Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = DEMO blanket

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 14197 KiB  
Article
A Multidisciplinary Approach to Volumetric Neutron Source (VNS) Thermal Shield Design: Analysis and Optimisation of Electromagnetic, Thermal, and Structural Behaviours
by Fabio Viganò, Irene Pagani, Simone Talloni, Pouya Haghdoust, Giovanni Falcitelli, Ivan Maione, Lorenzo Giannini, Cesar Luongo and Flavio Lucca
Energies 2025, 18(13), 3305; https://doi.org/10.3390/en18133305 - 24 Jun 2025
Viewed by 231
Abstract
The Volumetric Neutron Source (VNS) is a pivotal facility proposed for advancing fusion nuclear technology, particularly for the qualification of breeding blanket systems, a key component of DEMO and future fusion reactors. This study focuses on the design and optimisation of the VNS [...] Read more.
The Volumetric Neutron Source (VNS) is a pivotal facility proposed for advancing fusion nuclear technology, particularly for the qualification of breeding blanket systems, a key component of DEMO and future fusion reactors. This study focuses on the design and optimisation of the VNS Thermal Shield, adopting a multidisciplinary approach to address its thermal and structural behaviours. The Thermal Shield plays a crucial role in protecting superconducting magnets and other cryogenic components by limiting heat transfer from higher-temperature regions of the tokamak to the cryostat, which operates at temperatures between 4 K and 20 K. To ensure both thermal insulation and structural integrity, multiple design iterations were conducted. These iterations aimed to reduce electromagnetic (EM) forces induced during magnet charge and discharge cycles by introducing strategic cuts and reinforcements in the shield design. The optimisation process included the evaluation of various aluminium alloys and composite materials to achieve a balance between rigidity and weight while maintaining structural integrity under EM and mechanical loads. Additionally, an integrated thermal study was performed to ensure effective temperature management, maintaining the shield at an operational temperature of around 80 K. Cooling channels were incorporated to homogenise temperature distribution, improving thermal stability and reducing thermal gradients. This comprehensive approach demonstrates the viability of advanced material solutions and design strategies for thermal and structural optimisation. The findings reinforce the importance of the VNS as a dedicated platform for testing and validating critical fusion technologies under operationally relevant conditions. Full article
(This article belongs to the Special Issue Advanced Simulations for Nuclear Fusion Energy Systems)
Show Figures

Figure 1

15 pages, 1451 KiB  
Article
Tritium Extraction from Liquid Blankets of Fusion Reactors via Membrane Gas–Liquid Contactors
by Silvano Tosti and Luca Farina
J. Nucl. Eng. 2025, 6(2), 13; https://doi.org/10.3390/jne6020013 - 8 May 2025
Cited by 1 | Viewed by 687
Abstract
The exploitation of fusion energy in tokamak reactors relies on efficient and reliable tritium management. The tritium needed to sustain the deuterium–tritium fusion reaction is produced in the Li-based blanket surrounding the plasma chamber, and, therefore, the effective extraction and purification of the [...] Read more.
The exploitation of fusion energy in tokamak reactors relies on efficient and reliable tritium management. The tritium needed to sustain the deuterium–tritium fusion reaction is produced in the Li-based blanket surrounding the plasma chamber, and, therefore, the effective extraction and purification of the tritium bred in the Li-blankets is needed to guarantee the tritium self-sufficiency of future fusion plants. This work introduces a new technology for the extraction of tritium from the Pb–Li eutectic alloy used in liquid blankets. Process units based on the concept of Membrane Gas–Liquid Contactor (MGLC) have been studied for the extraction of tritium from the Pb–Li in the Water Cooled Lithium Lead blankets of the DEMO reactor. MGLC units have been preliminarily designed and then compared in terms of the permeation areas and sizes with the tritium extraction technologies presently under study, namely the Permeator Against Vacuum (PAV) and the Gas–Liquid Contactors (GLCs). The results of this study show that the DEMO WCLL tritium extraction systems using MGLC require smaller permeation areas and quicker permeation kinetics than those based on PAV (Permeator Against Vacuum) devices. Accordingly, the MGLC extraction unit exhibits volumes smaller than those of both PAV and GLC. Full article
Show Figures

