Flowering Time and Physiological Reaction of Dendrobium nobile Lindl in Response to TDZ Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Flowering and Morphological Characterization of Flowers
2.3. Physiological Characteristics Measurements
2.4. Data Collection and Statistical Analysis
3. Results
3.1. The Influence of TDZ on Flowering
3.2. The Influence of TDZ on Flower Morphology
3.3. Effect of TDZ on Soluble Sugar Content during the Flowering Development
3.4. Effect of TDZ on Chlorophyll Content during the Flower Development
3.5. The Change in Relative Membrane Permeability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.H.; Ito, S.; Imaizumi, T. Flowering time regulation: Photoperiod-and temperature-sensing in leaves. Trends Plant Sci. 2013, 18, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhage, L.; Angenent, G.C.; Immink, R.G.H. Research on floral timing by ambient temperature comes into blossom. Trends Plant Sci. 2014, 19, 583–591. [Google Scholar] [CrossRef]
- Amasino, R.M.; Michaels, S.D. The timing of flowering. Plant Physiol. 2010, 154, 516–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waheed, S.; Zeng, L. The critical role of miRNAs in regulation of flowering time and flower development. Genes 2020, 11, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiroz, S.; Yustis, J.C.; Chávez-Hernández, E.C.; Martínez, T.; Sanchez, M.D.; Garay-Arroyo, A.; Álvarez-Buylla, E.R.; García-Ponce, B. Beyond the genetic pathways, flowering regulation complexity in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 5716. [Google Scholar] [CrossRef]
- Higuchi, Y. Florigen and anti-florigen: Flowering regulation in horticultural crops. Breed. Sci. 2018, 68, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J. The miR156-SPL3 module regulates ambient temperature-responsive flowering via FT in Arabidopsis thaliana. Plant Physiol. 2012, 159, 461–478. [Google Scholar] [CrossRef] [Green Version]
- Anawal, V.V.; Narayanaswamy, P.; Yallesh Kumar, H.S. Effects of plant growth regulators on induction of flowering in pomegranate (Punica granatum L.) cv. Bhagwa. Int. J. Sci. Res. 2015, 4, 7–9. [Google Scholar]
- Chen, L.R.; Chen, J.T.; Chang, W.C. Efficient production of protocorm-like bodies and plant regeneration from flower stalk explants of the sympodial orchid Epidendrum radicans. In Vitr. Cell. Dev. Biol. Plant 2002, 38, 441–445. [Google Scholar] [CrossRef]
- Kurumwanshi, R.S.; Jadhav, P.V.; Surbhaiyya, S.D.; Moharil, M.P.; Nandanwar, R.S.; Wandhare, M.R.; Manjaya, J.G. In vitro florigenesis: An efficient regeneration system avoiding time consuming vegetative phase in popular Indian soybean variety JS-335. Indian J. Exp. Biol. 2021, 59, 458–466. [Google Scholar]
- Singh, M.; Tiwari, N. Thidiazuron outpaces 6-benzylamino purine and kinetin in delaying flower senescence in Gladiolus grandiflora by alleviating physiological and biochemical responses. J. Appl. Biol. Biotechnol. 2021, 9, 56–62. [Google Scholar]
- Maity, P.J.; Kulkarni, V.M.; Vishnu, B. Thidiazuron-induced multiple shoot regeneration and in vitro flowering in Pennisetum glaucum (L.). R. Br. Phytomorphol. 2016, 66, 45–50. [Google Scholar]
- Sujjaritthurakarn, P.; Kanchanapoom, K. Efficient direct protocorm-like bodies induction of dwarf Dendrobium using Thidiazuron. Not. Sci. Biol. 2011, 3, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Celikel, F.G.; Reid, M.S.; Jiang, C.Z. Water uptake and vase life of cut Gardenia jasminoides flowers. In Proceedings of the XXX International Horticultural Congress IHC 2018: International Symposium on Ornamental Horticulture and XI International 1263, Istanbul, Turkey, 12–16 August 2018; pp. 335–342. [Google Scholar]
- Hajong, S.; Kumaria, S.; Tandon, P. Effect of plant growth regulators on regeneration potential of axenic nodal segments of Dendrobium chrysanthum Wall. ex Lindl. J. Agric. Sci. Technol. 2013, 15, 1425–1435. [Google Scholar]
- Chamani, E.; Esmaeilpour, B. Thidiazuron effects on physiochemical characteristics of carnation during pre and postharvest periods. J. Appl. Hort. 2007, 9, 115–117. [Google Scholar] [CrossRef]
- Lone, M.L.; Farooq, S.; Parveen, S.; Tahir, I. 6-Benzylamino purine outperforms Kinetin and Thidiazuron in ameliorating flower longevity in Calendula officinalis L. by orchestrating physiological and biochemical responses. Ornam. Hortic. 2021, 27, 183–195. [Google Scholar] [CrossRef]
- Ferrante, A.; Vernieri, P.; Serra, G.; Tognoni, F. Changes in abscisic acid during leaf yellowing of cut stock flowers. Plant Growth Regul. 2004, 43, 127–134. [Google Scholar] [CrossRef]
- Sankhla, N.; Mackay, W.A.; Davis, T.D. Reduction of flower abscission and leaf senescence in cut phlox inflorescences by thidiazuron. In Proceedings of the XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture 628, Toronto, ON, Canada, 11–17 August 2002; pp. 837–841. [Google Scholar]
- Chen, S.C.; Tsi, Z.H.; Luo, Y.B. Flora Reipublicae Popularis Sinicae Tomus 19. In Dendrobium; Science Press: Beijing, China, 1999; pp. 75–146. [Google Scholar]
- Wen, Z.Z.; Zhang, E.; Liu, Y.G.; Liu, W. Primary screening of differentially expressed genes during TDZ induced floral initiation with SSH in Dendrobium nobile. Acta Hortic. Sin. 2013, 40, 1591–1599. [Google Scholar]
- Lawrie, M.D.; Layina, Z.; Ningtias, D.R.; Alifianto, F.N.; Indrianto, A.; Purwantoro, A.; Semiarti, E. In vitro germination and flowering of Dendrobium capra JJ smith, an endemic orchid of java. Hayati J. Biosci. 2021, 28, 172. [Google Scholar] [CrossRef]
- Wang, A.; Li, J.; Zeng, S.; Chen, Z. Preliminary report on the study of in vitro flowering and fruiting of Dendrobium officinale. Guizhou Agric. Sci. 2014, 42, 34–37. [Google Scholar]
- Qian, X.; Wang, C.; Ouyang, T.; Tian, M. In vitro flowering and fruiting in culture of Dendrobium officinate kimura et migo. (Orchidaceae). Pak. J. Bot. 2014, 46, 1877–1882. [Google Scholar]
- Cen, X.F.; Huang, C.H.; Wei, P.X. Effects of hormone factors on the in vitro culture flowering induction of Dendrobium officinate Kimura et Migo. Agric. Sci. Technol. Hunan 2010, 11, 75–79. [Google Scholar]
- Zhang, D.; Liao, Y.; Lu, S.; Li, C.; Shen, Z.; Yang, G.; Yin, J. Effect of thidiazuron on morphological and flowering characteristics of Dendrobium ‘Sunya Sunshine’ potted plants. N. Z. J. Crop Hortic. Sci. 2019, 47, 170–181. [Google Scholar] [CrossRef]
- Sairam, R.K. Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian J. Exp. Biol. 1994, 32, 594. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkio, M.; Schubert, A.; Diepenbrock, W.; Grimm, E. Effect of source-sink ratio on seed set and filling in sunflower (Helianthus annuus L.). Plant Cell Environ. 2003, 26, 1609–1619. [Google Scholar] [CrossRef]
- Wahl, V.; Ponnu, J.; Schlereth, A.; Arrivault, S.; Langenecker, T.; Franke, A.; Feil, R.; Lunn, J.E.; Stitt, M.; Schmid, M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 2013, 339, 704–707. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, L.; Wei, Q.; Ju, Y.; Zou, X.; Wan, X.; Liu, X.; Yin, Z. A new insight into flowering regulation: Molecular basis of flowering initiation in Magnolia× soulangeana ‘Changchun’. Genes 2019, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Hu, G.; Chen, Z.; Shi, Y.; Zheng, L.; Tang, A.; Long, C. Micropropagation and in vitro flowering of Dendrobium wangliangii: A critically endan- gered medicinal orchid. J. Med. Plants Res. 2013, 7, 2098–2110. [Google Scholar]
- Wang, Z.H.; Zhu, G.F.; OUM, C.; Wang, B.Q. Induction of plant growth regulators on early in vivo flowering of nobile-type Dendrobium. Guangdong Agric. Sci. 2008, 10, 37–39. [Google Scholar]
- Wu, H.H.; Chen, F.C. Effect of plant growth regulators on shoot multiplication from flower stalk nodal buds of Phalaenopsis and Doritaenopsis. J. Taiwan Soc. Hortic. Sci. 2008, 54, 151–159. [Google Scholar]
- Wang, Z.H.; Wang, L.; Ye, Q.S. High frequency early flowering from in vitro seedlings of Dendrobium nobile. Sci. Hortic. 2009, 122, 328–331. [Google Scholar] [CrossRef]
- Xiang, L.; Li, X.; Qin, D.; Guo, F.; Wu, C.; Miao, L.; Sun, C. Functional analysis of FLOWERING LOCUST orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition. Plant Physiol. Biochem. 2012, 58, 98–105. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Song, S.; Li, Y.; Shen, L.; Yu, H. DOFT and DOFTIP1 affect reproductive development in the orchid Dendrobium Chao Praya Smile. J. Exp. Bot. 2017, 68, 5759–5772. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.L.; Chen, J.T. Plant regeneration via callus culture and subsequent in vitro flowering of Dendrobium huoshanense. Acta Physiol. Plant. 2014, 36, 2619–2625. [Google Scholar] [CrossRef]
- Wen, Z.; Guo, W.; Li, J.; Lin, H.; He, C.; Liu, Y.; Zhang, Q.; Liu, W. Comparative transcriptomic analysis of vernalization-and cytokinin-induced floral transition in Dendrobium nobile. Sci. Rep. 2017, 7, 45748. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.M.; Tong, C.G.; Jang, S. Current progress in orchid flowering/flower development research. Plant Signal. Behav. 2017, 12, e1322245. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.L.; An, H.R.; Tong, C.G.; Jang, S. Flowering and flowering genes: From model plants to orchids. Hortic. Environ. Biotechnol. 2021, 62, 135–148. [Google Scholar] [CrossRef]
- Zheng, B.Q.; Deng, X.M.; Li, K.; Miao, K.; Wang, Y. Effects of temperature treatment on flower bud differentiation and development of Dendrobium. For. Res. 2017, 30, 460–464. [Google Scholar]
- Tian, D.Q.; Cao, Q.Y.; Ding, H.Q.; Yu, L.J. A preliminary study on flower forcing of Dendrobium spring at low temperature. Zhejiang Agric. Sci. 2007, 1, 38–40. [Google Scholar]
- Seo, P.J.; Ryu, J.; Kang, S.K.; Park, C.M. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J. 2011, 65, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Guo, H.; Chi, W.; Chai, X.; Sun, X.; Xu, X.; Ma, J.; Rochaix, J.D.; Leister, D.; Wang, H.; et al. Chloroplast retrograde signal regulates flowering. Proc. Natl. Acad. Sci. USA 2016, 113, 10708–10713. [Google Scholar] [CrossRef] [PubMed]
TDZ Level (mg L−1) | Number | Percentage of Flowering (%) | ||||
---|---|---|---|---|---|---|
Flowers/Plant | Flowers/Inflorescence | Inflorescences/Branch | Floral Branches/Plant | Branches/Plant | ||
0 | - | - | - | - | 92 ± 0.81 a | 0.00 d |
200 | 68 ± 0.77 b | 2.60 ± 0.44 a | 1.60 ± 0.38 a | 24 ± 0.52 b | 90 ± 0.81 a | 26.84 ± 6.21 b |
500 | 97 ± 1.01 a | 1.50 ± 0.33 a | 2.70 ± 0.48 a | 38 ± 0.62 a | 95 ± 1.05 a | 40.38 ± 7.41 a |
1000 | 52 ± 0.74 c | 1.60 ± 0.34 a | 1.70 ± 0.37 a | 17 ± 0.40 c | 87 ± 0.87 a | 19.66 ± 4.89 c |
LSD0.05 | 6.58 * | 1.34 | 1.60 | 2.60 * | 7.45 | 3.78 * |
TDZ Level (mg L−1) | Days after the Last Irrigation (DAI) | Flowering Period (No. Days) | Blooming Period of Single Flower (No. Days) | |||
---|---|---|---|---|---|---|
First Flower Bud Initiation | Initial Flowering | Full Bloom | Fading Flowering | |||
0 | - | - | - | - | - | - |
200 | 55 ± 0.32 c | 102 ± 0.58 a | 109 ± 0.60 a | 128 ± 0.66 b | 27 ± 0.32 b | 20.30 ± 0.40 c |
500 | 58 ± 0.39 b | 105 ± 0.75 a | 112 ± 0.66 a | 136 ± 0.78 a | 32 ± 0.40 a | 21.70 ± 0.31 b |
1000 | 60 ± 0.45 a | 107 ± 0.79 a | 112 ± 0.63 a | 138 ± 0.82 a | 32 ± 0.38 a | 23.20 ± 0.34 a |
LSD0.05 | 1.46 * | 4.77 | 3.64 | 5.29 * | 1.27 * | 1.15 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Hu, M.; Wu, Q.; Wang, L.; Gu, H.; Chen, Z.; Ming, Z.; Li, Z. Flowering Time and Physiological Reaction of Dendrobium nobile Lindl in Response to TDZ Application. Horticulturae 2023, 9, 129. https://doi.org/10.3390/horticulturae9020129
Ren S, Hu M, Wu Q, Wang L, Gu H, Chen Z, Ming Z, Li Z. Flowering Time and Physiological Reaction of Dendrobium nobile Lindl in Response to TDZ Application. Horticulturae. 2023; 9(2):129. https://doi.org/10.3390/horticulturae9020129
Chicago/Turabian StyleRen, Shuxian, Menglu Hu, Qian Wu, Lin Wang, Huaishan Gu, Ziyue Chen, Zhu Ming, and Zongyan Li. 2023. "Flowering Time and Physiological Reaction of Dendrobium nobile Lindl in Response to TDZ Application" Horticulturae 9, no. 2: 129. https://doi.org/10.3390/horticulturae9020129
APA StyleRen, S., Hu, M., Wu, Q., Wang, L., Gu, H., Chen, Z., Ming, Z., & Li, Z. (2023). Flowering Time and Physiological Reaction of Dendrobium nobile Lindl in Response to TDZ Application. Horticulturae, 9(2), 129. https://doi.org/10.3390/horticulturae9020129