highlight the public health risk posed by contamination in raw milk and fresh cheese, emphasizing the need to adopt hygienic practices to control these microorganisms. Full article
(This article belongs to the Special Issue Epidemiology, Prevention and Control of Foodborne Microbial Pathogens)
Show Figures

Figure 1

11 pages, 1216 KiB  
Article
Colonization by Extended-Spectrum β-Lactamase-Producing Enterobacterales and Bacteremia in Hematopoietic Stem Cell Transplant Recipients
by Luiza Arcas Gonçalves, Beatriz Barbosa Anjos, Bruno Melo Tavares, Ana Paula Marchi, Marina Farrel Côrtes, Hermes Ryoiti Higashino, Bruna del Guerra de Carvalho Moraes, José Victor Bortolotto Bampi, Liliane Dantas Pinheiro, Fernanda de Souza Spadao, Vanderson Rocha, Thais Guimarães and Silvia Figueiredo Costa
Antibiotics 2024, 13(5), 448; https://doi.org/10.3390/antibiotics13050448 - 15 May 2024
Cited by 1 | Viewed by 1759
Abstract
Background: Assessing the risk of multidrug-resistant colonization and infections is pivotal for optimizing empirical therapy in hematopoietic stem cell transplants (HSCTs). Limited data exist on extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) colonization in this population. This study aimed to assess whether ESBL-E colonization constitutes a [...] Read more.
Background: Assessing the risk of multidrug-resistant colonization and infections is pivotal for optimizing empirical therapy in hematopoietic stem cell transplants (HSCTs). Limited data exist on extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) colonization in this population. This study aimed to assess whether ESBL-E colonization constitutes a risk factor for ESBL-E bloodstream infection (BSI) and to evaluate ESBL-E colonization in HSCT recipients. Methods: A retrospective analysis of ESBL-E colonization and BSI in HSCT patients was conducted from August 2019 to June 2022. Weekly swabs were collected and cultured on chromogenic selective media, with PCR identifying the β-lactamase genes. Pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS) assessed the colonizing strains’ similarities. Results: Of 222 evaluated HSCT patients, 59.45% were colonized by ESBL-E, with 48.4% at admission. The predominant β-lactamase genes were blaTEM (52%) and blaSHV (20%). PFGE analysis did not reveal predominant clusters in 26 E. coli and 15 K. pneumoniae strains. WGS identified ST16 and ST11 as the predominant sequence types among K. pneumoniae. Thirty-three patients developed thirty-five Enterobacterales-BSIs, with nine being third-generation cephalosporin-resistant. No association was found between ESBL-E colonization and ESBL-BSI (p = 0.087). Conclusions: Although the patients presented a high colonization rate of ESBL-E upon admission, no association between colonization and infection were found. Thus, it seems that ESBL screening is not a useful strategy to assess risk factors and guide therapy for ESBL-BSI in HSCT-patients. Full article
(This article belongs to the Special Issue Colonization and Infection of Multi-Drug Resistant Organisms)
Show Figures

Figure 1

11 pages, 1942 KiB  
Article
Rare Plasmid-Mediated AmpC Beta-Lactamase DHA-1 Located on Easy Mobilized IS26-Related Genetic Element Detected in Escherichia coli from Livestock and Food in Germany
by Chiara Manfreda, Annemarie Kaesbohrer, Silvia Schmoger, Tanja Skladnikiewicz-Ziemer, Mirjam Grobbel and Alexandra Irrgang
Microorganisms 2024, 12(3), 632; https://doi.org/10.3390/microorganisms12030632 - 21 Mar 2024
Cited by 1 | Viewed by 2196
Abstract
AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 [...] Read more.
AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 are involved. This study investigated the prevalence of the AmpC beta-lactamase DHA-1 in ESBL/AmpC-producing E. coli (n = 4706) collected between 2016 and 2021 as part of a German antimicrobial resistance monitoring program along the food chain. Eight isolates (prevalence < 0.2%) were detected and further characterized by PFGE, transformation and conjugation experiments as well as short-read and long-read sequencing. All eight strains harbored blaDHA-1 together with qnrB4, sul1 and mph(A) resistance genes on an IS26 composite transposon on self-transferable IncFII or IncFIA/FIB/II plasmids. During laboratory experiments, activation of the translocatable unit of IS26-bound structures was observed. This was shown by the variability of plasmid sizes in original isolates, transconjugants or transferred plasmids, and correspondingly, duplications of resistance fragments were found in long-read sequencing. This activation could be artificial due to laboratory handling or naturally occurring. Nevertheless, DHA-1 is a rare AmpC beta-lactamase in livestock and food in Germany, and its dissemination will be monitored in the future. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Foodborne Bacteria)
Show Figures

