Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Drosophila male meiosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9375 KiB  
Article
The Loss of Tafazzin Transacetylase Activity Is Sufficient to Drive Testicular Infertility
by Paige L. Snider, Elizabeth A. Sierra Potchanant, Catalina Matias, Donna M. Edwards, Jeffrey J. Brault and Simon J. Conway
J. Dev. Biol. 2024, 12(4), 32; https://doi.org/10.3390/jdb12040032 - 26 Nov 2024
Cited by 1 | Viewed by 1573
Abstract
Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility [...] Read more.
Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several Tafazzin (Taz) mouse alleles and in a Drosophila mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived D75H point-mutant knockin mouse (TazPM) allele that expresses a mutant protein lacking transacetylase activity. Neonatal and adult TazPM testes were hypoplastic, and their epididymis lacked sperm. Histology and biomarker analysis revealed TazPM spermatogenesis is arrested prior to sexual maturation due to an inability to undergo meiosis and the generation of haploid spermatids. Moreover, TazPM testicular mitochondria were found to be structurally abnormal, and there was an elevation of p53-dependent apoptosis within TazPM seminiferous tubules. Immunoblot analysis revealed that TazPM gamete genome integrity was compromised, and both histone γ-H2Ax and Nucleoside diphosphate kinase-5 protein expression were absent in juvenile TazPM testes when compared to controls. We demonstrate that Taz-mediated transacetylase activity is required within mitochondria for normal spermatogenesis, and its absence results in meiotic arrest. We hypothesize that elevated TazPM spermatogonial apoptosis causes azoospermia and complete infertility. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Developmental Biology 2025)
Show Figures

Figure 1

18 pages, 4866 KiB  
Article
Deficiency of ValRS-m Causes Male Infertility in Drosophila melanogaster
by Xin Duan, Haolin Wang, Zhixian Cao, Na Su, Yufeng Wang and Ya Zheng
Int. J. Mol. Sci. 2024, 25(13), 7489; https://doi.org/10.3390/ijms25137489 - 8 Jul 2024
Viewed by 1855
Abstract
Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene [...] Read more.
Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila. Full article
Show Figures

Figure 1

15 pages, 9853 KiB  
Article
Adar Regulates Drosophila melanogaster Spermatogenesis via Modulation of BMP Signaling
by Qian Zhang, Xinxin Fan, Fang Fu, Yuedan Zhu, Guanzheng Luo and Haiyang Chen
Int. J. Mol. Sci. 2024, 25(11), 5643; https://doi.org/10.3390/ijms25115643 - 22 May 2024
Viewed by 1869
Abstract
The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet [...] Read more.
The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 3165 KiB  
Article
Essential Role of COPII Proteins in Maintaining the Contractile Ring Anchoring to the Plasma Membrane during Cytokinesis in Drosophila Male Meiosis
by Yoshiki Matsuura, Kana Kaizuka and Yoshihiro H. Inoue
Int. J. Mol. Sci. 2024, 25(8), 4526; https://doi.org/10.3390/ijms25084526 - 20 Apr 2024
Cited by 1 | Viewed by 2094
Abstract
Coatomer Protein Complex-II (COPII) mediates anterograde vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Here, we report that the COPII coatomer complex is constructed dependent on a small GTPase, Sar1, in spermatocytes before and during Drosophila male meiosis. COPII-containing foci [...] Read more.
Coatomer Protein Complex-II (COPII) mediates anterograde vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Here, we report that the COPII coatomer complex is constructed dependent on a small GTPase, Sar1, in spermatocytes before and during Drosophila male meiosis. COPII-containing foci co-localized with transitional endoplasmic reticulum (tER)-Golgi units. They showed dynamic distribution along astral microtubules and accumulated around the spindle pole, but they were not localized on the cleavage furrow (CF) sites. The depletion of the four COPII coatomer subunits, Sec16, or Sar1 that regulate COPII assembly resulted in multinucleated cell production after meiosis, suggesting that cytokinesis failed in both or either of the meiotic divisions. Although contractile actomyosin and anilloseptin rings were formed once plasma membrane ingression was initiated, they were frequently removed from the plasma membrane during furrowing. We explored the factors conveyed toward the CF sites in the membrane via COPII-mediated vesicles. DE-cadherin-containing vesicles were formed depending on Sar1 and were accumulated in the cleavage sites. Furthermore, COPII depletion inhibited de novo plasma membrane insertion. These findings suggest that COPII vesicles supply the factors essential for the anchoring and/or constriction of the contractile rings at cleavage sites during male meiosis in Drosophila. Full article
(This article belongs to the Special Issue Cell Division: A Focus on Molecular Mechanisms)
Show Figures

Graphical abstract

23 pages, 6746 KiB  
Article
Cyclin B Export to the Cytoplasm via the Nup62 Subcomplex and Subsequent Rapid Nuclear Import Are Required for the Initiation of Drosophila Male Meiosis
by Kanta Yamazoe and Yoshihiro H. Inoue
Cells 2023, 12(22), 2611; https://doi.org/10.3390/cells12222611 - 11 Nov 2023
Cited by 2 | Viewed by 2111
Abstract
The cyclin-dependent kinase 1 (Cdk1)–cyclin B (CycB) complex plays critical roles in cell-cycle regulation. Before Drosophila male meiosis, CycB is exported from the nucleus to the cytoplasm via the nuclear porin 62kD (Nup62) subcomplex of the nuclear pore complex. When this export is [...] Read more.
The cyclin-dependent kinase 1 (Cdk1)–cyclin B (CycB) complex plays critical roles in cell-cycle regulation. Before Drosophila male meiosis, CycB is exported from the nucleus to the cytoplasm via the nuclear porin 62kD (Nup62) subcomplex of the nuclear pore complex. When this export is inhibited, Cdk1 is not activated, and meiosis does not initiate. We investigated the mechanism that controls the cellular localization and activation of Cdk1. Cdk1–CycB continuously shuttled into and out of the nucleus before meiosis. Overexpression of CycB, but not that of CycB with nuclear localization signal sequences, rescued reduced cytoplasmic CycB and inhibition of meiosis in Nup62-silenced cells. Full-scale Cdk1 activation occurred in the nucleus shortly after its rapid nuclear entry. Cdk1-dependent centrosome separation did not occur in Nup62-silenced cells, whereas Cdk1 interacted with Cdk-activating kinase and Twine/Cdc25C in the nuclei of Nup62-silenced cells, suggesting the involvement of another suppression mechanism. Silencing of roughex rescued Cdk1 inhibition and initiated meiosis. Nuclear export of Cdk1 ensured its escape from inhibition by a cyclin-dependent kinase inhibitor. The complex re-entered the nucleus via importin β at the onset of meiosis. We propose a model regarding the dynamics and activation mechanism of Cdk1–CycB to initiate male meiosis. Full article
(This article belongs to the Special Issue Nuclear Pore Complex in Nanomedicine 2.0)
Show Figures

Graphical abstract

13 pages, 8260 KiB  
Article
Knockdown of DOM/Tip60 Complex Subunits Impairs Male Meiosis of Drosophila melanogaster
by Yuri Prozzillo, Gaia Fattorini, Diego Ferreri, Manuela Leo, Patrizio Dimitri and Giovanni Messina
Cells 2023, 12(10), 1348; https://doi.org/10.3390/cells12101348 - 9 May 2023
Cited by 4 | Viewed by 2527
Abstract
ATP-dependent chromatin remodeling complexes are involved in nucleosome sliding and eviction and/or the incorporation of histone variants into chromatin to facilitate several cellular and biological processes, including DNA transcription, replication and repair. The DOM/TIP60 chromatin remodeling complex of Drosophila melanogaster contains 18 subunits, [...] Read more.
ATP-dependent chromatin remodeling complexes are involved in nucleosome sliding and eviction and/or the incorporation of histone variants into chromatin to facilitate several cellular and biological processes, including DNA transcription, replication and repair. The DOM/TIP60 chromatin remodeling complex of Drosophila melanogaster contains 18 subunits, including the DOMINO (DOM), an ATPase that catalyzes the exchange of the canonical H2A with its variant (H2A.V), and TIP60, a lysine-acetyltransferase that acetylates H4, H2A and H2A.V histones. In recent decades, experimental evidence has shown that ATP-dependent chromatin remodeling factors, in addition to their role in chromatin organization, have a functional relevance in cell division. In particular, emerging studies suggested the direct roles of ATP-dependent chromatin remodeling complex subunits in controlling mitosis and cytokinesis in both humans and D. melanogaster. However, little is known about their possible involvement during meiosis. The results of this work show that the knockdown of 12 of DOM/TIP60 complex subunits generates cell division defects that, in turn, cause total/partial sterility in Drosophila males, providing new insights into the functions of chromatin remodelers in cell division control during gametogenesis. Full article
Show Figures

Figure 1

10 pages, 1296 KiB  
Review
A Brief History of Drosophila (Female) Meiosis
by Jessica E. Fellmeth and Kim S. McKim
Genes 2022, 13(5), 775; https://doi.org/10.3390/genes13050775 - 27 Apr 2022
Cited by 7 | Viewed by 3843
Abstract
Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a [...] Read more.
Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a spindle to segregate the chromosomes. With a variety of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis. This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila oocytes are also a good model for mammalian meiosis because of biological similarities such as long pauses between meiotic stages and the absence of centrosomes during the meiotic divisions. Full article
(This article belongs to the Special Issue Genetics of Meiotic Chromosome Dynamics)
Show Figures

Figure 1

27 pages, 2029 KiB  
Review
Microtubule and Actin Cytoskeletal Dynamics in Male Meiotic Cells of Drosophila melanogaster
by Anna Frappaolo, Roberto Piergentili and Maria Grazia Giansanti
Cells 2022, 11(4), 695; https://doi.org/10.3390/cells11040695 - 16 Feb 2022
Cited by 10 | Viewed by 5449
Abstract
Drosophila dividing spermatocytes offer a highly suitable cell system in which to investigate the coordinated reorganization of microtubule and actin cytoskeleton systems during cell division of animal cells. Like male germ cells of mammals, Drosophila spermatogonia and spermatocytes undergo cleavage furrow ingression during [...] Read more.
Drosophila dividing spermatocytes offer a highly suitable cell system in which to investigate the coordinated reorganization of microtubule and actin cytoskeleton systems during cell division of animal cells. Like male germ cells of mammals, Drosophila spermatogonia and spermatocytes undergo cleavage furrow ingression during cytokinesis, but abscission does not take place. Thus, clusters of primary and secondary spermatocytes undergo meiotic divisions in synchrony, resulting in cysts of 32 secondary spermatocytes and then 64 spermatids connected by specialized structures called ring canals. The meiotic spindles in Drosophila males are substantially larger than the spindles of mammalian somatic cells and exhibit prominent central spindles and contractile rings during cytokinesis. These characteristics make male meiotic cells particularly amenable to immunofluorescence and live imaging analysis of the spindle microtubules and the actomyosin apparatus during meiotic divisions. Moreover, because the spindle assembly checkpoint is not robust in spermatocytes, Drosophila male meiosis allows investigating of whether gene products required for chromosome segregation play additional roles during cytokinesis. Here, we will review how the research studies on Drosophila male meiotic cells have contributed to our knowledge of the conserved molecular pathways that regulate spindle microtubules and cytokinesis with important implications for the comprehension of cancer and other diseases. Full article
(This article belongs to the Special Issue Cytoskeleton Dynamics during Cell Division)
Show Figures

Figure 1

30 pages, 4278 KiB  
Article
Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders
by Stefano Sechi, Angela Karimpour-Ghahnavieh, Anna Frappaolo, Laura Di Francesco, Roberto Piergentili, Eugenia Schininà, Pier Paolo D’Avino and Maria Grazia Giansanti
Cells 2021, 10(9), 2336; https://doi.org/10.3390/cells10092336 - 6 Sep 2021
Cited by 9 | Viewed by 4515
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor [...] Read more.
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases. Full article
(This article belongs to the Collection Feature Papers in ‘Organelle Function’)
Show Figures

Figure 1

8 pages, 1875 KiB  
Communication
The Organization of the Golgi Structures during Drosophila Male Meiosis Requires the Citrate Lyase ATPCL
by Patrizia Morciano, Maria Laura Di Giorgio, Liliana Tullo and Giovanni Cenci
Int. J. Mol. Sci. 2021, 22(11), 5745; https://doi.org/10.3390/ijms22115745 - 27 May 2021
Cited by 1 | Viewed by 2404
Abstract
During spermatogenesis, the Golgi apparatus serves important roles including the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. We have previously demonstrated that D. melanogaster ATP-dependent Citrate Lyase (ATPCL) is required for spindle organization, cytokinesis, and fusome assembly during [...] Read more.
During spermatogenesis, the Golgi apparatus serves important roles including the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. We have previously demonstrated that D. melanogaster ATP-dependent Citrate Lyase (ATPCL) is required for spindle organization, cytokinesis, and fusome assembly during male meiosis, mainly due to is activity on fatty acid biosynthesis. Here, we show that depletion of DmATPCL also affects the organization of acrosome and suggest a role for this enzyme in the assembly of Golgi-derived structures during Drosophila spermatogenesis. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sperm Activation)
Show Figures