Figure 1

14 pages, 8588 KiB  
Article
A Spatial Five-Bar Linkage as a Tilting Joint of the Breeding Blanket Transporter for the Remote Maintenance of EU DEMO
by Hjalte Durocher, Christian Bachmann, Rocco Mozzillo, Günter Janeschitz and Xuping Zhang
Machines 2025, 13(5), 371; https://doi.org/10.3390/machines13050371 - 29 Apr 2025
Viewed by 310
Abstract
The future fusion power plant EU DEMO will generate its own tritium fuel through the use of segmented breeding blankets (BBs), which must be replaced from time to time due to material damage caused by high-energy neutrons from the plasma. A vertical maintenance [...] Read more.
The future fusion power plant EU DEMO will generate its own tritium fuel through the use of segmented breeding blankets (BBs), which must be replaced from time to time due to material damage caused by high-energy neutrons from the plasma. A vertical maintenance architecture has been proposed, using a robotic remote handling tool (transporter) to disengage the 180 t and 125 t outboard and inboard segments and manipulate them through an upper port. Safe disengagement without damaging the support structures requires the use of high-capacity tilting joints in the transporter. The trolley tilting mechanism (TTM) is proposed as a novel, compact, high-capacity robotic joint consisting of a five-bar spatial mechanism integrated in the BB transporter trolley link. A kinematic model of the TTM is established, and the analytical input–output relationships, including the position-dependent transmission ratio, are derived and used to guide the design and optimization of the mechanism. The model predictions are compared to an ADAMS multibody simulation and to the results of an experiment conducted on a down-scaled prototype, both of which validate the model accuracy. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

12 pages, 4889 KiB  
Article
Blistering Behavior of Beryllium and Beryllium Alloy under High-Dose Helium Ion Irradiation
by Ping-Ping Liu, Qi-Cong Wang, Yu-Mei Jia, Wen-Tuo Han, Xiao-Ou Yi, Qian Zhan and Fa-Rong Wan
Materials 2024, 17(16), 3997; https://doi.org/10.3390/ma17163997 - 11 Aug 2024
Cited by 3 | Viewed by 1353
Abstract
Beryllium (Be) has been selected as the solid neutron multiplier material for a tritium breeding blanket module in ITER, which is also the primary option of the Chinese TBM program. But the irradiation swelling of beryllium is severe under high temperature, high irradiation [...] Read more.
Beryllium (Be) has been selected as the solid neutron multiplier material for a tritium breeding blanket module in ITER, which is also the primary option of the Chinese TBM program. But the irradiation swelling of beryllium is severe under high temperature, high irradiation damage and high doses of transmutation-induced helium. Advanced neutron multipliers with high stability at high temperature are desired for the demonstration power plant (DEMO) reactors and the China Fusion Engineering Test Reactor (CFETR). Beryllium alloys mainly composed of Be12M (M is W or Ti) phase were fabricated by HIP, which has a high melting point and high beryllium content. Beryllium and beryllide (Be12Ti and Be12W) samples were irradiated by helium ion with 30 keV and 1 × 1018 cm−2 at RT. The microstructures of Be, Be12Ti and Be12W samples were analyzed by SEM and TEM before and after ion irradiation. The average size of the first blistering on the surface of Be-W alloy is about 0.8 μm, and that of secondary blistering is about 79 nm. The surface blistering rates of the beryllium and beryllide samples were also compared. These results may provide a preliminary experimental basis for evaluating the irradiation swelling resistance of beryllium alloy. Full article
Show Figures