Figure 1

12 pages, 3324 KiB  
Article
Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens
by Ekaterina Pokrant, María Belén Vargas, María José Navarrete, Karina Yévenes, Lina Trincado, Paula Cortés, Aldo Maddaleno, Lisette Lapierre and Javiera Cornejo
Antibiotics 2023, 12(12), 1652; https://doi.org/10.3390/antibiotics12121652 - 23 Nov 2023
Cited by 4 | Viewed by 3250
Abstract
Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of [...] Read more.
Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby–Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Veterinary Science)
Show Figures

Figure 1

11 pages, 875 KiB  
Article
Prevalence and Molecular Characterization of Shiga Toxin-Producing Escherichia coli from Food and Clinical Samples
by Khulud Alotaibi and Ashraf A. Khan
Pathogens 2023, 12(11), 1302; https://doi.org/10.3390/pathogens12111302 - 31 Oct 2023
Cited by 4 | Viewed by 2355
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the most prominent food-borne pathogens in humans. The current study aims to detect and to analyze the virulence factors, antibiotic resistance, and plasmid profiles for forty-six STEC strains, isolated from clinical and food strains. Pulsed-field [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) is one of the most prominent food-borne pathogens in humans. The current study aims to detect and to analyze the virulence factors, antibiotic resistance, and plasmid profiles for forty-six STEC strains, isolated from clinical and food strains. Pulsed-field gel electrophoresis (PFGE) was used to determine the genetic relatedness between different serotypes and sources of samples. The clinical samples were found to be resistant to Nb (100%), Tet (100%), Amp (20%), SXT (15%), and Kan (15%) antibiotics. In contrast, the food strains were found to be resistant to Nb (100%), Tet (33%), Amp (16.6%), and SXT (16.6%) antibiotics. The PFGE typing of the forty-six isolates was grouped into more than ten clusters, each with a similarity between 30% and 70%. Most of the isolates were found positive for more than five virulence genes (eae, hlyA, stx1, stx2, stx2f, stx2c, stx2e, stx2, nelB, pagC, sen, toxB, irp, efa, and efa1). All the isolates carried different sizes of the plasmids. The isolates were analyzed for plasmid replicon type by PCR, and 72.5% of the clinical isolates were found to contain X replicon-type plasmid, 50% of the clinical isolates contained FIB replicon-type plasmid, and 17.5% of the clinical isolates contained Y replicon-type plasmid. Three clinical isolates contained both I1 and Hi1 replicon-type plasmid. Only two food isolates contained B/O and W replicon-type plasmid. These results indicate that STEC strains have diverse clonal populations among food and clinical strains that are resistant to several antimicrobials. In conclusion, our findings indicate that food isolates of STEC strains harbor virulence, antimicrobial resistance, plasmid replicon typing determinants like those of other STEC strains from clinical strains. These results suggest that these strains are unique and may contribute to the virulence of the isolates. Therefore, surveillance and characterization of STEC strains can provide useful information about the prevalence of STEC in food and clinical sources. Furthermore, it will help to identify STEC serotypes that are highly pathogenic to humans and may emerge as a threat to public health. Full article
Show Figures

