Advancements in Designing the DEMO Driver Blanket System at the EU DEMO Pre-Conceptual Design Phase: Overview, Challenges and Opportunities
Abstract
:1. Introduction: The Work Package Breeding Blanket in the DEMO Pre-Conceptual Design (PCD) Phase
2. DEMO Plant Baseline Description, the DEMO Breeding Blanket System (BBS) and High Level Requirements
3. The WCLL BB Concept
3.1. General WCLL BB Architecture Description
3.2. The WCLL TER System
3.3. WCLL Main Performance Achievements
3.3.1. Neutronics
3.3.2. Thermal–Hydraulics
3.3.3. Magneto-Hydrodynamics (MHD)
3.3.4. Thermo-Mechanics
- Normal operation (NO) loading scenario—Level A in RCC-MRx (Cat. I loads);
- Up-vertical displacement event (UVDE) scenario—Level C in RCC-MRx (Cat. III loads);
- Over-pressurization (OP) or in-box LOCA scenario—Level D in RCC-MRx (Cat. IV loads).
4. The HCPB BB Concept
4.1. General HCPB BB Architecture Description
4.2. The HCPB TER System
4.3. HCPB Main Performance Achievements
4.3.1. Neutronics
4.3.2. Thermal–Hydraulics
4.3.3. Thermo-Mechanics
5. Gate Review G1: Challenges and Opportunities
5.1. General BB System Design Challenges
- Low reliability of the BB system;
- Low readiness level of manufacturing technologies for BB segments and associated high costs;
- Reduction in the structural integrity of BB during shutdown due to the EUROFER97 ductile-to-brittle transition temperature (DBTT) shift during irradiation;
- Large tritium permeation rates at the BZ–coolant interface;
- Low reliability of tritium transport analyses;
- Supply chain and high cost of Li-6 enrichment;
- High EM loads due to disruption events;
- No readily available process for manufacturing functionally graded W coatings for the FW;
- Low readiness of the codes and standards to design DEMO IVC;
- Over-pressurization (OP) or in-box LOCA scenario—Level D in RCC-MRx (Cat. IV loads).
5.2. Specific WCLL System Design Challenges
5.3. Specific HCPB System Design Challenges
5.4. BBS Integration Challenges
5.5. Opportunities
6. Summary and Outlook towards the CD Phase
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boccaccini, L.V.; Aiello, G.; Aubert, J.; Bachmann, C.; Barrett, T.; Del Nevo, A.; Demange, D.; Forest, L.; Hernandez, F.; Norajitra, P.; et al. Objectives and status of EUROfusion DEMO blanket studies. Fusion Eng. Des. 2016, 109–111, 119–1206. [Google Scholar] [CrossRef]
- Romanelli, F.; Barabaschi, P.; Borba, D.; Federici, G.; Horton, L.; Neu, R.; Stork, D.; Zohm, H. Fusion Electricity—A Roadmap to the Realisation of Fusion Energy; EFDA: Culham, UK, 2012. [Google Scholar]
- Donné, A.J.H. European Research Roadmap to the Realisation of Fusion Energy; EFDA: Culham, UK, 2018. [Google Scholar]
- Federici, G.; Boccaccini, L.; Cismondi, F.; Gasparotto, M.; Poitevin, Y.; Ricapito, I. An overview of the EU breeding blanket design strategy as an integral part of the DEMO design effort. Fusion Eng. Des. 2019, 141, 30–42. [Google Scholar] [CrossRef]
- Federici, G.; Bachmann, C.; Barucca, L.; Baylard, C.; Biel, W.; Boccaccini, L.V.; Bustreo, C.; Ciattaglia, S.; Cismondi, F.; Corato, V.; et al. Overview of the DEMO staged design approach in Europe. Nucl. Fusion 2019, 59, 066013. [Google Scholar] [CrossRef] [Green Version]
- Federici, G.; Holden, J.; Baylard, C.; Beaumont, A. The EU DEMO staged design approach in the Pre-Concept Design Phase. Fusion Eng. Des. 2020, 173, 112959. [Google Scholar] [CrossRef]
- Federici, G.; Bachmann, C.; Barucca, L.; Biel, W.; Boccaccini, L.; Brown, R.; Bustreo, C.; Ciattaglia, S.; Cismondi, F.; Coleman, M.; et al. DEMO design activity in Europe: Progress and updates. Fusion Eng. Des. 2018, 136, 729–741. [Google Scholar] [CrossRef]
- Bachmann, C.; Gliss, C.; Härtl, T.; Hernandez, F.; Maione, I.; Steinbacher, T.; Vizvary, Z. Mechanical support concept of the DEMO breeding blanket. Fusion Eng. Des. 2021, 173, 112840. [Google Scholar] [CrossRef]