Figure 1

13 pages, 1757 KiB  
Article
Optimized Water Distillation Layout for Detritiation Purpose
by Vincenzo Narcisi and Alessia Santucci
Appl. Sci. 2024, 14(4), 1328; https://doi.org/10.3390/app14041328 - 6 Feb 2024
Viewed by 1475
Abstract
Tritium permeation constitutes a key issue for the future EU-DEMO, especially in the Breeding Blanket (BB) where fusion energy must be delivered to the Primary Heat Transport System (PHTS) and where tritium must be bred. Currently, the mitigation strategy of the tritium permeation [...] Read more.
Tritium permeation constitutes a key issue for the future EU-DEMO, especially in the Breeding Blanket (BB) where fusion energy must be delivered to the Primary Heat Transport System (PHTS) and where tritium must be bred. Currently, the mitigation strategy of the tritium permeation from BB into primary coolant is based on the adoption of anti-permeation barriers and on the operation of the Coolant Purification System (CPS). This system must ensure a tritium removal rate from the primary coolant equal to the BB permeation rate at a target tritium-specific activity inside the PHTS. In the case of the Water-Cooled Lithium Lead (WCLL) BB, water distillation was selected as the most promising technology for the primary coolant detritiation due to its intrinsic simplicity and safety. Nevertheless, power consumption was recognized as a relevant concern. For this reason, the present work aims at investigating possibilities to reduce power consumption of the water CPS implementing Heat Pump-Assisted Distillation (HPAD) concepts. To do this, a review of the HPADs developed in the chemical industry was carried out, and the best options for the water CPS were identified based on qualitative considerations. Then, a quantitatively assessment of the best solution in terms of power consumption and tritium inventory was performed with the commercial numerical tool Aspen Plus. Finally, the Mechanical Vapor Recompression (MVR) concept was recognized as the most promising solution, ensuring a power saving of around 80% while keeping a limited tritium inventory. Full article
(This article belongs to the Special Issue Advances in Fusion Engineering and Design Volume II)
Show Figures

Figure 1

11 pages, 2743 KiB  
Article
Main Nuclear Responses of the DEMO Tokamak with Different In-Vessel Component Configurations
by Jin Hun Park and Pavel Pereslavtsev
Appl. Sci. 2024, 14(2), 936; https://doi.org/10.3390/app14020936 - 22 Jan 2024
Cited by 3 | Viewed by 1392
Abstract
Research and development of the DEMOnstration power plant (DEMO) breeder blanket (BB) has been performed in recent years based on a predefined DEMO tritium breeding ratio (TBR) requirement, which determines a loss of wall surface due to non-breeding in-vessel components (IVCs) which consume [...] Read more.
Research and development of the DEMOnstration power plant (DEMO) breeder blanket (BB) has been performed in recent years based on a predefined DEMO tritium breeding ratio (TBR) requirement, which determines a loss of wall surface due to non-breeding in-vessel components (IVCs) which consume plasma-facing wall surface and do not contribute to the breeding of tritium. The integration of different IVCs, such as plasma limiters, neutral beam injectors, electron cyclotron launchers and diagnostic systems, requires cut-outs in the BB, resulting in a loss of the breeder blanket volume, TBR and power generation, respectively. The neutronic analyses presented here have the goal of providing an assessment of the TBR losses associated with each IVC. Previously performed studies on this topic were carried out with simplified, homogenized BB geometry models. To address the effect of the detailed heterogeneous structure of the BBs on the TBR losses due to the inclusion of the IVCs in the tokamak, a series of blanket geometry models were developed for integration in the latest DEMO base model. The assessment was performed for both types of BBs currently developed within the EUROfusion project, the helium-cooled pebble bed (HCPB) and water-cooled lead–lithium (WCLL) concepts, and for the water-cooled lead and ceramic breeder (WLCB) hybrid BB concept. The neutronic simulations were performed using the MCNP6.2 Monte Carlo code with the Joint Evaluated Fission and Fusion File (JEFF) 3.3 data library. For each BB concept, a 22.5° toroidal sector of the DEMO tokamak was developed to assess the TBR and nuclear power generation in the breeder blankets. For the geometry models with the breeder blanket space filled only with blankets without considering IVCs, the results of the TBR calculations were 1.173, 1.150 and 1.140 for the HCPB, WCLL and WLCB BB concepts, respectively. The TBR impact of all IVCs and the losses of the power generation were estimated as a superposition of the individual effects. Full article
(This article belongs to the Special Issue Advances in Fusion Engineering and Design Volume II)
Show Figures

Figure 1

26 pages, 6833 KiB  
Article
STEAM Experimental Facility: A Step Forward for the Development of the EU DEMO BoP Water Coolant Technology
by Alessandra Vannoni, Pierdomenico Lorusso, Pietro Arena, Marica Eboli, Ranieri Marinari, Amelia Tincani, Cristiano Ciurluini, Fabio Giannetti, Nicolò Badodi, Claudio Tripodo, Antonio Cammi, Luciana Barucca, Andrea Tarallo, Pietro Agostini and Alessandro Del Nevo
Energies 2023, 16(23), 7811; https://doi.org/10.3390/en16237811 - 27 Nov 2023
Cited by 4 | Viewed by 1610
Abstract
Within the EUROfusion roadmap for the technological development of the European-DEMOnstration (EU-DEMO) reactor, a key point has been identified in the discontinuous operation (pulse-dwell-pulse) of the machine. Water Cooled Lithium Lead (WCLL) Breeding Blanket (BB) Primary Heat Transfer Systems (PHTSs) adopt technology and [...] Read more.
Within the EUROfusion roadmap for the technological development of the European-DEMOnstration (EU-DEMO) reactor, a key point has been identified in the discontinuous operation (pulse-dwell-pulse) of the machine. Water Cooled Lithium Lead (WCLL) Breeding Blanket (BB) Primary Heat Transfer Systems (PHTSs) adopt technology and components commonly used in nuclear fission power plants, whose performances could be negatively affected by the above mentioned pulsation, as well as by low-load operation in the dwell phase. This makes mandatory a full assessment of the functional feasibility of such components through accurate design and validation. For this purpose, ENEA Experimental Engineering Division at Brasimone R.C. aims at realizing STEAM, a water operated facility forming part of the multipurpose experimental infrastructure Water cooled lithium lead -thermal-HYDRAulic (W-HYDRA), conceived to investigate the water technologies applied to the DEMO BB and Balance of Plant systems and components. The experimental validation has the two main objectives of reproducing the DEMO operational phases by means of steady-state and transient tests, as well as performing dedicated tests on the steam generator aiming at demonstrating its ability to perform as intended during the power phases of the machine. STEAM is mainly composed of primary and secondary water systems reproducing the thermodynamic conditions of the DEMO WCLL BB PHTS and power conversion system, respectively. The significance of the STEAM facility resides in its capacity to amass experimental data relevant for the advancement of fusion-related technologies. This capability is attributable to the comprehensive array of instruments with which the facility will be equipped and whose strategic location is described in this work. The operational phases of the STEAM facility at different power levels are presented, according to the requirements of the experiments. Furthermore, a preliminary analysis for the definition of the control strategy for the OTSG mock-up was performed. In particular, two different control strategies were identified and tested, both keeping the primary mass flow constant and regulating the feedwater mass flow to follow a temperature set-point in the primary loop. The obtained numerical results yielded preliminary feedback on the regulation capability of the DEMO steam generator mock-up during pulsed operation, showing that no relevant overtemperature jeopardized the facility integrity, thanks to the high system responsivity to rapid load variations. Full article
Show Figures

Figure 1

21 pages, 12254 KiB  
Article
The Design of Water Loop Facility for Supporting the WCLL Breeding Blanket Technology and Safety
by Alessandra Vannoni, Pietro Arena, Bruno Gonfiotti, Marica Eboli, Pierdomenico Lorusso, Amelia Tincani, Nicolò Badodi, Antonio Cammi, Fabio Giannetti, Cristiano Ciurluini, Nicola Forgione, Francesco Galleni, Ilenia Catanzaro, Eugenio Vallone, Pietro Alessandro Di Maio, Pietro Agostini and Alessandro Del Nevo
Energies 2023, 16(23), 7746; https://doi.org/10.3390/en16237746 - 24 Nov 2023
Cited by 6 | Viewed by 1698
Abstract
The WCLL Breeding Blanket of DEMO and the Test Blanket Module (TBM) of ITER require accurate R&D activities, i.e., concept validation at a relevant scale and safety demonstrations. In view of this, the strategic objective of the Water Loop (WL) facility, belonging to [...] Read more.
The WCLL Breeding Blanket of DEMO and the Test Blanket Module (TBM) of ITER require accurate R&D activities, i.e., concept validation at a relevant scale and safety demonstrations. In view of this, the strategic objective of the Water Loop (WL) facility, belonging to the W-HYDRA experimental platform planned at C.R. Brasimone of ENEA, is twofold: to conduct R&D activities for the WCLL BB to validate design performances and to increase the technical maturity level for selection and validation phases, as well as to support the ITER WCLL Test Blanket System program. Basically, the Water Loop facility will have the capability to investigate the design features and performances of scaled-down or portions of breeding blanket components, as well as full-scale TBM mock-ups. It is a large-/medium-scale water coolant plant that will provide water coolant at high pressure and temperature. It is composed by single-phase primary (designed at 18.5 MPa and 350 °C) and secondary (designed at 2.5 MPa and 220 °C) systems thermally connected with a two-phase tertiary loop acting as an ultimate heat sink (designed at 6 bar and 80 °C). The primary loop has two main sources of power: an electrical heater up to about 1 MWe, installed in the cold side, downstream of the pump and upstream of the test section, and an electron beam gun acting as a heat flux generator. The WL has unique features and is designed as a multi-purpose facility capable of being coupled with the LIFUS5/Mod4 facility to study PbLi/water reaction at a large scale. This paper presents the status of the Water Loop facility, highlighting objectives, design features, and the analyses performed. Full article
Show Figures

Figure 1

25 pages, 5669 KiB  
Article
PbLi/Water Reaction: Experimental Campaign and Modeling Advancements in WPBB EUROfusion Project
by Marica Eboli, Pietro Arena, Nicolò Badodi, Antonio Cammi, Cristiano Ciurluini, Vittorio Cossu, Nicola Forgione, Francesco Galleni, Fabio Giannetti, Bruno Gonfiotti, Daniele Martelli, Lorenzo Melchiorri, Carmine Risi, Alessandro Tassone and Alessandro Del Nevo
Energies 2023, 16(23), 7729; https://doi.org/10.3390/en16237729 - 23 Nov 2023
Cited by 6 | Viewed by 1666
Abstract
The Water-Cooled Lithium–Lead blanket concept is a candidate breeding blanket concept for the EU DEMO reactor and it is going to be tested as one of the Test Blanket Modules (TBM) inside the ITER reactor. A major safety issue for its design is [...] Read more.
The Water-Cooled Lithium–Lead blanket concept is a candidate breeding blanket concept for the EU DEMO reactor and it is going to be tested as one of the Test Blanket Modules (TBM) inside the ITER reactor. A major safety issue for its design is the interaction between PbLi and water caused by a tube rupture in the breeding zone, the so-called in-box LOCA (Loss of Coolant Accident) scenario. This issue has been investigated in the framework of FP8 EUROfusion Project Horizon 2020 and is currently ongoing in FP9 EUROfusion Horizon Europe, defining a strategy for addressing and solving WCLL in-box LOCA. This paper discusses the efforts pursued in recent years to deal with this key safety issue, providing a general view of the approach, a timeline, research and development, and experimental activities. These are conducted to master dominant phenomena and processes relevant to safety aspects during the postulated accident, to enhance the predictive capability and reliability of selected numerical tools, and to validate and qualify models and codes and the procedures for their applications, including coupling and chains of codes. Full article
Show Figures

Figure 1

23 pages, 17158 KiB  
Article
Exploratory Thermo-Mechanical Assessment of the Bottom Cap Region of the EU DEMO Water-Cooled Lead Lithium Central Outboard Blanket Segment
by Gaetano Bongiovì, Ilenia Catanzaro, Pietro Alessandro Di Maio, Salvatore Giambrone, Alberto Gioè, Pietro Arena and Lorenzo Melchiorri
Appl. Sci. 2023, 13(17), 9812; https://doi.org/10.3390/app13179812 - 30 Aug 2023
Viewed by 1083
Abstract
The Water-Cooled Lead Lithium (WCLL) Breeding Blanket (BB) is one of the two BB concept candidates to be selected as the driver blanket for the EU DEMO fusion reactor. In this regard, the development of a sound architecture of the WCLL Central Outboard [...] Read more.
The Water-Cooled Lead Lithium (WCLL) Breeding Blanket (BB) is one of the two BB concept candidates to be selected as the driver blanket for the EU DEMO fusion reactor. In this regard, the development of a sound architecture of the WCLL Central Outboard Blanket (COB) Segment, ensuring the fulfilment of the thermal and structural design requirements, is one of the main goals of the EUROfusion consortium. To this purpose, an exploratory research campaign has been launched to preliminarily investigate the thermo-mechanical performances of the Bottom Cap (BC) region of the WCLL COB segment because of its peculiarities making its design different from the other regions. The assessment has been carried out considering the nominal BB operating conditions, the Normal Operation (NO) scenario, as well as a steady-state scenario derived from the in-box LOCA accident, the Over-Pressurization (OP) scenario. Starting from the reference geometric layout of the WCLL COB BC region, a first set of analyses has been launched in order to evaluate its structural performances under a previously calculated thermal field and to select potential geometric improvements. Then, the analysis of a complete BC region was conducted from both the thermal and structural standpoints, evaluating its structural behaviour in compliance with the RCC-MRx code. Finally, after some iterations and geometric updates, a promising geometric layout of the BC region has been obtained even though some criticalities still persist in the internal Stiffening Plates and First Wall. However, the obtained results clearly showed that the proposed layout is worthy to be further assessed to achieve a robust enough configuration. The work has been performed following a theoretical-numerical approach based on the Finite Element Method (FEM) and adopting the quoted Ansys commercial FEM code. Full article
(This article belongs to the Special Issue Advances in Fusion Engineering and Design)
Show Figures

Figure 1

11 pages, 3215 KiB  
Article
Features of Helium and Tritium Release from Li2TiO3 Ceramic Pebbles under Neutron Irradiation
by Timur Kulsartov, Zhanna Zaurbekova, Yevgen Chikhray, Inesh Kenzhina, Saulet Askerbekov, Asset Shaimerdenov, Assyl Akhanov, Magzhan Aitkulov and Meiram Begentayev
Materials 2023, 16(17), 5903; https://doi.org/10.3390/ma16175903 - 29 Aug 2023
Cited by 5 | Viewed by 1356
Abstract
The operation of fusion reactors is based on the reaction that occurs when two heavy hydrogen isotopes, deuterium and tritium, combine to form helium and a neutron with an energy of 14.1 MeV D + T → He + n. For this reaction [...] Read more.
The operation of fusion reactors is based on the reaction that occurs when two heavy hydrogen isotopes, deuterium and tritium, combine to form helium and a neutron with an energy of 14.1 MeV D + T → He + n. For this reaction to occur, it is necessary to produce tritium in the facility itself, as tritium is not common in nature. The generation of tritium in the facility is a key function of the breeder blanket. During the operation of a D–T fusion reactor, high-energy tritium is generated as a result of the 6Li(n,α)T reaction in a lithium-containing ceramic material in the breeder blanket. Lithium metatitanate Li2TiO3 is proposed as one of the promising materials for use in the solid breeder blanket of the DEMO reactor. Several concepts for test blanket modules based on lithium ceramics are being developed for testing at the ITER reactor. Lithium metatitanate Li2TiO3 has good tritium release parameters, as well as good thermal and thermomechanical characteristics. The most important property of lithium ceramics Li2TiO3 is its ability to withstand exposure to long-term high-energy radiation at high temperatures and across large temperature gradients. Its inherent thermal stability and chemical inertness are significant advantages in terms of safety concerns. This study was a continuation of research regarding tritium and helium release from lithium metatitanate Li2TiO3 with 96% 6Li during irradiation at the WWR-K research reactor using the vacuum extraction method. As a result of the analysis of experiments regarding the irradiation of lithium metatitanate in vacuum conditions, it has been established that, during irradiation, peak releases of helium from closed pores of the ceramics are observed, which open during the first 7 days of irradiation. The authors assumed that the reasons samples crack are temperature gradients over the ceramic sample, resulting from the internal heating of pebbles under the conditions of their vacuum evacuation, and contact with the bottom of the evacuated capsule. The temperature dependence of the effective diffusion coefficient of tritium in ceramics at the end of irradiation and the parameters of helium effusion were also determined. Full article
Show Figures

Figure 1

37 pages, 17102 KiB  
Article
Advancements in Designing the DEMO Driver Blanket System at the EU DEMO Pre-Conceptual Design Phase: Overview, Challenges and Opportunities
by Francisco A. Hernández, Pietro Arena, Lorenzo V. Boccaccini, Ion Cristescu, Alessandro Del Nevo, Pierre Sardain, Gandolfo A. Spagnuolo, Marco Utili, Alessandro Venturini and Guangming Zhou
J. Nucl. Eng. 2023, 4(3), 565-601; https://doi.org/10.3390/jne4030037 - 3 Aug 2023
Cited by 15 | Viewed by 4364
Abstract
The EU conducted the pre-conceptual design (PCD) phase of the demonstration reactor (DEMO) during 2014–2020 under the framework of the EUROfusion consortium. The current strategy of DEMO design is to bridge the breeding blanket (BB) technology gaps between ITER and a commercial fusion [...] Read more.
The EU conducted the pre-conceptual design (PCD) phase of the demonstration reactor (DEMO) during 2014–2020 under the framework of the EUROfusion consortium. The current strategy of DEMO design is to bridge the breeding blanket (BB) technology gaps between ITER and a commercial fusion power plant (FPP) by playing the role of a “Component Test Facility” for the BB. Within this strategy, a so-called driver blanket, with nearly full in-vessel surface coverage, will aim at achieving high-level stakeholder requirements of tritium self-sufficiency and power extraction for net electricity production with rather conventional technology and/or operational parameters, while an advanced blanket (or several of them) will aim at demonstrating, with limited coverage, features that are deemed necessary for a commercial FPP. Currently, two driver blanket candidates are being investigated for the EU DEMO, namely the water-cooled lithium lead and the helium-cooled pebble bed breeding blanket concepts. The PCD phase has been characterized not only by the detailed design of the BB systems themselves, but also by their holistic integration in DEMO, prioritizing near-term solutions, in accordance with the idea of a driver blanket. This paper summarizes the status for both BB driver blanket candidates at the end of the PCD phase, including their corresponding tritium extraction and removal (TER) systems, underlining the main achievements and lessons learned, exposing outstanding key system design and R&D challenges and presenting identified opportunities to address those risks during the conceptual design (CD) phase that started in 2021. Full article
Show Figures

Figure 1

12 pages, 10769 KiB  
Article
Manufacturing of PAV-ONE, a Permeator against Vacuum Mock-Up with Niobium Membrane
by Francesca Papa, Alessandro Venturini, Gianfranco Caruso, Serena Bassini, Chiara Ciantelli, Angela Fiore, Vincenzo Cuzzola, Antonio Denti and Marco Utili
Energies 2023, 16(14), 5471; https://doi.org/10.3390/en16145471 - 19 Jul 2023
Cited by 5 | Viewed by 1761
Abstract
The Permeator Against Vacuum (PAV) is one of the proposed technologies for the Tritium Extraction System of the WCLL BB (Water-Cooled Lithium-Lead Breeding Blanket) of the EU DEMO reactor. In this paper, the manufacturing of the first PAV mock-up with a niobium membrane [...] Read more.
The Permeator Against Vacuum (PAV) is one of the proposed technologies for the Tritium Extraction System of the WCLL BB (Water-Cooled Lithium-Lead Breeding Blanket) of the EU DEMO reactor. In this paper, the manufacturing of the first PAV mock-up with a niobium membrane with a cylindrical configuration is presented. This work aimed to demonstrate the possibility of manufacturing a relevant-size PAV to be later tested in the TRIEX-II facility. The adopted prototypical solutions are described in detail, starting with the methodology developed to join the Nb tubes with a 10CrMo9-10 (A182 F22) plate. Dedicated manufacturing and welding procedures, based on vacuum brazing with a nickel-based brazing alloy, were developed to solve the problem. This new kind of brazing was first analyzed to check the morphology of the joint and then tested to check its capability to withstand the TRIEX-II operative conditions. In parallel, the compatibility with a lithium-lead environment was analyzed by exposing samples of niobium and 10CrMo9-10 (A335 P22) to a flow of the eutectic alloy at 500 °C up to 4000 h. Finally, the PAV mock-up was installed in the TRIEX-II facility. Full article
Show Figures

Figure 1

37 pages, 221788 KiB  
Article
The European DEMO Helium Cooled Pebble Bed Breeding Blanket: Design Status at the Conclusion of the Pre-Concept Design Phase
by Guangming Zhou, Francisco A. Hernández, Pavel Pereslavtsev, Béla Kiss, Anoop Retheesh, Luis Maqueda and Jin Hun Park
Energies 2023, 16(14), 5377; https://doi.org/10.3390/en16145377 - 14 Jul 2023
Cited by 24 | Viewed by 4539
Abstract
Significant design efforts were undertaken during the Pre-Concept Design (PCD) phase of the European DEMO program to optimize the helium cooled pebble bed (HCPB) breeding blanket. A gate review was conducted for the entire European DEMO program at the conclusion of the PCD [...] Read more.
Significant design efforts were undertaken during the Pre-Concept Design (PCD) phase of the European DEMO program to optimize the helium cooled pebble bed (HCPB) breeding blanket. A gate review was conducted for the entire European DEMO program at the conclusion of the PCD phase. This article presents a summary of the design evolution and the rationale behind the HCPB breeding blanket concept for the European DEMO. The main performance metrics, including nuclear, thermal hydraulics, thermal mechanical, and tritium permeation behaviors, are reported. These figures demonstrate that the HCPB breeding blanket is a highly effective tritium-breeding and robust driver blanket concept for the European DEMO. In addition, three alternative concepts of interest were explored. Furthermore, this article outlines the upcoming design and R&D activities for the HCPB breeding blanket during the Concept Design phase (2021–2027). Full article
(This article belongs to the Special Issue Advances in Nuclear Fusion Energy and Cross-Cutting Technologies)
Show Figures

Figure 1

12 pages, 3900 KiB  
Article
European DEMO Fusion Reactor: Design and Integration of the Breeding Blanket Feeding Pipes
by Rocco Mozzillo, Christian Vorpahl, Christian Bachmann, Francisco A. Hernández and Alessandro Del Nevo
Energies 2023, 16(13), 5058; https://doi.org/10.3390/en16135058 - 29 Jun 2023
Cited by 6 | Viewed by 1840
Abstract
This article describes the design and configuration of the DEMO Breeding Blanket (BB) feeding pipes inside the upper port. As large BB segments require periodic replacement via the upper vertical ports, the space inside the upper port needs to be maximized. At the [...] Read more.
This article describes the design and configuration of the DEMO Breeding Blanket (BB) feeding pipes inside the upper port. As large BB segments require periodic replacement via the upper vertical ports, the space inside the upper port needs to be maximized. At the same time, the size of the upper port is constrained by the available space in between the toroidal field coils and the required space to integrate a thermal shield between the vacuum vessel (VV) port and the coils. The BB feeding pipes inside the vertical port need to be removed prior to BB maintenance, as they obstruct the removal kinematics. Since they are connected to the BB segments on the top and far from their vertical support on the bottom, the pipes need to be sufficiently flexible to allow for the thermal expansion of the BB segments and the pipes themselves. The optimization and verification of these BB pipes inside the upper port design are critical aspects in the development of DEMO. This article presents the chosen pipe configuration for both BB concepts considered for DEMO (helium- and water-cooled) and their structural verification for some of the most relevant thermal conditions. A 3D model of the pipes forest, both for the Helium-Cooled Pebble Bed (HCPB) and Water-Cooled Lithium Lead (WCLL) concepts, has been developed and integrated inside the DEMO Upper Port (UP), Upper Port Ring Channel, and Upper Port Annex (UPA). A preliminary structural analysis of the pipeline was carried out to check the structural integrity of the pipes, their flexibility against the thermal load, their internal pressure, and the deflection induced by the thermal expansion of the BB segments. The results showed that the secondary stress on the hot leg of the HCPB pipeline was above the limit, suggesting future improvements in its shape to increase the flexibility. Moreover, the WCLL concept did not have a critical point in terms of the secondary stress on the pipeline, since the thicknesses and the diameters of these pipes were smaller than the HCPB ones. Full article
Show Figures

Figure 1

Back to TopTop