Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = DNA dendrimer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 847 KB  
Review
Glia Between Resistance and Radiotoxicity in Glioblastoma: Mechanisms and Translational Perspectives—A Narrative Review
by Flavio Donnini, Giuseppe Minniti, Giovanni Rubino, Giuseppe Battaglia, Pierpaolo Pastina, Tommaso Carfagno, Marta Vannini, Maria Antonietta Mazzei and Paolo Tini
Neuroglia 2025, 6(4), 44; https://doi.org/10.3390/neuroglia6040044 - 11 Nov 2025
Viewed by 698
Abstract
Background: Glioblastoma (GBM) remains refractory to chemoradiotherapy. Glial populations—microglia/monocyte-derived macrophages, reactive astrocytes, and the oligodendrocyte lineage—shape both treatment resistance and radiation-related brain injury. Scope: We synthesize how myeloid ontogeny and plasticity, astrocytic hubs (IL-6/STAT3, TGF-β, connexin-43/gap junctions), and oligodendrocyte precursor cells (OPCs)–linked programs [...] Read more.
Background: Glioblastoma (GBM) remains refractory to chemoradiotherapy. Glial populations—microglia/monocyte-derived macrophages, reactive astrocytes, and the oligodendrocyte lineage—shape both treatment resistance and radiation-related brain injury. Scope: We synthesize how myeloid ontogeny and plasticity, astrocytic hubs (IL-6/STAT3, TGF-β, connexin-43/gap junctions), and oligodendrocyte precursor cells (OPCs)–linked programs intersect with DNA-damage responses, hypoxia-driven metabolism, and extracellular vesicle signaling to support tumor fitness while predisposing normal brain to radiotoxicity. Translational implications: Convergent, targetable pathways (IL-6/JAK–STAT3, TGF-β, chemokine trafficking, DDR/senescence) enable co-design of radiosensitization and neuroprotection. Pragmatic levers include myeloid reprogramming (CSF-1R, CCR2), astrocyte-axis modulation (STAT3, TGF-β, Cx43), and brain-penetrant DDR inhibition (e.g., ATM inhibitors), paired with delivery strategies that raise intratumoral exposure while sparing healthy tissue (focused-ultrasound blood–brain barrier opening, myeloid-targeted dendrimers; Tumor Treating Fields as an approved adjunct therapy). Biomarker frameworks (TSPO-PET, macrophage-oriented MRI radiomics, extracellular vesicle liquid biopsy) can support selection and pharmacodynamic readouts alongside neurocognitive endpoints. Outlook: Timing-aware combinations around radiotherapy and hippocampal/white-matter sparing offer a near-term roadmap for “glia-informed” precision radiotherapy. Full article
Show Figures

Figure 1

27 pages, 5498 KB  
Review
Revolutionizing mRNA Vaccines Through Innovative Formulation and Delivery Strategies
by Munazza Fatima, Timothy An and Kee-Jong Hong
Biomolecules 2025, 15(3), 359; https://doi.org/10.3390/biom15030359 - 1 Mar 2025
Cited by 8 | Viewed by 6832
Abstract
Modernization of existing methods for the delivery of mRNA is vital in advanced therapeutics. Traditionally, mRNA has faced obstacles of poor stability due to enzymatic degradation. This work examines cutting-edge formulation and emerging techniques for safer delivery of mRNA vaccines. Inspired by the [...] Read more.
Modernization of existing methods for the delivery of mRNA is vital in advanced therapeutics. Traditionally, mRNA has faced obstacles of poor stability due to enzymatic degradation. This work examines cutting-edge formulation and emerging techniques for safer delivery of mRNA vaccines. Inspired by the success of lipid nanoparticles (LNP) in delivering mRNA vaccines for COVID-19, a variety of other formulations have been developed to deliver mRNA vaccines for diverse infections. The meritorious features of nanoparticle-based mRNA delivery strategies, including LNP, polymeric, dendrimers, polysaccharide-based, peptide-derived, carbon and metal-based, DNA nanostructures, hybrid, and extracellular vesicles, have been examined. The impact of these delivery platforms on mRNA vaccine delivery efficacy, protection from enzymatic degradation, cellular uptake, controlled release, and immunogenicity has been discussed in detail. Even with significant developments, there are certain limitations to overcome, including toxicity concerns, limited information about immune pathways, the need to maintain a cold chain, and the necessity of optimizing administration methods. Continuous innovation is essential for improving delivery systems for mRNA vaccines. Future research directions have been proposed to address the existing challenges in mRNA delivery and to expand their potential prophylactic and therapeutic application. Full article
(This article belongs to the Special Issue Novel Materials for Biomedical Applications: 2nd Edition)
Show Figures