- Fischer, U.; Boccaccini, L.; Cismondi, F.; Coleman, M.; Day, C.; Hörstensmeyer, Y.; Moro, F.; Pereslavtsev, P. Required, achievable and target TBR for the European DEMO. Fusion Eng. Des. 2020, 155, 111553. [Google Scholar] [CrossRef]
- Stork, D.; Agostini, P.; Boutard, J.; Buckthorpe, D.; Diegele, E.; Dudarev, S.; English, C.; Federici, G.; Gilbert, M.; Gonzalez, S.; et al. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment. J. Nucl. Mater. 2014, 455, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Maviglia, F.; Bachmann, C.; Federici, G.; Franke, T.; Siccinio, M.; Albanese, R.; Ambrosino, R.; Arter, W.; Bonifetto, R.; Calabrò, G.; et al. Integrated design strategy for EU_DEMO first wall protection from plasma transients. Fusion Eng. Des. 2022, 177, 113067. [Google Scholar] [CrossRef]
- Maione, I.A. BB System Requirements Document (SRD) for the Definition Dossier; IDM Report EFDA_D_2PAZCH; EUROfusion: Garching, Germany, 2020. [Google Scholar]
- Spagnuolo, G.A.; Bongiovì, G.; Franza, F.; Maione, I.A. Systems Engineering approach in support to the breeding blanket design. Fusion Eng. Des. 2019, 146, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Arena, P.; Del Nevo, A.; Moro, F.; Noce, S.; Mozzillo, R.; Imbriani, V.; Giannetti, F.; Edemetti, F.; Froio, A.; Savoldi, L.; et al. The DEMO Water-Cooled Lead–Lithium Breeding Blanket: Design Status at the End of the Pre-Conceptual Design Phase. Appl. Sci. 2021, 11, 11592. [Google Scholar] [CrossRef]
- Del Nevo, A.; Martelli, E.; Agostini, P.; Arena, P.; Bongiovì, G.; Caruso, G.; Di Gironimo, G.; Di Maio, P.; Eboli, M.; Giammusso, R.; et al. WCLL breeding blanket design and integration for DEMO 2015: Status and perspectives. Fusion Eng. Des. 2017, 124, 682–686. [Google Scholar] [CrossRef]
- Martelli, E.; Del Nevo, A.; Arena, P.; Bongiovì, G.; Caruso, G.; Di Maio, P.A.; Eboli, M.; Mariano, G.; Marinari, R.; Moro, F.; et al. Advancements in DEMO WCLL breeding blanket design and integration. Int. J. Energy Res. 2018, 42, 27–52. [Google Scholar] [CrossRef] [Green Version]
- Tassone, A.; Del Nevo, A.; Arena, P.; Bongiovi, G.; Caruso, G.; di Maio, P.A.; di Gironimo, G.; Eboli, M.; Forgione, N.; Forte, R.; et al. Recent Progress in the WCLL Breeding Blanket Design for the DEMO Fusion Reactor. IEEE Trans. Plasma Sci. 2018, 46, 1446–1457. [Google Scholar] [CrossRef]
- Del Nevo, A.; Arena, P.; Caruso, G.; Chiovaro, P.; Di Maio, P.; Eboli, M.; Edemetti, F.; Forgione, N.; Forte, R.; Froio, A.; et al. Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project. Fusion Eng. Des. 2019, 146, 1805–1809. [Google Scholar] [CrossRef] [Green Version]
- Aubert, J.; Aiello, G.; Jonquères, N.; Puma, A.L.; Morin, A.; Rampal, G. Development of the water cooled lithium lead blanket for DEMO. Fusion Eng. Des. 2014, 89, 1386–1391. [Google Scholar] [CrossRef]
- Ciurluini, C.; Vannoni, A.; Del Moro, T.; Lorusso, P.; Tincani, A.; Del Nevo, A.; Barucca, L.; Giannetti, F. Thermal-hydraulic assessment of Once-Through Steam Generators for EU-DEMO WCLL Breeding Blanket primary cooling system application. In Proceedings of the 32nd Symposium on Fusion Technology, Dubrovnik, Croatia, 18–23 September 2022. [Google Scholar]
- Vannoni, A.; Lorusso, P.; Eboli, M.; Giannetti, F.; Ciurluini, C.; Tincani, A.; Marinari, R.; Tarallo, A.; Del Nevo, A. Development of a steam generator mock-up for EU DEMO fusion reactor: Conceptual design and code assessment. In Proceedings of the 32nd Symposium on Fusion Technology, Dubrovnik, Croatia, 18–23 September 2022. [Google Scholar]
- Di Maio, P.A.; Arena, P.; Bongiovì, G.; Catanzaro, I.; Del Nevo, A.; Forte, R. On the effect of stiffening plates configuration on the DEMO Water Cooled Lithium Lead Breeding Blanket module thermo-mechanical behaviour. Fusion Eng. Des. 2019, 146, 2247–2250. [Google Scholar] [CrossRef]