Figure 1

18 pages, 4136 KiB  
Article
Genetic Diversity and Antimicrobial Resistance of Extraintestinal E. coli Populations Pre- and Post-Antimicrobial Therapy on Broilers Affected by Colisepticemia
by Frédérique Pasquali, Cecilia Crippa, Antonio Parisi, Alex Lucchi, Lucia Gambi, Alessandra Merlotti, Daniel Remondini, Maurizio Stonfer and Gerardo Manfreda
Animals 2023, 13(16), 2590; https://doi.org/10.3390/ani13162590 - 11 Aug 2023
Cited by 1 | Viewed by 1478
Abstract
The aim of the present study was to investigate the genetic diversity and antimicrobial resistance (AMR) of E. coli during enrofloxacin therapy in broilers affected by colisepticemia. Three unrelated farms with ongoing colibacillosis outbreaks were sampled at day 1 before treatment and at [...] Read more.
The aim of the present study was to investigate the genetic diversity and antimicrobial resistance (AMR) of E. coli during enrofloxacin therapy in broilers affected by colisepticemia. Three unrelated farms with ongoing colibacillosis outbreaks were sampled at day 1 before treatment and at days 5, 10 and 24 post-treatment. A total of 179 E. coli isolates were collected from extraintestinal organs and submitted to serotyping, PFGE and the minimum inhibitory concentration (MIC) against enrofloxacin. PFGE clusters shifted from 3–6 at D1 to 10–16 at D5, D10 and D24, suggesting an increased population diversity after the treatment. The majority of strains belonged to NT or O78 and to ST117 or ST23. PFGE results were confirmed with SNP calling: no persistent isolates were identified. An increase in resistance to fluoroquinolones in E. coli isolates was observed along the treatment. Resistome analyses revealed qnrB19 and qnrS1 genes along with mutations in the gyrA, parC and parE genes. Interestingly, despite a fluoroquinolone selective pressure, qnr-carrying plasmids did not persist. On the contrary, two conjugative AMR plasmid clusters (AB233 and AA474) harboring AMR genes other than qnr were persistent since they were identified in both D1 and D10 genomes in two farms. Further studies should be performed in order to confirm plasmid persistence not associated (in vivo) to antimicrobial selective pressure. Full article
Show Figures