Figure 1

22 pages, 4423 KB  
Review
Recent Advances in Biosensors Using Enzyme-Stabilized Gold Nanoclusters
by Myeong-Jun Lee, Jeong-Hyeop Shin, Seung-Hun Jung and Byung-Keun Oh
Biosensors 2025, 15(1), 2; https://doi.org/10.3390/bios15010002 - 24 Dec 2024
Cited by 5 | Viewed by 3055
Abstract
Recently, gold nanoclusters (AuNCs) have been widely used in biological applications due to their ultrasmall size, ranging within a few nanometers; large specific surface area; easy functionalization; unique fluorescence properties; and excellent conductivity. However, because they are unstable in solution, AuNCs require stabilization [...] Read more.
Recently, gold nanoclusters (AuNCs) have been widely used in biological applications due to their ultrasmall size, ranging within a few nanometers; large specific surface area; easy functionalization; unique fluorescence properties; and excellent conductivity. However, because they are unstable in solution, AuNCs require stabilization by using ligands such as dendrimers, peptides, DNA, and proteins. As a result, the properties of AuNCs and their formation are determined by the ligand, so the selection of the ligand is important. Of the many ligands implemented, enzyme-stabilized gold nanoclusters (enzyme–AuNCs) have attracted increasing attention for biosensor applications because of the excellent optical/electrochemical properties of AuNCs and the highly target-specific reactions of enzymes. In this review, we explore how enzyme–AuNCs are prepared, their properties, and the various types of enzyme–AuNC-based biosensors that use optical and electrochemical detection techniques. Finally, we discuss the current challenges and prospects of enzyme–AuNCs in biosensing applications. We expect this review to provide interdisciplinary knowledge about the application of enzyme–AuNC-based materials within the biomedical and environmental fields. Full article
(This article belongs to the Special Issue Functional Materials for Biosensing Applications)
Show Figures

Figure 1

35 pages, 28860 KB  
Review
Dendrimers, Dendrons, and the Dendritic State: Reflection on the Last Decade with Expected New Roles in Pharma, Medicine, and the Life Sciences
by Donald A. Tomalia
Pharmaceutics 2024, 16(12), 1530; https://doi.org/10.3390/pharmaceutics16121530 - 28 Nov 2024
Cited by 16 | Viewed by 2922 | Correction
Abstract
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization [...] Read more.
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.e., dendrons/dendrimers) with nanoscale sizes and structure-controlled features that match and rival discrete in vivo biopolymers such as proteins and nucleic acids (i.e., DNA, siRNA, mRNA, etc.). These dendritic architectures exhibit unprecedented new intrinsic properties widely recognized to define a new fourth major polymer architecture class, namely: Category (IV): dendrons, dendrimers, and random hyperbranched polymers after traditional categories: (I) linear, (II) cross-linked, and (III) simple-branched types. Historical confusion over the first examples of the structure confirmed and verified cascade, dendron, dendrimer, and arborol syntheses, while associated misuse of accepted dendritic terminology is also reviewed and clarified. The importance of classifying all dendrons and dendrimers based on branch cell symmetry and the significant role of critical nanoscale-design parameters (CNDPs) for optimizing dendritic products for pharma/nanomedicine applications with a focus on enhancing stealth, non-complement activation properties is presented. This is followed by an overview of the extraordinary growth observed for amphiphilic dendron/dendrimer syntheses and their self-assembly into dendritic supramolecular assemblies, as well as many unique applications demonstrated in pharma and nanomedicine, especially involving siRNA delivery and mRNA vaccine development. This perspective is concluded with optimistic expectations predicted for new dendron and dendrimer application roles in pharma, nanomedicine, and life sciences. Full article
Show Figures