- Edemetti, F.; Di Piazza, I.; Del Nevo, A.; Caruso, G. Thermal-hydraulic analysis of the DEMO WCLL elementary cell: BZ tubes layout optimization. Fusion Eng. Des. 2020, 160, 111956. [Google Scholar] [CrossRef]
- Mozzillo, R.; Utili, M.; Venturini, A.; Tincani, A.; Gliss, C. Integration of LiPb loops for WCLL BB of European DEMO. Fusion Eng. Des. 2021, 167, 112379. [Google Scholar] [CrossRef]
- Tarantino, M.; Angiolini, M.; Bassini, S.; Cataldo, S.; Ciantelli, C.; Cristalli, C.; Del Nevo, A.; Di Piazza, I.; Diamanti, D.; Eboli, M.; et al. Overview on lead-cooled fast reactor design and related technologies development in ENEA. Energies 2021, 14, 5157. [Google Scholar] [CrossRef]
- Sedano, L.; Esteban, G.; Cavaro, M.; Iraola, E.; Abdulrahman, A.; Batet, L.; Guasch, M. The solubility of helium in lead–lithium eutectic alloy. Nucl. Mater. Energy 2022, 31, 101185. [Google Scholar] [CrossRef]
- Bonifetto, R.; Utili, M.; Valerio, D.; Zanino, R. Conceptual design of a PAV-based tritium extractor for the WCLL breeding blanket of the EU DEMO: Effects of surface-limited vs. diffusion-limited modeling. Fusion Eng. Des. 2021, 167, 112363. [Google Scholar] [CrossRef]
- Garcinuño, B.; Rapisarda, D.; Fernández-Berceruelo, I.; Jiménez-Rey, D.; Sanz, J.; Moreno, C.; Palermo, I.; Ibarra, Á. Design and fabrication of a Permeator Against Vacuum prototype for small scale testing at Lead-Lithium facility. Fusion Eng. Des. 2017, 124, 871–875. [Google Scholar] [CrossRef]
- Papa, F.; Utili, M.; Venturini, A.; Caruso, G.; Savoldi, L.; Bonifetto, R.; Valerio, D.; Allio, A.; Collaku, A.; Tarantino, M. Engineering design of a Permeator Against Vacuum mock-up with niobium membrane. Fusion Eng. Des. 2021, 166, 112313. [Google Scholar] [CrossRef]
- Utili, M.; Alberghi, C.; Candido, L.; Papa, F.; Tarantino, M.; Venturini, A. TRIEX-II: An experimental facility for the characterization of the tritium extraction unit of the WCLL blanket of ITER and DEMO fusion reactors. Nucl. Fusion 2022, 62, 066036. [Google Scholar] [CrossRef]
- Garcinuño, B.; Rapisarda, D.; Fernández-Berceruelo, I.; Carella, E.; Sanz, J. The CIEMAT LiPb Loop Permeation Experiment. Fusion Eng. Des. 2019, 146, 1228–1232. [Google Scholar] [CrossRef]
- Alberghi, C.; Candido, L.; Utili, M.; Zucchetti, M. Development of new analytical tools for tritium transport modelling. Fusion Eng. Des. 2022, 177, 113083. [Google Scholar] [CrossRef]
- Candido, L.; Alberghi, C.; Antonelli, A.; Bassini, S.; Piccioni, M.; Storai, S.; Testoni, R.; Utili, M.; Zucchetti, M. HyPer-QuarCh II: A laboratory-scale device for hydrogen isotopes permeation experiments. Fusion Eng. Des. 2021, 172, 112920. [Google Scholar] [CrossRef]
- Malo, M.; Garcinuño, B.; Rapisarda, D. Experimental refutation of the deuterium permeability in vanadium, niobium and tantalum. Fusion Eng. Des. 2019, 146, 224–227. [Google Scholar] [CrossRef]
- Moro, F.; Arena, P.; Catanzaro, I.; Colangeli, A.; Del Nevo, A.; Flammini, D.; Fonnesu, N.; Forte, R.; Imbriani, V.; Mariano, G.; et al. Nuclear performances of the water-cooled lithium lead DEMO reactor: Neutronic analysis on a fully heterogeneous model. Fusion Eng. Des. 2021, 168, 112514. [Google Scholar] [CrossRef]
- Arena, P.; Bongiovì, G.; Catanzaro, I.; Ciurluini, C.; Collaku, A.; Del Nevo, A.; Di Maio, P.A.; D’onorio, M.; Giannetti, F.; Imbriani, V.; et al. Design and integration of the EU-DEMO Water-Cooled Lead Lithium Breeding Blanket. In Proceedings of the 32nd Symposium on Fusion Technology, Dubrovnik, Croatia, 18–23 September 2022. [Google Scholar]
- X-5 Monte Carlo Team. MCNP—A General Monte Carlo N-particle Transport Code—Overview and Theory (Version 5, Vol. I), Los Alamos National Laboratory. Available online: https://mcnp.lanl.gov/pdf_files/TechReport_2000_LANL_LA-13709-M_Briesmeisterothers.pdf (accessed on 30 July 2022).
- JEFF3.3 Nuclear Data Library. Available online: http://www.oecd-nea.org/dbdata/jeff/jeff33/#neutron (accessed on 30 July 2022).
- Catanzaro, I.; Bongiovì, G.; Di Maio, P.A. Analysis of the Thermo-Mechanical Behaviour of the EU DEMO Water-Cooled Lithium Lead Central Outboard Blanket Segment under an Optimized Thermal Field. Appl. Sci. 2022, 12, 1356. [Google Scholar] [CrossRef]
- Allio, A.; Arena, P.; Del Nevo, A.; Savoldi, L. Hybrid modelling for the manifolds and coolant flow distribution in the Water-Cooled Lead-Lithium of the EU-DEMO reactor. In Proceedings of the 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, 6–11 March 2022. [Google Scholar]
- Siriano, S.; Tassone, A.; Carusso, G.; Del Nevo, A. Electromagnetic coupling phenomena in co-axial rectangular channels. Fusion Eng. Des. 2020, 160, 111854. [Google Scholar] [CrossRef]
- Roca Urgorri, F.; Fernández-Bercerualo, I.; Rapisarda, D. Magneto-convective analyses of the PbLi flow for the EU-WCLL fusion breeding blanket. Energies 2021, 14, 6192. [Google Scholar] [CrossRef]
- Yan, Y.; Ying, A.; Abdou, M. Numerical study of magneto-convection flows in a complex prototypical liquid-metal fusion blanket geometry. Fusion Eng. Des. 2020, 159, 111688. [Google Scholar]
- Siriano, S. Numerical analysis of extreme magneto-convective phenomena in the WCLL blanket. In Proceedings of the 32nd Symposium on Fusion Technology, Dubrovnik, Croatia, 18–23 September 2022. [Google Scholar]
- Tassone, A.; Carusso, G.; Del Nevo, A. Influence of PbLi hydraulic path and integration layout on MHD pressure losses. Fusion Eng. Des. 2020, 155, 111517. [Google Scholar] [CrossRef]
- Design and Construction Rules for Mechanical Components of Nuclear Installations (RCC-MRx); AFCEN: Paris, France, 2012.
- Catanzaro, I.; Bongiovì, G.; Chiovaro, P.; Di Maio, P.A.; Spagnuolo, G.A. Development and application of an alternative modelling approach for the thermo-mechanical analysis of a DEMO Water-Cooled Lithium Lead breeding blanket segment. Fusion Eng. Des. 2022, 180, 113195. [Google Scholar] [CrossRef]
- Federici, G.; Bachmann, C.; Biel, W.; Boccaccini, L.; Cismondi, F.; Ciattaglia, S.; Coleman, M.; Day, C.; Diegele, E.; Franke, T.; et al. Overview of the design approach and prioritization of R&D activities towards an EU DEMO. Fusion Eng. Des. 2016, 109–111, 1464–1474. [Google Scholar]
- Federici, G.; Biel, W.; Gilbert, M.; Kemp, R.; Taylor, N.; Wenninger, R. European DEMO design strategy and consequences for materials. Nucl. Fusion 2017, 57, 092002. [Google Scholar] [CrossRef] [Green Version]
- Moscato, I.; Barucca, L.; Bubelis, E.; Caruso, G.; Ciattaglia, S.; Ciurluini, C.; Del Nevo, A.; Di Maio, P.; Giannetti, F.; Hering, W.; et al. Tokamak cooling systems and power conversion system options. Fusion Eng. Des. 2022, 178, 113093. [Google Scholar] [CrossRef]
- Chakin, V.; Rolli, R.; Vladimirov, P.; Moeslang, A. Tritium and helium release from beryllium pebbles neutron-irradiated up to 230 appm tritium and 3000 appm helium production in HIDOBE-01. Nucl. Mater. Energy 2016, 9, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.V.; van Til, S.; Stijkel, M.; Nakamichi, M.; Zmitko, M. Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01. Fusion Eng. Des. 2016, 102, 74–80. [Google Scholar] [CrossRef]
- Hernández, F.A.; Pereslavtsev, P.; Kang, Q.; Norajitra, P.; Kiss, B.; Nádasi, G.; Bitz, O. A new HCPB breeding blanket for the EU DEMO: Evolution, rationale and preliminary performances. Fusion Eng. Des. 2017, 124, 882–886. [Google Scholar] [CrossRef]
- Kolb, M.H.H.; Mukai, K.; Knitter, R.; Hoshino, T. Li4SiO4 based breeder ceramics with Li2TiO3, LiAlO2 and LiXLaYTiO3 additions, part I: Fabrication. Fusion Eng. Des. 2017, 115, 39–48. [Google Scholar] [CrossRef]
- Hernández, F.A.; Pereslavtsev, P.; Zhou, G.; Kang, Q.; D’amico, S.; Neuberger, H.; Boccaccini, L.V.; Kiss, B.; Nádasi, G.; Maqueda, L.; et al. Consolidated design of the HCPB Breeding Blanket for the pre-Conceptual Design Phase of the EU DEMO and harmonization with the ITER HCPB TBM program. Fusion Eng. Des. 2020, 156, 111614. [Google Scholar] [CrossRef]
- The JEFF Team. JEFF-3.2: Evaluated Nuclear Data Library. Available online: http://www.oecd-nea.org/dbdata/jeff (accessed on 30 July 2022).
- Pereslavtsev, P.; Cismondi, F.; Hernández, F.A. Analysis of the shielding options for HCPB DEMO blanket. Fusion Eng. Des. 2020, 156, 111605. [Google Scholar] [CrossRef]
- Park, J.H.; Pereslavtsev, P.; Konobeev, A.; Wegmann, C. Statistical analysis of Tritium Breeding Ratio deviations in the DEMO due to nuclear data uncertainties. Appl. Sci. 2020, 11, 5234. [Google Scholar] [CrossRef]
- Bachmann, C.; Ciattaglia, S.; Cismondi, F.; Eade, T.; Federici, G.; Fischer, U.; Franke, T.; Gliss, C.; Hernandez, F.; Keep, J.; et al. Overview over DEMO design integration challenges and their impact on component design concepts. Fusion Eng. Des. 2018, 136, 87–95. [Google Scholar] [CrossRef]
- Zhou, G.; Kang, Q.; Hernández, F.A.; D’amico, S.; Kiss, B. Thermal hydraulics activities for consolidating HCPB breeding blanket of the European DEMO. Nucl. Fusion 2020, 60, 096008. [Google Scholar] [CrossRef]
- Maviglia, F. Overview of DEMO Technology and Scenario Design activities in Europe. In Proceedings of the 2nd Asia-Pacific Conference on Plasma Physics, Kanazawa, Japan, 15 November 2018. [Google Scholar]
- Vizvary, Z.; Arter, W.; Bachmann, C.; Barrett, T.; Chuilon, B.; Cooper, P.; Flynn, E.; Firdaouss, M.; Franke, T.; Gerardin, J.; et al. European DEMO First Wall shaping and limiters design and analysis status. Fusion Eng. Des. 2020, 158, 111676. [Google Scholar] [CrossRef]
- Janky, F. Kinetic control. In Proceedings of the 5th IAEA DEMO Programme Workshop, Daejon, Republic of Korea, 14 May 2018. [Google Scholar]
- Arbeiter, F.; Bachmann, C.; Chen, Y.; Ilić, M.; Schwab, F.; Sieglin, B.; Wenninger, R. Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices. Fusion Eng. Des. 2016, 109–111, 1123–1129. [Google Scholar] [CrossRef]
- Ruck, S.; Arbeiter, F. Thermohydraulics of rib-roughened helium gas running cooling channels for first wall applications. Fusion Eng. Des. 2016, 109–111, 1035–1040. [Google Scholar] [CrossRef]
- Ruck, S.; Arbeiter, F. Detached eddy simulation of turbulent flow and heat transfer in cooling channels roughened by variously shaped ribs on one wall. Int. J. Heat Mass Transf. 2017, 118, 388–401. [Google Scholar] [CrossRef]
- Maione, I.A.; Roccella, M.; Hernández, F.A.; Lucca, F. Update of electromagnetic loads on HCPB breeding blanket for DEMO 2017 configuration. Fusion Eng. Des. 2018, 127, 192–201. [Google Scholar]
- Aubert, J.; Aiello, G.; Boullon, R.; Hernández, F.A.; Jaboulay, J.C. DEMO Breeding Blanket Helium Cooled First Wall design investigation to cope with high heat flux loads. Fusion Eng. Des. 2015, 100, 2–43. [Google Scholar]
- Retheesh, A.; Hernández, F.A.; Zhou, G. Application of Inelastic Method and Its Comparison with Elastic Method for the Assessment of In-Box LOCA Event on EU DEMO HCPB Breeding Blanket Cap Region. Appl. Sci. 2021, 11, 9104. [Google Scholar] [CrossRef]
- Sardain, P. WPBB Risk Register; EFDA_D_2NT5TB, EUROfusion Report; EUROfusion: Garching, Germany, 2020. [Google Scholar]
- Pinna, T. Approach on improving reliability of DEMO technical solutions. In Proceedings of the 14th International Symposium on Fusion Nuclear Technology, Budapest, Hungary, 22–27 September 2019. [Google Scholar]
- Giegerich, T.; Battes, K.; Schwenzer, J.C.; Day, C. Development of a viable route for lithium-6 supply of DEMO and future fusion power plants. Fusion Eng. Des. 2019, 149, 111339. [Google Scholar] [CrossRef]
- Eboli, M.; Galleni, F.; Forgione, N.; Badodi, N.; Cammi, A.; Del Nevo, A. Experimental and Numerical Results of LIFUS5/Mod3 Series E Test on In-Box LOCA Transient for WCLL-BB. Energies 2021, 14, 8527. [Google Scholar] [CrossRef]
- Eboli, M.; Forgione, N.; Del Nevo, A. Assessment of SIMMER-III code in predicting Water Cooled Lithium Lead Breeding Blanket “in-box-Loss of Coolant Accident”. Fusion Eng. Des. 2021, 163, 112127. [Google Scholar] [CrossRef]
- Galleni, F.; Moghanaki, S.; Eboli, M.; Del Nevo, A.; Paci, S.; Ciolini, R.; Frano, R.L.; Forgione, N. RELAP5/SIMMER-III code coupling development for PbLi-water interaction. Fusion Eng. Des. 2020, 153, 111504. [Google Scholar]
- Eboli, M. PbLi/water reaction: Experimental campaign and modelling advancements in WPBB EUROfusion Project. In Proceedings of the 32nd Symposium on Fusion Technology, Dubrovnik, Croatia, 18–23 September 2022. [Google Scholar]
- Boccaccini, L.V.; Arbeiter, F.; Arena, P.; Aubert, J.; Bühler, L.; Cristescu, I.; Del Nevo, A.; Eboli, M.; Forest, L.; Harrington, C.; et al. Status of maturation of critical technologies and systems design: Breeding Blanket. Fusion Eng. Des. 2022, 179, 113116. [Google Scholar] [CrossRef]
- Mistrangelo, C.; Bühler, L.; Alberghi, C.; Bassini, S.; Candido, L.; Courtessole, C.; Tassone, A.; Urgorri, F.R.; Zikanov, O. MHD R&D Activities for Liquid Metal Blankets. Energies 2021, 14, 1640. [Google Scholar]
- Del Nevo, A.; Arena, P.; Eboli, M.; Lorusso, P.; Tincani, A.; Badodi, N.; Cammi, A.; Giannetti, F.; Ciurlini, C.; Forgione, N.; et al. The design of Water Loop facility for supporting the Water coolant lithium lead breeding blanket technology and safety. In Proceedings of the 32nd Symposium on Fusion Technology, Dubrovnik, Croatia, 18–23 September 2022. [Google Scholar]
- Barrett, T.R.; Bamford, M.; Chuilon, B.; Deighan, T.; Efthymiou, P.; Fletcher, L.; Gorley, M.; Grant, T.; Hall, T.; Horsley, D.; et al. CHIMERA Facility Development Programme and Virtual Results. In Proceedings of the 32nd Symposium on Fusion Technology, Dubrovnik, Croatia, 18–23 September 2022. [Google Scholar]
- Moscardini, M.; Gan, Y.; Pupeschi, S.; Kamlah, M.J.F.E. Discrete element method for effective thermal conductivity of packed pebbles accounting for the Smoluchowski effect. Fusion Eng. Des. 2018, 127, 192–201. [Google Scholar] [CrossRef]
- Spagnuolo, G.A.; Arredondo, R.; Boccaccini, L.; Chiovaro, P.; Ciattaglia, S.; Cismondi, F.; Coleman, M.; Cristescu, I.; D’Amico, S.; Day, C.; et al. Integrated design of breeding blanket and ancillary systems related to the use of helium or water as a coolant and impact on the overall plant design. Fusion Eng. Des. 2021, 173, 112933. [Google Scholar] [CrossRef]
- Spagnuolo, G.A.; Arredondo, R.; Boccaccini, L.V.; Coleman, M.; Cristescu, I.; Federici, G.; Franza, F.; Garcinuño, B.; Moreno, C.; Rapisarda, D.; et al. Integration issues on tritium management of the European DEMO Breeding Blanket and ancillary systems. Fusion Eng. Des. 2021, 171, 112573. [Google Scholar] [CrossRef]
- Chauvin, D.; Berry, T.; Chuilon, B.; Budden, S.; Colling, B.; Crofts, O.; Federici, G.; Flynn, E.; Gliss, C.; Ha, S.; et al. Design and feasibility of breeding blanket vertical segment-based architecture. Fusion Eng. Des. 2021, 173, 112941. [Google Scholar] [CrossRef]
- Cismondi, F.; Spagnuolo, G.A.; Boccaccini, L.V.; Chiovaro, P.; Ciattaglia, S.; Cristescu, I.; Day, C.; Del Nevo, A.; Di Maio, P.A.; Federici, G.; et al. Progress of the conceptual design of the European DEMO breeding blanket, tritium extraction and coolant purification systems. Fusion Eng. Des. 2020, 157, 111640. [Google Scholar] [CrossRef] [Green Version]
- Chiovaro, P.; Ciattaglia, S.; Cismondi, F.; Del Nevo, A.; Di Maio, P.; Federici, G.; Frittitta, C.; Moscato, I.; Spagnuolo, G.; Vallone, E. Investigation of the DEMO WCLL Breeding Blanket Cooling Water Activation. Fusion Eng. Des. 2020, 157, 111697. [Google Scholar] [CrossRef]
- Chiovaro, P.; Ciattaglia, S.; Cismondi, F.; Del Nevo, A.; Di Maio, P.A.; Federici, G.; Moscato, I.; Spagnuolo, G.A.; Vallone, E. Assessment of DEMO WCLL breeding blanket primary heat transfer system isolation valve absorved doses due to activated water. Fusion Eng. Des. 2020, 160, 111999. [Google Scholar] [CrossRef]
- Utili, M.; Bassini, S.; Cataldo, S.; Di Fonzo, F.; Kordac, M.; Hernandez, T.; Kunzova, K.; Lorenz, J.; Martelli, D.; Padino, B.; et al. Development of anti-permeation and corrosion barrier coatings for the WCLL breeding blanket of the European DEMO. Fusion Eng. Des. 2021, 170, 112453. [Google Scholar] [CrossRef]
- Arredondo, R.; Schmid, K.; Subba, F.; Spagnuolo, G.A. Preliminary estimates of tritium permeation and retention in the first wall of DEMO due to ion bombardment. Nucl. Mater. Energy 2020, 28, 101039. [Google Scholar] [CrossRef]
- Abdou, M.; Morley, N.B.; Smolentsev, S.; Ying, A.; Malang, S.; Rowcliffe, A.; Ulrickson, M. Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Eng. Des. 2015, 100, 2–42. [Google Scholar]
- Maisonnier, D.; Campbell, D.; Cook, I.; Di Pace, L.; Giancarli, L.; Hayward, J.; Puma, A.L.; Medrano, M.; Norajitra, P.; Roccella, M.; et al. Power plant conceptual studies in Europe. Nucl. Fusion 2007, 47, 1524. [Google Scholar] [CrossRef]
- Edemetti, F.; Martelli, E.; Tassone, A.; Caruso, G.; Del Nevo, A. DEMO WCLL BZ cooling system design: Analysis and discussion. Fusion Eng. Des. 2019, 146, 2632–2638. [Google Scholar] [CrossRef] [Green Version]
- Mozzillo, R.; Del Nevo, A.; Martelli, E.; Di Gironimo, G. Alternative design of DEMO Water Cooled Lithium Lead internal structure. Fusion Eng. Des. 2019, 146, 1056–1059. [Google Scholar] [CrossRef]
- Hernández, F.A.; Pereslavtsev, P. First principles review of options for tritium breeder and neutron multiplier materials for breeding blankets in fusion reactors. Fusion Eng. Des. 2018, 137, 243–256. [Google Scholar]
- Zhou, G.; Hernández, F.A.; Kang, Q.; Pereslavtsev, P. Progress on the helium cooled Molten Lead Ceramic Breeder concept, as a near-term alternative blanket for EU DEMO. Fusion Eng. Des. 2019, 146, 1029–1034. [Google Scholar] [CrossRef]
- Pereslavtsev, P.; Hernández, F.A.; Zhou, G.; Lu, L.; Wegmann, C.; Fischer, U. Nuclear analyses of solid breeder blanket options for DEMO: Status, challenges and outlook. Fusion Eng. Des. 2019, 146, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Lu, Y.; Hernández, F.A. A water cooled Lead and Ceramic Breeder blanket for European DEMO. Fusion Eng. Des. 2021, 168, 112397. [Google Scholar] [CrossRef]
- Lu, Y.; Ye, M.; Zhou, G.; Hernández, F.A.; Leppänen, J.; Hu, Y. Exploratory tritium breeding performance study on a water cooled lead ceramic breeder blanket for EU DEMO using Serpent-2. Fusion Eng. Des. 2021, 28, 101050. [Google Scholar] [CrossRef]
- Wang, S.; Hernández, F.A.; Bubelis, E.; Chen, H. Comparative analysis of the efficiency of a CO2-cooled and He-cooled pebble bed breeding blanket for the EU DEMO fusion reactor. Fusion Eng. Des. 2019, 138, 32–40. [Google Scholar] [CrossRef]
- Wang, S.; Hernández, F.A.; Chen, H.; Zhou, G. Thermal-hydraulic analysisof the First Wall of a CO2-cooled pebble bed breeding blanket for the EU DEMO. Fusion Eng. Des. 2019, 138, 379–394. [Google Scholar] [CrossRef]
- Wang, S.; Hernández, F.A.; Zhou, G.; Chen, H. First thermal-hydraulic analysis of a CO2-cooled pebble bed blanket for the EU DEMO. Fusion Eng. Des. 2019, 146, 2218–2221. [Google Scholar]
- Federici, F.; Baylard, C.; Beaumont, A.; Holden, J. The plan forward for EU DEMO. Fusion Eng. Des. 2021, 173, 112960. [Google Scholar] [CrossRef]
Category | Id. | Description |
---|---|---|
I | 4 | Normal operation (NO) |
I | 5 | NO with power excursion |
II | 2 | MD, Cat. II |
II | 6 | VDE, Cat. II |
II | 24 | MD after seismic load SL-1 |
III | 2 | MD, Cat. III |
III | 4 | VDE, Cat. III |
IV | 22 | Normal cycle during a SL-2 |
IV | 34 | NO after in-box LOCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, F.A.; Arena, P.; Boccaccini, L.V.; Cristescu, I.; Del Nevo, A.; Sardain, P.; Spagnuolo, G.A.; Utili, M.; Venturini, A.; Zhou, G. Advancements in Designing the DEMO Driver Blanket System at the EU DEMO Pre-Conceptual Design Phase: Overview, Challenges and Opportunities. J. Nucl. Eng. 2023, 4, 565-601. https://doi.org/10.3390/jne4030037
Hernández FA, Arena P, Boccaccini LV, Cristescu I, Del Nevo A, Sardain P, Spagnuolo GA, Utili M, Venturini A, Zhou G. Advancements in Designing the DEMO Driver Blanket System at the EU DEMO Pre-Conceptual Design Phase: Overview, Challenges and Opportunities. Journal of Nuclear Engineering. 2023; 4(3):565-601. https://doi.org/10.3390/jne4030037
Chicago/Turabian StyleHernández, Francisco A., Pietro Arena, Lorenzo V. Boccaccini, Ion Cristescu, Alessandro Del Nevo, Pierre Sardain, Gandolfo A. Spagnuolo, Marco Utili, Alessandro Venturini, and Guangming Zhou. 2023. "Advancements in Designing the DEMO Driver Blanket System at the EU DEMO Pre-Conceptual Design Phase: Overview, Challenges and Opportunities" Journal of Nuclear Engineering 4, no. 3: 565-601. https://doi.org/10.3390/jne4030037
APA StyleHernández, F. A., Arena, P., Boccaccini, L. V., Cristescu, I., Del Nevo, A., Sardain, P., Spagnuolo, G. A., Utili, M., Venturini, A., & Zhou, G. (2023). Advancements in Designing the DEMO Driver Blanket System at the EU DEMO Pre-Conceptual Design Phase: Overview, Challenges and Opportunities. Journal of Nuclear Engineering, 4(3), 565-601. https://doi.org/10.3390/jne4030037