Figure 1

19 pages, 2619 KiB  
Article
Escherichia albertii as a Potential Enteropathogen in the Light of Epidemiological and Genomic Studies
by Katarzyna Leszczyńska, Izabela Święcicka, Tamara Daniluk, Dariusz Lebensztejn, Sylwia Chmielewska-Deptuła, Dorota Leszczyńska, Jan Gawor and Małgorzata Kliber
Genes 2023, 14(7), 1384; https://doi.org/10.3390/genes14071384 - 30 Jun 2023
Cited by 5 | Viewed by 2474
Abstract
Escherichia albertii is a new enteropathogen of humans and animals. The aim of the study was to assess the prevalence and pathogenicity of E. albertii strains isolated in northeastern Poland using epidemiological and genomic studies. In 2015–2018, a total of 1154 fecal samples [...] Read more.
Escherichia albertii is a new enteropathogen of humans and animals. The aim of the study was to assess the prevalence and pathogenicity of E. albertii strains isolated in northeastern Poland using epidemiological and genomic studies. In 2015–2018, a total of 1154 fecal samples from children and adults, 497 bird droppings, 212 food samples, 92 water samples, and 500 lactose-negative E. coli strains were tested. A total of 42 E. albertii strains were isolated. The PCR method was suitable for their rapid identification. In total, 33.3% of E. albertii isolates were resistant to one antibiotic, and 16.7% to two. Isolates were sensitive to cefepime, imipenem, levofloxacin, gentamicin, trimethoprim/sulfamethoxazole, and did not produce ESBL β-lactamases. High genetic variability of E. albertii has been demonstrated. In the PFGE method, 90.5% of the strains had distinct pulsotypes. In MLST typing, 85.7% of strains were assigned distinct sequence types (STs), of which 64% were novel ST types. Cytolethal distending toxin (CDT) and Paa toxin genes were found in 100% of E. albertii isolates. Genes encoding toxins, IbeA, CdtB type 2, Tsh and Shiga (Stx2f), were found in 26.2%, 9.7%, 1.7%, and 0.4% of E. albertii isolates, respectively. The chromosome size of the tested strains ranged from 4,573,338 to 5,141,010 bp (average 4,784,003 bp), and at least one plasmid was present in all strains. The study contributes to a more accurate assessment of the genetic diversity of E. albertii and the potential threat it poses to public health. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1108 KiB  
Article
Shiga Toxin-Producing Escherichia coli (STEC) Associated with Calf Mortality in Uruguay
by Magalí Fernández, María Laura Casaux, Martín Fraga, Rafael Vignoli, Inés Bado, Pablo Zunino and Ana Umpiérrez
Microorganisms 2023, 11(7), 1704; https://doi.org/10.3390/microorganisms11071704 - 29 Jun 2023
Cited by 5 | Viewed by 2248
Abstract
In Uruguay, the mortality of dairy calves due to infectious diseases is high. Escherichia coli is a natural inhabitant of the intestinal microbiota, but can cause several infections. The aim of the work was to characterize E. coli isolates from intestinal and extraintestinal [...] Read more.
In Uruguay, the mortality of dairy calves due to infectious diseases is high. Escherichia coli is a natural inhabitant of the intestinal microbiota, but can cause several infections. The aim of the work was to characterize E. coli isolates from intestinal and extraintestinal origin of dead newborn calves. Using PCR, virulence gene characteristics of pathogenic E. coli were searched. The pathogenic E. coli were molecularly characterized and the phylogroup, serogroup and the Stx subtype were determined. Antibiotic susceptibility was determined using the Kirby–Bauer disk diffusion method and plasmid-mediated quinolone resistance (PMQR) genes with PCR. Finally, clonal relationships were inferred using PFGE. Gene characteristics of the Shiga toxin-producing E. coli (STEC), Enteropathogenic E. coli (EPEC) and Necrotoxigenic E. coli (NTEC) were identified. The prevalence of the iucD, afa8E, f17, papC, stx1, eae and ehxA genes was high and no f5, f41, saa, sfaDE, cdtIV, lt, sta or stx2 were detected. The prevalence of STEC gene stx1 in the dead calves stood out and was higher compared with previous studies conducted in live calves, and STEC LEE+ (Enterohemorrhagic E. coli (EHEC)) isolates with stx1/eae/ehxA genotypes were more frequently identified in the intestinal than in the extraintestinal environment. E. coli isolates were assigned to phylogroups A, B1, D and E, and some belonged to the O111 serogroup. stx1a and stx1c subtypes were determined in STEC. A high prevalence of multi-resistance among STEC and qnrB genes was determined. The PFGE showed a high diversity of pathogenic strains with similar genetic profiles. It can be speculated that EHEC (stx1/eae/ehxA) could play an important role in mortality. The afa8E, f17G1 and papC genes could also have a role in calf mortality. Multidrug resistance defies disease treatment and increases the risk of death, while the potential transmissibility of genes to other species constitutes a threat to public health. Full article
Show Figures