Figure 1

15 pages, 9953 KB  
Article
PAMAM-Calix-Dendrimers: Third Generation Synthesis and Impact of Generation and Macrocyclic Core Conformation on Hemotoxicity and Calf Thymus DNA Binding
by Olga Mostovaya, Igor Shiabiev, Daniil Ovchinnikov, Dmitry Pysin, Timur Mukhametzyanov, Alesia Stanavaya, Viktar Abashkin, Dzmitry Shcharbin, Arthur Khannanov, Marianna Kutyreva, Mingwu Shen, Xiangyang Shi, Pavel Padnya and Ivan Stoikov
Pharmaceutics 2024, 16(11), 1379; https://doi.org/10.3390/pharmaceutics16111379 - 27 Oct 2024
Cited by 7 | Viewed by 2732
Abstract
Background/Objectives: Current promising treatments for many diseases are based on the use of therapeutic nucleic acids, including DNA. However, the list of nanocarriers is limited due to their low biocompatibility, high cost, and toxicity. The design of synthetic building blocks for creating [...] Read more.
Background/Objectives: Current promising treatments for many diseases are based on the use of therapeutic nucleic acids, including DNA. However, the list of nanocarriers is limited due to their low biocompatibility, high cost, and toxicity. The design of synthetic building blocks for creating universal delivery systems for genetic material is an unsolved problem. In this work, we propose PAMAM dendrimers with rigid thiacalixarene core in various conformations, i.e., PAMAM-calix-dendrimers, as a platform for a supramolecular universal constructor for nanomedicine. Results: Third generation PAMAM dendrimers with a macrocyclic core in three conformations (cone, partial cone, and 1,3-alternate) were synthesized for the first time. The obtained dendrimers were capable of binding and compacting calf thymus DNA, whereby the binding efficiency improved with increasing generation, while the influence of the macrocyclic core was reduced. A dramatic effect of the macrocyclic core conformation on the hemolytic activity of PAMAM-calix-dendrimers was observed. Specifically, a notable reduction in hemotoxicity was associated with a decrease in compound amphiphilicity. Conclusions: We hope the results will help reduce financial and labor costs in developing new drug delivery systems based on dendrimers. Full article
Show Figures

Graphical abstract

42 pages, 9445 KB  
Review
Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules
by Majad Khan
Polymers 2024, 16(18), 2629; https://doi.org/10.3390/polym16182629 - 18 Sep 2024
Cited by 26 | Viewed by 8908
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns [...] Read more.
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule’s chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

17 pages, 2557 KB  
Article
Second-Generation Polyamidoamine Dendrimer Conjugated with Oligopeptides Can Enhance Plasmid DNA Delivery In Vitro
by Seongyeon Kim, Le Thi Thuy, Jeil Lee and Joon Sig Choi
Molecules 2023, 28(22), 7644; https://doi.org/10.3390/molecules28227644 - 17 Nov 2023
Cited by 7 | Viewed by 2495
Abstract
Poly(amidoamine) (PAMAM) dendrimers have attracted considerable attention in the field of gene therapy due to their flexibility in introducing different functional moieties and reduced toxicity at low generations. However, their transfection efficiency remains a limitation. Therefore, an essential approach for improving their transfection [...] Read more.
Poly(amidoamine) (PAMAM) dendrimers have attracted considerable attention in the field of gene therapy due to their flexibility in introducing different functional moieties and reduced toxicity at low generations. However, their transfection efficiency remains a limitation. Therefore, an essential approach for improving their transfection efficiency as gene carriers involves modifying the structure of PAMAM by conjugating functional groups around their surface. In this study, we successfully conjugated an RRHRH oligopeptide to the surface of PAMAM generation 2 (PAMAM G2) to create RRHRH-PAMAM G2. This construction aims to condense plasmid DNA (pDNA) and facilitate its penetration into cell membranes, leading to its promising potential for gene therapy. RRHRH-PAMAM G2/pDNA complexes were smaller than 100 nm and positively charged. Nano-polyplexes can enter the cell and show a high transfection efficiency after 24 h of transfection. The RRHRH-PAMAM G2 was non-toxic to HeLa, NIH3T3, A549, and MDA-MB-231 cell lines. These results strongly suggest that RRHRH-PAMAM G2 holds promise as a gene carrier for gene therapy owing to its biocompatibility and ability to deliver genes to the cell. Full article
(This article belongs to the Special Issue The Development of Peptides and Peptide-Modified Delivery Systems)
Show Figures

Figure 1

60 pages, 30540 KB  
Review
Cationic Materials for Gene Therapy: A Look Back to the Birth and Development of 2,2-Bis-(hydroxymethyl)Propanoic Acid-Based Dendrimer Scaffolds
by Silvana Alfei
Int. J. Mol. Sci. 2023, 24(21), 16006; https://doi.org/10.3390/ijms242116006 - 6 Nov 2023
Cited by 11 | Viewed by 3631
Abstract
Gene therapy is extensively studied as a realistic and promising therapeutic approach for treating inherited and acquired diseases by repairing defective genes through introducing (transfection) the “healthy” genetic material in the diseased cells. To succeed, the proper DNA or RNA fragments need efficient [...] Read more.
Gene therapy is extensively studied as a realistic and promising therapeutic approach for treating inherited and acquired diseases by repairing defective genes through introducing (transfection) the “healthy” genetic material in the diseased cells. To succeed, the proper DNA or RNA fragments need efficient vectors, and viruses are endowed with excellent transfection efficiency and have been extensively exploited. Due to several drawbacks related to their use, nonviral cationic materials, including lipidic, polymeric, and dendrimer vectors capable of electrostatically interacting with anionic phosphate groups of genetic material, represent appealing alternative options to viral carriers. Particularly, dendrimers are highly branched, nanosized synthetic polymers characterized by a globular structure, low polydispersity index, presence of internal cavities, and a large number of peripheral functional groups exploitable to bind cationic moieties. Dendrimers are successful in several biomedical applications and are currently extensively studied for nonviral gene delivery. Among dendrimers, those derived by 2,2-bis(hydroxymethyl)propanoic acid (b-HMPA), having, unlike PAMAMs, a neutral polyester-based scaffold, could be particularly good-looking due to their degradability in vivo. Here, an overview of gene therapy, its objectives and challenges, and the main cationic materials studied for transporting and delivering genetic materials have been reported. Subsequently, due to their high potential for application in vivo, we have focused on the biodegradable dendrimer scaffolds, telling the history of the birth and development of b-HMPA-derived dendrimers. Finally, thanks to a personal experience in the synthesis of b-HMPA-based dendrimers, our contribution to this field has been described. In particular, we have enriched this work by reporting about the b-HMPA-based derivatives peripherally functionalized with amino acids prepared by us in recent years, thus rendering this paper original and different from the existing reviews. Full article
(This article belongs to the Special Issue Bioactive Nanoparticles: Synthesis and Potential Applications)
Show Figures

Graphical abstract

14 pages, 2581 KB  
Communication
Template-Assisted Assembly of Hybrid DNA/RNA Nanostructures Using Branched Oligodeoxy- and Oligoribonucleotides
by Alesya Fokina, Yulia Poletaeva, Svetlana Dukova, Kristina Klabenkova, Zinaida Rad’kova, Anastasia Bakulina, Timofei Zatsepin, Elena Ryabchikova and Dmitry Stetsenko
Int. J. Mol. Sci. 2023, 24(21), 15978; https://doi.org/10.3390/ijms242115978 - 5 Nov 2023
Cited by 4 | Viewed by 2371
Abstract
A template-assisted assembly approach to a C24 fullerene-like double-stranded DNA polyhedral shell is proposed. The assembly employed a supramolecular oligonucleotide dendrimer as a 3D template that was obtained via the hybridization of siRNA strands and a single-stranded DNA oligonucleotide joined to three- [...] Read more.
A template-assisted assembly approach to a C24 fullerene-like double-stranded DNA polyhedral shell is proposed. The assembly employed a supramolecular oligonucleotide dendrimer as a 3D template that was obtained via the hybridization of siRNA strands and a single-stranded DNA oligonucleotide joined to three- or four-way branched junctions. A four-way branched oligonucleotide building block (a starlet) was designed for the assembly of the shell composed of three identical self-complementary DNA single strands and a single RNA strand for hybridization to the DNA oligonucleotides of the template. To prevent premature auto-hybridization of the self-complementary oligonucleotides in the starlet, a photolabile protecting group was introduced via the N3-substituted thymidine phosphoramidite. Cleavable linkers such as a disulfide linkage, RNase A sensitive triribonucleotides, and di- and trideoxynucleotides were incorporated into the starlet and template at specific points to guide the post-assembly disconnection of the shell from the template, and enzymatic disassembly of the template and the shell in biological media. At the same time, siRNA strands were modified with 2′-OMe ribonucleotides and phosphorothioate groups in certain positions to stabilize toward enzymatic digestion. We report herein a solid-phase synthesis of branched oligodeoxy and oligoribonucleotide building blocks for the DNA/RNA dendritic template and the branched DNA starlet for a template-assisted construction of a C24 fullerene-like DNA shell after initial molecular modeling, followed by the assembly of the shell around the DNA-coated RNA dendritic template, and visualization of the resulting nanostructure by transmission electron microscopy. Full article
(This article belongs to the Special Issue Bio-Nano Interactions 2.0)
Show Figures

Figure 1

13 pages, 2930 KB  
Article
A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A
by Xiujin Chen, Dong Gao, Jiaqi Chen, Xueqing Wang, Chifang Peng, Hongli Gao, Yao Wang, Zhaozhou Li and Huawei Niu
Biosensors 2023, 13(11), 955; https://doi.org/10.3390/bios13110955 - 26 Oct 2023
Cited by 9 | Viewed by 2534
Abstract
Sensitive detection of ochratoxin A (OTA) is significant and essential because OTA may pose risks to human and animal health. Here, we developed an electrochemical aptasensor for OTA analysis using polyamidoamine (PAMAM) dendrimers as a signal amplifier. As a carrier, PAMAM has numerous [...] Read more.
Sensitive detection of ochratoxin A (OTA) is significant and essential because OTA may pose risks to human and animal health. Here, we developed an electrochemical aptasensor for OTA analysis using polyamidoamine (PAMAM) dendrimers as a signal amplifier. As a carrier, PAMAM has numerous primary amino groups that can be coupled with thiolated complementary strand DNA (cDNA), allowing it to recognize aptamers bound to the surface of horseradish peroxidase (HRP)-modified gold nanoparticles (AuNPs), thereby improving the sensitivity of the aptasensor. When monitoring the positive samples, OTA was captured by the aptamer fixed on the HRP-conjugated AuNP surface by specific recognition, after which the formed OTA-aptamer conjugates were detached from the electrode surface, ultimately decreasing the electrochemical signal monitored by differential pulse voltammetry. The novel aptasensor achieved a broad linear detection range from 5 to 105 ng L−1 with a low detection limit of 0.31 ng L−1. The proposed aptasensor was successfully applied for OTA analysis in red wine, with recovery rates ranging from 94.15 to 106%. Furthermore, the aptasensor also exhibited good specificity and storage stability. Therefore, the devised aptasensor represents a sensitive, practical and reliable tool for monitoring OTA in agricultural products, which can also be adapted to other mycotoxins. Full article
(This article belongs to the Special Issue Recent Advances in Nano-Biomaterial-Based Biosensors)
Show Figures

Figure 1

32 pages, 3538 KB  
Review
Biomaterial Drug Delivery Systems for Prominent Ocular Diseases
by Avin Sapowadia, Delaram Ghanbariamin, Libo Zhou, Qifa Zhou, Tannin Schmidt, Ali Tamayol and Yupeng Chen
Pharmaceutics 2023, 15(7), 1959; https://doi.org/10.3390/pharmaceutics15071959 - 15 Jul 2023
Cited by 14 | Viewed by 4844
Abstract
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect [...] Read more.
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy. Full article
(This article belongs to the Special Issue Polymeric Biomaterials for Pharmaceuticals and Biomedical Application)
Show Figures

Figure 1

19 pages, 12008 KB  
Article
Electrochemical DNA-Sensor Based on Macrocyclic Dendrimers with Terminal Amino Groups and Carbon Nanomaterials
by Tatjana Kulikova, Rezeda Shamagsumova, Alexey Rogov, Ivan Stoikov, Pavel Padnya, Igor Shiabiev and Gennady Evtugyn
Sensors 2023, 23(10), 4761; https://doi.org/10.3390/s23104761 - 15 May 2023
Cited by 8 | Viewed by 2708
Abstract
The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. [...] Read more.
The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established. The developed DNA sensors were tested on discrimination of native, thermally denatured, and chemically damaged DNA and on the determination of doxorubicin as the model intercalator. The limit of detection of doxorubicin established for the biosensor based on multi-walled carbon nanotubes was equal to 1.0 pM with recovery from spiked human serum of 105–120%. After further optimization of the assembling directed towards the stabilization of the signal, the developed DNA sensors can find application in the preliminary screening of antitumor drugs and thermal damage of DNA. They can also be applied for testing potential drug/DNA nanocontainers as future delivery systems. Full article
Show Figures

Figure 1

38 pages, 4132 KB  
Review
Dendrimer-Mediated Delivery of DNA and RNA Vaccines
by Lyubov A. Kisakova, Evgeny K. Apartsin, Lily F. Nizolenko and Larisa I. Karpenko
Pharmaceutics 2023, 15(4), 1106; https://doi.org/10.3390/pharmaceutics15041106 - 30 Mar 2023
Cited by 41 | Viewed by 5520
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. [...] Read more.
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines. Full article
(This article belongs to the Special Issue Dendrimers for Drug Delivery)
Show Figures

Figure 1

14 pages, 3440 KB  
Article
A Target-Triggered Emission Enhancement Strategy Based on a Y-Shaped DNA Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristic for microRNA Imaging in Living Cells
by Zhe Chen, Zhuoyi Wang, Yihua Yuan, Bo Liu, Jiangbo Yu, Zhiwen Wei and Keming Yun
Molecules 2023, 28(5), 2149; https://doi.org/10.3390/molecules28052149 - 24 Feb 2023
Cited by 2 | Viewed by 2720
Abstract
DNA self-assembled fluorescent nanoprobes have been developed for bio-imaging owing to their high resistance to enzyme degradation and great cellular uptake capacity. In this work, we designed a new Y-shaped DNA fluorescent nanoprobe (YFNP) with aggregation-induced emission (AIE) characteristic for microRNA imaging in [...] Read more.
DNA self-assembled fluorescent nanoprobes have been developed for bio-imaging owing to their high resistance to enzyme degradation and great cellular uptake capacity. In this work, we designed a new Y-shaped DNA fluorescent nanoprobe (YFNP) with aggregation-induced emission (AIE) characteristic for microRNA imaging in living cells. With the modification of the AIE dye, the constructed YFNP had a relatively low background fluorescence. However, the YFNP could emit a strong fluorescence due to the generation of microRNA-triggered AIE effect in the presence of target microRNA. Based on the proposed target-triggered emission enhancement strategy, microRNA-21 was detected sensitively and specifically with a detection limit of 122.8 pM. The designed YFNP showed higher bio-stability and cell uptake than the single-stranded DNA fluorescent probe, which has been successfully applied for microRNA imaging in living cells. More importantly, the microRNA-triggered dendrimer structure could be formed after the recognition of target microRNA, achieving a reliable microRNA imaging with a high spatiotemporal resolution. We expect that the proposed YFNP will become a promising candidate for bio-sensing and bio-imaging. Full article
(This article belongs to the Special Issue Applications of Spectroscopy in Molecules)
Show Figures

Figure 1

21 pages, 2296 KB  
Article
Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study
by Cláudia Camacho, Dina Maciel, Helena Tomás and João Rodrigues
Pharmaceutics 2023, 15(2), 689; https://doi.org/10.3390/pharmaceutics15020689 - 17 Feb 2023
Cited by 4 | Viewed by 3441
Abstract
Cisplatin (cis-diamminedichloroplatinum(II)) is a potent chemotherapeutic agent commonly used to treat cancer. However, its use also leads to serious side effects, such as nephrotoxicity, ototoxicity, and cardiotoxicity, which limit the dose that can be safely administered to patients. To minimize these [...] Read more.
Cisplatin (cis-diamminedichloroplatinum(II)) is a potent chemotherapeutic agent commonly used to treat cancer. However, its use also leads to serious side effects, such as nephrotoxicity, ototoxicity, and cardiotoxicity, which limit the dose that can be safely administered to patients. To minimize these problems, dendrimers may be used as carriers for cisplatin through the coordination of their terminal functional groups to platinum. Here, cisplatin was conjugated to half-generation anionic PAMAM dendrimers in mono- and bidentate forms, and their biological effects were assessed in vitro. After preparation and characterization of the metallodendrimers, their cytotoxicity was evaluated against several cancer cell lines (A2780, A2780cisR, MCF-7, and CACO-2 cells) and a non-cancer cell line (BJ cells). The results showed that all the metallodendrimers were cytotoxic and that the cytotoxicity level depended on the cell line and the type of coordination mode (mono- or bidentate). Although, in this study, a correlation between dendrimer generation (number of carried metallic fragments) and cytotoxicity could not be completely established, the monodentate coordination form of cisplatin resulted in lower IC50 values, thus revealing a more accessible cisplatin release from the dendritic scaffold. Moreover, most of the metallodendrimers were more potent than the cisplatin, especially for the A2780 and A2780cisR cell lines, which showed higher selectivity than for non-cancer cells (BJ cells). The monodentate G0.5COO(Pt(NH3)2Cl)8 and G2.5COO(Pt(NH3)2Cl)32 metallodendrimers, as well as the bidentate G2.5COO(Pt(NH3)2)16 metallodendrimer, were even more active towards the cisplatin-resistant cell line (A2780cisR cells) than the correspondent cisplatin-sensitive one (A2780 cells). Finally, the effect of the metallodendrimers on the hemolysis of human erythrocytes was neglectable, and metallodendrimers’ interaction with calf thymus DNA seemed to be stronger than that of free cisplatin. Full article
(This article belongs to the Special Issue Applications of Dendrimers in Biomedicine)
Show Figures

Figure 1

Back to TopTop