Figure 1

21 pages, 4041 KiB  
Article
Nuclear Export of Cyclin B Mediated by the Nup62 Complex Is Required for Meiotic Initiation in Drosophila Males
by Ryotaro Okazaki, Kanta Yamazoe and Yoshihiro H. Inoue
Cells 2020, 9(2), 270; https://doi.org/10.3390/cells9020270 - 22 Jan 2020
Cited by 12 | Viewed by 5010
Abstract
Background: The central channel of the nuclear pore complex plays an important role in the selective transport of proteins between the nucleus and cytoplasm. Previous studies have demonstrated that the depletion of the Nup62 complex, constructing the nuclear pore channel in premeiotic Drosophila [...] Read more.
Background: The central channel of the nuclear pore complex plays an important role in the selective transport of proteins between the nucleus and cytoplasm. Previous studies have demonstrated that the depletion of the Nup62 complex, constructing the nuclear pore channel in premeiotic Drosophila cells, resulted in the absence of meiotic cells. We attempted to understand the mechanism underlying the cell cycle arrest before meiosis. Methods: We induced dsRNAs against the nucleoporin mRNAs using the Gal4/UAS system in Drosophila. Results: The cell cycle of the Nup62-depleted cells was arrested before meiosis without CDK1 activation. The ectopic over-expression of CycB, but not constitutively active CDK1, resulted in partial rescue from the arrest. CycB continued to exist in the nuclei of Nup62-depleted cells and cells depleted of exportin encoded by emb. Protein complexes containing CycB, Emb, and Nup62 were observed in premeiotic spermatocytes. CycB, which had temporally entered the nucleus, was associated with Emb, and the complex was transported back to the cytoplasm through the central channel, interacting with the Nup62 complex. Conclusion: We proposed that CycB is exported with Emb through the channel interacting with the Nup62 complex before the onset of meiosis. The nuclear export ensures the modification and formation of sufficient CycB-CDK1 in the cytoplasm. Full article
(This article belongs to the Special Issue Nuclear Pore Complex in Nanomedicine)
Show Figures

Figure 1

12 pages, 1556 KiB  
Communication
The Drosophila Citrate Lyase Is Required for Cell Division during Spermatogenesis
by Maria Laura Di Giorgio, Patrizia Morciano, Elisabetta Bucciarelli, Antonella Porrazzo, Francesca Cipressa, Sara Saraniero, Diana Manzi, Yikang S. Rong and Giovanni Cenci
Cells 2020, 9(1), 206; https://doi.org/10.3390/cells9010206 - 14 Jan 2020
Cited by 5 | Viewed by 3460
Abstract
The Drosophila melanogaster DmATPCL gene encodes for the human ATP Citrate Lyase (ACL) ortholog, a metabolic enzyme that from citrate generates glucose-derived Acetyl-CoA, which fuels central biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine, and the acetylation of proteins [...] Read more.
The Drosophila melanogaster DmATPCL gene encodes for the human ATP Citrate Lyase (ACL) ortholog, a metabolic enzyme that from citrate generates glucose-derived Acetyl-CoA, which fuels central biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine, and the acetylation of proteins and histones. We had previously reported that, although loss of Drosophila ATPCL reduced levels of Acetyl-CoA, unlike its human counterpart, it does not affect global histone acetylation and gene expression, suggesting that its role in histone acetylation is either partially redundant in Drosophila or compensated by alternative pathways. Here, we describe that depletion of DmATPCL affects spindle organization, cytokinesis, and fusome assembly during male meiosis, revealing an unanticipated role for DmATPCL during spermatogenesis. We also show that DmATPCL mutant meiotic phenotype is in part caused by a reduction of fatty acids, but not of triglycerides or cholesterol, indicating that DmATPCL-derived Acetyl-CoA is predominantly devoted to the biosynthesis of fatty acids during spermatogenesis. Collectively, our results unveil for the first time an involvement for DmATPCL in the regulation of meiotic cell division, which is likely conserved in human cells. Full article
Show Figures

Figure 1

Back to TopTop