Figure 1

14 pages, 5409 KiB  
Article
F18:A-:B1 Plasmids Carrying blaCTX-M-55 Are Prevalent among Escherichia coli Isolated from Duck–Fish Polyculture Farms
by Li-Juan Zhang, Jin-Tao Yang, Hai-Xin Chen, Wen-Zi Liu, Yi-Li Ding, Rui-Ai Chen, Rong-Min Zhang and Hong-Xia Jiang
Antibiotics 2023, 12(6), 961; https://doi.org/10.3390/antibiotics12060961 - 25 May 2023
Cited by 5 | Viewed by 2221
Abstract
We determined the prevalence and molecular characteristics of blaCTX-M-55-positive Escherichia coli (E. coli) isolated from duck–fish polyculture farms in Guangzhou, China. A total of 914 E. coli strains were isolated from 2008 duck and environmental samples (water, soil and [...] Read more.
We determined the prevalence and molecular characteristics of blaCTX-M-55-positive Escherichia coli (E. coli) isolated from duck–fish polyculture farms in Guangzhou, China. A total of 914 E. coli strains were isolated from 2008 duck and environmental samples (water, soil and plants) collected from four duck fish polyculture farms between 2017 and 2019. Among them, 196 strains were CTX-M-1G-positive strains by PCR, and 177 (90%) blaCTX-M-1G-producing strains were blaCTX-M-55-positive. MIC results showed that the 177 blaCTX-M-55-positive strains were highly resistant to ciprofloxacin, ceftiofur and florfenicol, with antibiotic resistance rates above 95%. Among the 177 strains, 37 strains carrying the F18:A-:B1 plasmid and 10 strains carrying the F33:A-:B- plasmid were selected for further study. Pulse field gel electrophoresis (PFGE) combined with S1-PFGE, Southern hybridization and whole-genome sequencing (WGS) analysis showed that both horizontal transfer and clonal spread contributed to dissemination of the blaCTX-M-55 gene among the E. coli. blaCTX-M-55 was located on different F18:A-:B1 plasmids with sizes between ~76 and ~173 kb. In addition, the presence of blaCTX-M-55 with other resistance genes (e.g., tetA, floR, fosA3, blaTEM, aadA5 CmlA and InuF) on the same F18:A-:B1 plasmid may result in co-selection of resistance determinants and accelerate the dissemination of blaCTX-M-55 in E. coli. In summary, the F18:A-:B1 plasmid may play an important role in the transmission of blaCTX-M-55 in E. coli, and the continuous monitoring of the prevalence and transmission mechanism of blaCTX-M-55 in duck–fish polyculture farms remains important. Full article
Show Figures

Figure 1

13 pages, 680 KiB  
Article
Occurrence of High-Risk Clonal Lineages ST58, ST69, ST224, and ST410 among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Free-Range Chickens (Gallus gallus domesticus) in a Rural Region in Tunisia
by Saloua Benlabidi, Anis Raddaoui, Sana Lengliz, Sarah Cheriet, Paul Hynds, Wafa Achour, Taoufik Ghrairi and Mohamed Salah Abbassi
Genes 2023, 14(4), 875; https://doi.org/10.3390/genes14040875 - 6 Apr 2023
Cited by 11 | Viewed by 2869
Abstract
Antimicrobial-resistant Escherichia coli isolates have emerged in various ecologic compartments and evolved to spread globally. We sought to (1.) investigate the occurrence of ESBL-producing E. coli (ESBL-Ec) in feces from free-range chickens in a rural region and (2.) characterize the genetic background of [...] Read more.
Antimicrobial-resistant Escherichia coli isolates have emerged in various ecologic compartments and evolved to spread globally. We sought to (1.) investigate the occurrence of ESBL-producing E. coli (ESBL-Ec) in feces from free-range chickens in a rural region and (2.) characterize the genetic background of antimicrobial resistance and the genetic relatedness of collected isolates. Ninety-five feces swabs from free-range chickens associated with two households (House 1/House 2) in a rural region in northern Tunisia were collected. Samples were screened to recover ESBL-Ec, and collected isolates were characterized for phenotype/genotype of antimicrobial resistance, integrons, and molecular typing (pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST)). Overall, 47 ESBL-Ec were identified, with the following genes detected: 35 blaCTX-M-1, 5 blaCTX-M-55, 5 blaCTX-M-15, 1 blaSHV-2, and 1 blaSHV-12. Resistance to fluoroquinolones, tetracycline, sulfonamides, and colistin was encoded by aac(6′)-Ib-cr (n = 21), qnrB (n = 1), and qnrS (n = 2); tetA (n = 17)/tetB (n = 26); sul1 (n = 29)/sul2 (n = 18); and mcr-2 (n = 2) genes, respectively. PFGE and MLST identified genetic homogeneity of isolates in House 1; however, isolates from House 2 were heterogeneous. Notably, among nine identified sequence types, ST58, ST69, ST224, and ST410 belong to pandemic high-risk clonal lineages associated with extrapathogenic E. coli. Minor clones belonging to ST410 and ST471 were shared by chickens from both households. The virulence genes fyuA, fimH, papGIII, and iutA were detected in 35, 47, 17, and 23 isolates, respectively. Findings indicate a high occurrence of ESBL-Ec in free-range chickens and highlight the occurrence of pandemic zoonotic clones. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop