Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Dendrobium nobile Lindl.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6558 KiB  
Article
Integrated Omics Reveal Dendrobium nobile Lindl.’s Anti-Diabetic Mechanisms via Arginine/Proline and Glycerophospholipid Pathways
by Zhibo Wang, Xian Wang, Sifan Guo, Ying Cai, Dandan Xie, Yujuan Wang, Aihua Zhang, Jun Dai and Shi Qiu
Pharmaceuticals 2025, 18(7), 1061; https://doi.org/10.3390/ph18071061 - 18 Jul 2025
Viewed by 287
Abstract
Background/Objectives: Dendrobium nobile Lindl. (DNL), a traditional dietary supplement, exhibits therapeutic potential for type 2 diabetes mellitus (T2DM), yet its mechanisms remain unclear. Methods: T2DM was induced in db/db mice. DNL (10 g/kg/d) or metformin (65 mg/kg/d) was administered [...] Read more.
Background/Objectives: Dendrobium nobile Lindl. (DNL), a traditional dietary supplement, exhibits therapeutic potential for type 2 diabetes mellitus (T2DM), yet its mechanisms remain unclear. Methods: T2DM was induced in db/db mice. DNL (10 g/kg/d) or metformin (65 mg/kg/d) was administered for 4 weeks. This study integrated pharmacodynamic evaluation and multi-omics to elucidate DNL’s anti-diabetic effects in db/db mice. Results: DNL intervention significantly ameliorated T2DM phenotypes, reducing hyperglycemia, insulin resistance, and renal dysfunction. Metabolomics analysis identified 39 differential metabolites (19 upregulated, 20 downregulated) linked to citrate cycle, oxidative phosphorylation, and glycerophospholipid metabolism, while proteomics revealed 113 differentially expressed proteins, with multi-omics integration highlighting DNL’s modulation of three proteins (Ckm, Ache, Selenbp1) and four metabolites (4-guanidinobutanoic acid, phosphorylcholine, homocysteine, succinic acid) across arginine/proline metabolism, glycerophospholipid metabolism, and sulfur metabolism. Pathway analysis demonstrated DNL’s restoration of dysregulated processes, including inflammation suppression via NF-κB and PI3K-Akt pathways, enhanced insulin sensitivity through glycerophospholipid balance, and mitigation of oxidative stress via sulfur metabolism. Key correlations between metabolites and proteins underscored DNL’s multi-target action. Conclusions: These findings systematically decode therapeutic mechanisms of Dendrobium nobile Lindl., emphasizing its role in rectifying metabolic disorders and inflammatory signaling, thereby providing a molecular basis for its clinical application in T2DM management. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 2983 KiB  
Article
Study on Differences in Structure and Anti-Inflammatory Activity of Polysaccharides in Five Species of Dendrobium
by Hua Zhu, Hui-Wen Zhang, Jia-Hao Fan, Si-Si Jia, Xin Yi, Zi-Wei Han, Ren-Lei Wang, Hong-Wei Qiu and Guang-Ping Lv
Polymers 2025, 17(9), 1164; https://doi.org/10.3390/polym17091164 - 24 Apr 2025
Cited by 1 | Viewed by 513
Abstract
Dendrobium is a famous edible and medicinal plants, and polysaccharides are their main bioactive components. Polysaccharides from five species, namely, DO (Dendrobium officinale Kimura et Migo), DH (Dendrobium huoshanense C. Z. Tang et S. J. Cheng), DNL (Dendrobium nobile Lindl.), [...] Read more.
Dendrobium is a famous edible and medicinal plants, and polysaccharides are their main bioactive components. Polysaccharides from five species, namely, DO (Dendrobium officinale Kimura et Migo), DH (Dendrobium huoshanense C. Z. Tang et S. J. Cheng), DNL (Dendrobium nobile Lindl.), DFH (Dendrobium fimbriatum Hook.), and DCL (Dendrobium chrysanthum Lindl.), were compared based on molecular weight (Mw), monosaccharide composition, and glycosidic bond types. The results showed that Dendrobium polysaccharides (DPs) contain relatively simple compositional monosaccharides and mainly consist of mannose (Man) and glucose (Glc), along with small amounts of arabinose (Ara), xylose (Xyl), and galactose (Gal). The Am/Ag (the ratio of Man to Glc) values in DO, DH, and DNL polysaccharides were 3.23, 3.81, and 3.88, while those in DFH and DCL were 0.45 and 0.81. DPs are mainly composed of →4)Manp(1→ and →4)Glcp(1→, but their molar ratios were different. →4)Manp(1→ and →4)Glcp(1→ ratios were 2.85, 2.92, 1.50, 1.45, and 1.05 in DO, DH, DNL, DFH, and DCL, respectively. Hierarchical cluster analysis (HCA) showed that there were significant differences in structural information, especially in glycosidic bond types and proportions. DH, DO, and DCL were clustered into different groups based on glycosidic bond types and proportions, respectively. Moreover, the five species of Dendrobium could significantly inhibit NO production and apoptosis induced by LPS in RAW 264.7, especially DH. The results of a correlation analysis of structure and anti-inflammatory activity showed that polysaccharides with a high →4)Manp(1→/→4)Glcp(1→ ratio and a molecular weight distribution between 3.343 × 105 Da and 13.540 × 105 Da had better anti-inflammatory activity. The results indicated that the quality evaluation of Dendrobium in clinical applications should investigate molecular weight and the composition of the glycoside bond types and proportions to ensure the consistency of curative effects. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 2454 KiB  
Article
Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila
by Wei-Hsiang Hsu, Chanikan Sangkhathat, Mei-Kuang Lu, Wei-Yong Lin, Hsin-Ping Liu and Yun-Lian Lin
Antioxidants 2024, 13(5), 603; https://doi.org/10.3390/antiox13050603 - 14 May 2024
Cited by 5 | Viewed by 2574
Abstract
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese [...] Read more.
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese medicine (TCM) for nourishing yin, clearing heat, and brightening the eyes. The polysaccharide is one of the major components in D. nobile. However, the effect on ocular cells remains unclear. This study aimed to investigate whether the polysaccharide from D. nobile can protect the eyes from blue light-induced injury. A crude (DN-P) and a partially purified polysaccharide (DN-PP) from D. nobile were evaluated for their protective effects on blue light-induced damage in ARPE-19 and 661W cells. The in vivo study investigated the electroretinographic response and the expression of phototransduction-related genes in the retinas of a Drosophila model. The results showed that DN-P and DN-PP could improve blue light-induced damage in ARPE-19 and 661W cells, including cell viability, antioxidant activity, reactive oxygen species (ROS)/superoxide production, and reverse opsin 3 protein expression in a concentration-dependent manner. The in vivo study indicated that DN-P could alleviate eye damage and reverse the expression of phototransduction-related genes, including ninaE, norpA, Gαq, Gβ76C, Gγ30A, TRP, and TRPL, in a dose-dependent manner in blue light-exposed Drosophila. In conclusion, this is the first report demonstrating that D. nobile polysaccharide pretreatment can protect retinal cells and retinal photoreceptors from blue light-induced damage. These results provide supporting evidence for the beneficial potential of D. nobile in preventing blue light-induced eye damage and improving eyesight. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

15 pages, 3664 KiB  
Article
Structure of Polysaccharide from Dendrobium nobile Lindl. and Its Mode of Action on TLR4 to Exert Immunomodulatory Effects
by Lian Li, Hang Chen, Guichun Huang, Yiyi Lv, Li Yao, Zhongxia Guo, Shuyi Qiu, Xiaodan Wang and Chaoyang Wei
Foods 2024, 13(9), 1356; https://doi.org/10.3390/foods13091356 - 28 Apr 2024
Cited by 7 | Viewed by 1648
Abstract
Dendrobium nobile Lindl. polysaccharide (DNP1) showed good anti-inflammatory activity in our previous study. In this study, the structural characterization of DNP1 and its mode of action on TLR4 were investigated. Structural characterization suggested that DNP1 was a linear glucomannan composed of (1 → [...] Read more.
Dendrobium nobile Lindl. polysaccharide (DNP1) showed good anti-inflammatory activity in our previous study. In this study, the structural characterization of DNP1 and its mode of action on TLR4 were investigated. Structural characterization suggested that DNP1 was a linear glucomannan composed of (1 → 4)-β-Manp and (1 → 4)-β-Glcp residues, and the acetyl group was linked to the C-2 of Manp. The possible repeating structural units of DNP1 were [→4)-2-OAc-β-Manp-(1→]3 →4)-β-Glcp-(1→. Surface plasmon resonance (SPR) binding test results showed that DNP1 did not bind directly to TLR4. The TLR4 and MD2 receptor blocking tests confirmed that DNP1 needs MD2 and TLR4 to participate in its anti-inflammatory effect. The binding energy of DNP1 to TLR4-MD2 was −7.9 kcal/mol, indicating that DNP1 could bind to the TLR4-MD2 complex stably. Therefore, it is concluded that DNP1 may play an immunomodulatory role by binding to the TLR4-MD2 complex and inhibiting the TLR4-MD2-mediated signaling pathway. Full article
Show Figures

Figure 1

14 pages, 2695 KiB  
Article
Dendrobine Ameliorates Alzheimer’s Disease-like Pathology and Cognitive Decline in 3 × Tg-AD Mice
by Wei Zhang, Juan Huang and Jingshan Shi
Brain Sci. 2024, 14(3), 231; https://doi.org/10.3390/brainsci14030231 - 28 Feb 2024
Viewed by 1873
Abstract
Previous studies have shown that Dendrobium nobile Lindl. alkaloids (DNLAs) have neuroprotective effects in several Alzheimer’s disease (AD) models. Dendrobine (DDB) is one of the monomer components with the highest content in DNLAs. However, the effects of DDB on cognitive impairments in AD [...] Read more.
Previous studies have shown that Dendrobium nobile Lindl. alkaloids (DNLAs) have neuroprotective effects in several Alzheimer’s disease (AD) models. Dendrobine (DDB) is one of the monomer components with the highest content in DNLAs. However, the effects of DDB on cognitive impairments in AD remain unknown. In this study, we investigated the efficacy of DDB in 3 × Tg-AD mice to determine whether DDB was a key component of the anti-AD effect of DNLAs. Five-month mice were intragastrically administrated with DDB (10 and 20 mg/kg/d) or DNLAs (20 mg/kg/d) for seven consecutive months, and the effects of DDB and DNLAs were evaluated at twelve months. The results revealed that 3 × Tg-AD mice treated with DDB showed enhanced nesting ability. DDB also effectively rescued spatial learning and memory deficits in 3 × Tg-AD mice. Meanwhile, DDB treatment prevented the loss of dendritic spine density, with increased expression levels of synaptophysin, PSD95, and NCAM in the hippocampus. Finally, DDB ameliorated the increase in APP, sAPPβ, CTF-β, and β-amyloid peptides, accompanied by the promotion of GSK phosphorylation at the Ser9 site, thereby reducing hyperphosphorylated tau levels. As the active component of DNLA, DDB can preserve cognitive function, alleviate neuronal and synaptic defects, and improve APP/tau pathology in 3 × Tg-AD mice. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

23 pages, 8376 KiB  
Article
Hypoglycemic Effects and Quality Marker Screening of Dendrobium nobile Lindl. at Different Growth Years
by Yi Luo, Da Yang, Yanzhe Xu, Di Wu, Daopeng Tan, Lin Qin, Xingdong Wu, Yanliu Lu and Yuqi He
Molecules 2024, 29(3), 699; https://doi.org/10.3390/molecules29030699 - 2 Feb 2024
Cited by 4 | Viewed by 2058
Abstract
(1) Background: The effect of Dendrobium nobile Lindl. (D. nobile) on hyperglycemic syndrome has only been recently known for several years. Materials of D. nobile were always collected from the plants cultivated in various growth ages. However, regarding the efficacy of [...] Read more.
(1) Background: The effect of Dendrobium nobile Lindl. (D. nobile) on hyperglycemic syndrome has only been recently known for several years. Materials of D. nobile were always collected from the plants cultivated in various growth ages. However, regarding the efficacy of D. nobile on hyperglycemic syndrome, it was still unknown as to which cultivation age would be selected. On the other hand, with the lack of quality markers, it is difficult to control the quality of D. nobile to treat hyperglycemic syndrome. (2) Methods: The effects of D. nobile cultivated at year 1 and year 3 were checked on alloxan-induced diabetic mice while their body weight, diet, water intake, and urinary output were monitored. Moreover, levels of glycosylated serum protein and insulin were measured using Elisa kits. The constituents of D. nobile were identified and analyzed by using UPLC-Q/trap. Quality markers were screened out by integrating the data from UPLC-Q/trap into a network pharmacology model. (3) Results: The D. nobile cultivated at both year 1 and year 3 showed a significant effect on hyperglycemic syndrome at the high dosage level; however, regarding the significant level, D. nobile from year 1 showed the better effect. In D. nobile, most of the metabolites were identified as alkaloids and sesquiterpene glycosides. Alkaloids, represented by dendrobine, were enriched in D. nobile from year 1, while sesquiterpene glycosides were enriched in D. nobile from year 3. Twenty one metabolites were differentially expressed between D. nobile from year 1 and year 3. The aforementioned 21 metabolites were enriched to 34 therapeutic targets directly related to diabetes. (4) Conclusions: Regarding the therapy for hyperglycemic syndrome, D. nobile cultivated at year 1 was more recommended than that at year 3. Alkaloids were recommended to be used as markers to control the quality of D. nobile for hyperglycemic syndrome treatment. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

27 pages, 11246 KiB  
Article
The Integration of the Metabolome and Transcriptome for Dendrobium nobile Lindl. in Response to Methyl Jasmonate
by Daoyong Gong, Biao Li, Bin Wu, Deru Fu, Zesheng Li, Haobo Wei, Shunxing Guo, Gang Ding and Bochu Wang
Molecules 2023, 28(23), 7892; https://doi.org/10.3390/molecules28237892 - 1 Dec 2023
Cited by 5 | Viewed by 2195
Abstract
Dendrobium nobile Lindl., as an endangered medicinal plant within the genus Dendrobium, is widely distributed in southwestern China and has important ecological and economic value. There are a variety of metabolites with pharmacological activity in D. nobile. The alkaloids and polysaccharides [...] Read more.
Dendrobium nobile Lindl., as an endangered medicinal plant within the genus Dendrobium, is widely distributed in southwestern China and has important ecological and economic value. There are a variety of metabolites with pharmacological activity in D. nobile. The alkaloids and polysaccharides contained within D. nobile are very important active components, which mainly have antiviral, anti-tumor, and immunity improvement effects. However, the changes in the compounds and functional genes of D. nobile induced by methyl jasmonate (MeJA) are not clearly understood. In this study, the metabolome and transcriptome of D. nobile were analyzed after exposure to MeJA. A total of 377 differential metabolites were obtained through data analysis, of which 15 were related to polysaccharide pathways and 35 were related to terpenoids and alkaloids pathways. Additionally, the transcriptome sequencing results identified 3256 differentially expressed genes that were discovered in 11 groups. Compared with the control group, 1346 unigenes were differentially expressed in the samples treated with MeJA for 14 days (TF14). Moreover, the expression levels of differentially expressed genes were also significant at different growth and development stages. According to GO and KEGG annotations, 189 and 99 candidate genes were identified as being involved in terpenoid biosynthesis and polysaccharide biosynthesis, respectively. In addition, the co-expression analysis indicated that 238 and 313 transcription factors (TFs) may contribute to the regulation of terpenoid and polysaccharide biosynthesis, respectively. Through a heat map analysis, fourteen terpenoid synthetase genes, twenty-three cytochrome P450 oxidase genes, eight methyltransferase genes, and six aminotransferase genes were identified that may be related to dendrobine biosynthesis. Among them, one sesquiterpene synthase gene was found to be highly expressed after the treatment with MeJA and was positively correlated with the content of dendrobine. This study provides important and valuable metabolomics and transcriptomic information for the further understanding of D. nobile at the metabolic and molecular levels and provides candidate genes and possible intermediate compounds for the dendrobine biosynthesis pathway, which lays a certain foundation for further research on and application of Dendrobium. Full article
Show Figures

Figure 1

21 pages, 5489 KiB  
Article
Heat Stress Alleviation by Exogenous Calcium in the Orchid Dendrobium nobile Lindl: A Biochemical and Transcriptomic Analysis
by Yijun Fan, Jie Ma, Yuanyuan Liu, Xueyan Tan, Xuebing Li, Erya Xu, Linlong Xu and Aoxue Luo
Int. J. Mol. Sci. 2023, 24(19), 14692; https://doi.org/10.3390/ijms241914692 - 28 Sep 2023
Cited by 7 | Viewed by 1801
Abstract
The growth of Dendrobium nobile is sensitive to heat stress. To find an effective method for enhancing heat tolerance, this study investigated the relieving effect of exogenous calcium at different concentrations (0 mmol/L, 5 mmol/L, 10 mmol/L, 15 mmol/L, 20 mmol/L CaCl2 [...] Read more.
The growth of Dendrobium nobile is sensitive to heat stress. To find an effective method for enhancing heat tolerance, this study investigated the relieving effect of exogenous calcium at different concentrations (0 mmol/L, 5 mmol/L, 10 mmol/L, 15 mmol/L, 20 mmol/L CaCl2) on heat stress in D. nobile. Principal component analysis was used to screen the optimal exogenous calcium concentration, and transcriptome analysis was used to reveal its possible heat tolerance mechanism. The results showed that compared with the T0, a 10 mmol/L calcium treatment: increased the average leaf length, leaf width, plant height, and fresh matter accumulation of D. nobile by 76%, 103.39%, 12.97%, and 12.24%, respectively (p < 0.05); significantly increased chlorophyll a (Chla), chlorophyll b (Chlb), carotenoids(Car), ascorbic acid (ASA), glutathione (GSH), and flavonoids by 15.72%, 8.54%, 11.88%, 52.17%, 31.54%, and 36.12%, respectively; and effectively enhanced the enzyme activity of the antioxidant system, increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 1.38, 1.61, and 2.16 times, respectively (p < 0.05); At the same time, the treatment can effectively reduce the yellow leaf rate and defoliation rate of D. nobile under heat stress. The principal component analysis method and membership function were used to calculate the D value to rank the relief effects of each calcium treatment group, and the results also showed that 10 mmol/L CaCl2 had the best relief effect. Transcriptomics testing identified 7013 differentially expressed genes, of which 2719 were upregulated, and 294 were downregulated. Among them, genes such as HSPA1s, HSP90A, HSPBP1, ATG8, COMT, REF1, E1.11.1.7, along with transcription factors such as MYB, bHLH, WRKY, and NAC, formed the network of tolerance to heat stress in D. nobile. This study provides new insights for improving the cultivation techniques of D. nobile. Full article
(This article belongs to the Special Issue Orchid Biochemistry 3.0)
Show Figures

Figure 1

16 pages, 3088 KiB  
Article
Transcriptomic and Metabolomic Analyses Reveal Differences in Flavonoid Pathway Gene Expression Profiles between Two Dendrobium Varieties during Vernalization
by Wenbo Shu, Meirong Shi, Qiqi Zhang, Wenyu Xie, Liwei Chu, Mingxuan Qiu, Linyan Li, Zhixin Zeng, Lei Han and Zhenyuan Sun
Int. J. Mol. Sci. 2023, 24(13), 11039; https://doi.org/10.3390/ijms241311039 - 3 Jul 2023
Cited by 10 | Viewed by 2568
Abstract
Dendrobium (Orchidaceae, Epidendoideae) plants have flowers with a wide variety of colors that persist for a long period throughout the year. The yellow coloration of Dendrobium flowers is mainly determined by the flavonol pathway and the flavone pathway, but the relevant biosynthesis mechanisms [...] Read more.
Dendrobium (Orchidaceae, Epidendoideae) plants have flowers with a wide variety of colors that persist for a long period throughout the year. The yellow coloration of Dendrobium flowers is mainly determined by the flavonol pathway and the flavone pathway, but the relevant biosynthesis mechanisms during vernalization remain unclear. To explore the similarities and differences in flavonoid biosynthesis in different tissues during vernalization, we selected two species of Dendrobium for a flower color study: Dendrobium capillipes Rchb (which has yellow flowers) and Dendrobium nobile Lindl (which has white flowers). We collected a total of 36 samples from six tissue types and both Dendrobium species during vernalization and subjected the samples to metabolic profiling and transcriptome sequencing. A total of 31,504 differentially expressed genes (DEGs) were identified between different tissues of the two Dendrobium species by transcriptomic analysis. However, many differentially accumulated metabolites (DAMs) and DEGs were enriched not only in the general pathway of “flavonoid biosynthesis” but also in multiple subpathways of “flavone and flavonol biosynthesis”. According to a combined transcriptome and metabolome analysis, Putrescine hydroxycinnamoyl transferase 1 (LOC110093422) may be the main gene responsible for the differences in flavonoid accumulation during vernalization, which is closely associated with yellow flowers. Taken together, the results of our study preliminarily revealed the metabolites responsible for and the key genes regulating flavonoid biosynthesis during vernalization. These results provide a basis for the further study of the molecular mechanism of flavonoid synthesis during vernalization. Full article
(This article belongs to the Special Issue Advances in Research for Ornamental Plants Breeding)
Show Figures

Figure 1

17 pages, 4607 KiB  
Article
Photoprotective Effects of Dendrobium nobile Lindl. Polysaccharides against UVB-Induced Oxidative Stress and Apoptosis in HaCaT Cells
by Yunluan Long, Wuji Wang, Yanyan Zhang, Fanpan Du, Shiqian Zhang, Zheng Li, Jiang Deng and Jingjie Li
Int. J. Mol. Sci. 2023, 24(7), 6120; https://doi.org/10.3390/ijms24076120 - 24 Mar 2023
Cited by 23 | Viewed by 3461
Abstract
Acute ultraviolet (UV)-B radiation is the major external factor causing photodamage. In this study, we aimed to determine the effects of Dendrobium nobile Lindl. polysaccharides (DNPs) on photodamage in HaCaT keratinocytes after UVB irradiation and the underlying mechanisms. We found that DNPs significantly [...] Read more.
Acute ultraviolet (UV)-B radiation is the major external factor causing photodamage. In this study, we aimed to determine the effects of Dendrobium nobile Lindl. polysaccharides (DNPs) on photodamage in HaCaT keratinocytes after UVB irradiation and the underlying mechanisms. We found that DNPs significantly attenuated the decline in the viability and proliferation of HaCaT cells after UVB irradiation. Moreover, DNPs scavenged reactive oxygen species (ROS), improved the activities of endogenous antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, and reduced the levels of malondialdehyde, while partially attenuating cell cycle arrest, suggesting their antioxidant and anti-apoptotic properties. The mitogen-activated protein kinase (MAPK) pathway was found to be important for the attenuation of UVB-induced photodamage in the HaCaT cells. Furthermore, DNPs exerted cytoprotective effects by downregulating UVB-induced ROS-mediated phosphorylation of MAPKs, including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase, and by inhibiting p53 expression as well as the apoptotic cascade response. Therefore, DNPs ameliorated UVB-induced oxidative damage and apoptosis in HaCaT cells via the regulation of MAPKs. Our findings thus highlight the Dendrobium nobile Lindl polysaccharides as promising therapeutic candidates for UVB-induced photodamage. Full article
(This article belongs to the Special Issue Application of Natural Products in Biomedicine and Pharmacotherapy)
Show Figures

Figure 1

12 pages, 769 KiB  
Article
Flowering Time and Physiological Reaction of Dendrobium nobile Lindl in Response to TDZ Application
by Shuxian Ren, Menglu Hu, Qian Wu, Lin Wang, Huaishan Gu, Ziyue Chen, Zhu Ming and Zongyan Li
Horticulturae 2023, 9(2), 129; https://doi.org/10.3390/horticulturae9020129 - 18 Jan 2023
Cited by 5 | Viewed by 2088
Abstract
The objective of this work was to analyze the effect of Thidiazuron (TDZ) treatment on floral initiation, flowering time, ornamental characteristics and physiological metabolism of potted Dendrobium nobile. Three TDZ concentrations (200, 500 and 1000 mg L−1) were applied as [...] Read more.
The objective of this work was to analyze the effect of Thidiazuron (TDZ) treatment on floral initiation, flowering time, ornamental characteristics and physiological metabolism of potted Dendrobium nobile. Three TDZ concentrations (200, 500 and 1000 mg L−1) were applied as solution to water the root zone of the plants. Control plants (plants watered with water) showed a good vegetative development but no floral branches. TDZ greatly influenced the flowering process. For all the tested TDZ concentrations, the first flower bud occurred at 55–60 days after the last irrigation (DAI), the highest TDZ concentration showing the major delay in its occurrence. The initial flowering (30% of flowered plants) began 47 days after the first flower bud initiation with no statistical differences among the treatments. Plants treated with TDZ 500–1000 mg L−1 showed the longest period of flowering (about 32 days) and the single flowers delayed the withering of about 2–3 days compared to the lowest TDZ treatment (200 mg L−1). The number of flowers, floral branches and flowering percentage were distinctly influenced by the TDZ concentration. The highest percentage of flowering (40%) was scored when plants were watered with a TDZ solution at 500 mg L−1 and this was a performant treatment providing the best morphological flower features for the ornamental value of this plant. Among the physiological factors affecting the flowering, this study showed that TDZ increased the relative membrane permeability which facilitated the transport of macromolecular flower-forming substances into and out of the membrane. Therefore, the membrane permeability change could be an indicator of shifts in physiologically active substances during the flowering transition process in Dendrobium nobile plants. Full article
Show Figures

Figure 1

16 pages, 4751 KiB  
Article
Transcriptome Analysis of Protection by Dendrobium nobile Alkaloids (DNLA) against Chronic Alcoholic Liver Injury in Mice
by Xianyu Huang, Shan Yang, Jian Sun, Xia Li, Shao-Yu Zhou, Jing-Shan Shi, Jie Liu and Qin Wu
Biomedicines 2022, 10(11), 2800; https://doi.org/10.3390/biomedicines10112800 - 3 Nov 2022
Cited by 10 | Viewed by 2426
Abstract
Objective: To investigate the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) against chronic alcoholic liver injury. C57BL/6J mice were fed with the Lieber–DeCarli alcohol diet to induce chronic alcoholic liver injury. DNLA (20 mg/kg/day) was gavaged along with the alcohol diet for [...] Read more.
Objective: To investigate the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) against chronic alcoholic liver injury. C57BL/6J mice were fed with the Lieber–DeCarli alcohol diet to induce chronic alcoholic liver injury. DNLA (20 mg/kg/day) was gavaged along with the alcohol diet for 28 days. Liver injury was evaluated by serum enzymes. Triglyceride levels, histopathology, and transcriptome changes were examined by RNA-Seq and qPCR. DNLA decreased serum triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were ameliorated by DNLA, as evidenced by H&E and Oil-red O staining. DNLA brought the alcohol-induced aberrant gene expression pattern towards normal. Alcohol induced 787 differentially expressed genes (padj < 0.01). DNLA induced 280 differentially expressed genes to a much less extent. Ingenuity pathway analysis showed that DNLA ameliorated alcohol-induced oxidative stress and xenobiotic metabolism disruption. qPCR verified that DNLA alleviated over-activation of Cyp2a4, Cyp2b10, and Abcc4; attenuated oxidative stress (Hmox1, Gstm3, Nupr1), reduced the expression of Nrf2 genes (Nqo1, Gclc, Vldlr); and rescued some metabolic genes (Insig1, Xbp1, Socs3, Slc10a2). In conclusion, DNLA was effective against alcohol-induced fatty liver disease, and the protection may be attributed to alleviated oxidative stress and restored metabolism homeostasis, probably through modulating nuclear receptor CAR-, PXR-, and Nrf2-mediated gene expression pathways. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 2639 KiB  
Article
Ultrasonic Extraction Process of Polysaccharides from Dendrobium nobile Lindl.: Optimization, Physicochemical Properties and Anti-Inflammatory Activity
by Hang Chen, Xueqin Shi, Lin Zhang, Li Yao, Lanyan Cen, Lian Li, Yiyi Lv and Chaoyang Wei
Foods 2022, 11(19), 2957; https://doi.org/10.3390/foods11192957 - 21 Sep 2022
Cited by 23 | Viewed by 3107
Abstract
To optimize the ultrasonic extraction process of polysaccharides from Dendrobium nobile Lindl. (DNP), the extraction method was conducted through a single-factor test and the response-surface methodology (RSM). With the optimal extraction process (liquid–solid ratio of 40 mL/g, ultrasonic time of 30 min, and [...] Read more.
To optimize the ultrasonic extraction process of polysaccharides from Dendrobium nobile Lindl. (DNP), the extraction method was conducted through a single-factor test and the response-surface methodology (RSM). With the optimal extraction process (liquid–solid ratio of 40 mL/g, ultrasonic time of 30 min, and ultrasonic power of 400 W), the maximum extraction yield was 5.16 ± 0.41%. DNP1 and DNP2 were then fractionated via DEAE-QFF and Sephacryl S-300 HR chromatography. The molecular weight (Mw) of DNP1 was identified as 67.72 kDa, composed of Man (75.86 ± 0.05%) and Glc (24.14 ± 0.05%), and the Mw of DNP2 was 37.45 kDa, composed of Man (72.32 ± 0.03%) and Glc (27.68 ± 0.03%). Anti-inflammatory assays results showed that as DNPs were 200 μg/mL, and the contents of NO, TNF-α, IL-1β, IL-6 and IL-10 in LPS-induced RAW 264.7 cells were about 13.39% and 13.39%, 43.88% and 43.51%, 17.80% and 15.37%, 13.84% and 20.66%, and 938.85% and 907.77% of those in control group, respectively. It was indicated that DNP1 and DNP2 inhibited the inflammatory response of RAW 264.7 cells induced by LPS via suppressing the level of NO and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and promoting the secretion of anti-inflammatory cytokine (IL-10). Therefore, DNP1 and DNP2 have potential applications in the treatment of inflammatory injury. Full article
(This article belongs to the Special Issue Natural Compounds Extracted from Foods and Their Health Benefits)
Show Figures

Graphical abstract

12 pages, 2731 KiB  
Article
Structural Characterization of Mannoglucan from Dendrobium nobile Lindl and the Neuritogenesis-Induced Effect of Its Acetylated Derivative on PC-12 Cells
by Can Jin, Zhenyun Du, Liyan Lin, Lishuang Zhou, Saijuan Li, Qin Liu and Kan Ding
Polymers 2017, 9(9), 399; https://doi.org/10.3390/polym9090399 - 28 Aug 2017
Cited by 31 | Viewed by 5397
Abstract
A water-soluble polysaccharide (JCS1) was isolated from the stems of Dendrobium nobile Lindl. JCS1 was structurally characterized using a combination of chemical and spectral analysis, including methylation analysis, partial acid hydrolysis, Fourier-transform infrared (FTIR) spectroscopy, gas chromatography (GC), GC-mass spectrometry (MS), and nuclear [...] Read more.
A water-soluble polysaccharide (JCS1) was isolated from the stems of Dendrobium nobile Lindl. JCS1 was structurally characterized using a combination of chemical and spectral analysis, including methylation analysis, partial acid hydrolysis, Fourier-transform infrared (FTIR) spectroscopy, gas chromatography (GC), GC-mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy. The molecular weight was estimated to be 2.3 × 104 Da using high-performance gel permeation chromatography (HPGPC). The sugar composition analysis indicated it was composed of glucose, mannose, xylose, and arabinose in a 40.2:2.3:1.7:1.0 molar ratio. The structure analysis showed that JCS1 was a mannoglucan with a backbone consisting of (1→4)-linked β-Manp and (1→4)-linked α-Glcp with branches at C-6 of (1→4)-linked α-Glcp residues. The branches were composed of T-α-Glcp, 1,4-α-Xylp, and T-α-Araf. In vitro bioactivity tests revealed that the acetylated derivative of JCS1, YJCS1, induced neuritogenesis of PC-12 cells. These results demonstrate that YJCS1 might be a promising bioactive polysaccharide for development as a drug candidate for the possible prevention and treatment of neurodegeneration diseases. Full article
Show Figures

Graphical abstract

10 pages, 1693 KiB  
Article
Structural Analysis and Immuno-Stimulating Activity of an Acidic Polysaccharide from the Stems of Dendrobium nobile Lindl.
by Jun-Hui Wang, Shu-Rong Zuo and Jian-Ping Luo
Molecules 2017, 22(4), 611; https://doi.org/10.3390/molecules22040611 - 10 Apr 2017
Cited by 34 | Viewed by 5491
Abstract
Dendrobium nobile Lindl., an epiphytic herb distributed in the Southeast Asia, is used as a tonic and antipyretic herbal medicine in China. In this study, a water-soluble acidic heteropolysaccharide, DNP-W4, containing mannose, glucose, galactose, xylose, rhamnose, and galacturonic acid, in the molar ratios [...] Read more.
Dendrobium nobile Lindl., an epiphytic herb distributed in the Southeast Asia, is used as a tonic and antipyretic herbal medicine in China. In this study, a water-soluble acidic heteropolysaccharide, DNP-W4, containing mannose, glucose, galactose, xylose, rhamnose, and galacturonic acid, in the molar ratios of 1.0:4.9:2.5:0.5:1.0:0.9, was obtained from the stems of Dendrobium nobile Lindl. Using methylation analysis, partial acid hydrolysis, pectolyase treatment, NMR, and ESI-MS, the structure of DNP-W4 was elucidated. The obtained data indicated that DNP-W4 was a complex heteropolysaccharide and possessed a backbone composed of (1→4)-linked β-d-Glcp, (1→6)-linked β-d-Glcp, and (1→6)-linked β-d-Galp, with substitutes at O-4/6 of Glcp residues and O-3 of Galp. The branches of DNP-W4 were composed of terminal Manp, (1→6)-linked β-d-Manp, (1→3)-linked β-d-Glcp, β-d-Glcp, β-d-Galp, (1→4)-linked α-d-GalAp, (1→2)-linked α-L-Rhap, and Xylp. DNP-W4 had little immunological activities, but its derivatives had immuno-stimulating activities to some extent. Full article
(This article belongs to the Special Issue Natural Polysaccharides)
Show Figures

Figure 1

Back to TopTop