Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = DC bus signaling strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 16819 KiB  
Article
A Coordinated Communication and Power Management Strategy for DC Converters in Renewable Energy Systems
by Feng Zhou, Takahiro Kawaguchi, Seiji Hashimoto and Wei Jiang
Energies 2025, 18(13), 3329; https://doi.org/10.3390/en18133329 - 25 Jun 2025
Viewed by 467
Abstract
Effective communication among distributed energy sources (DESs) is essential for optimizing energy allocation across power sources, loads, and storage devices in integrated renewable energy and energy management systems. This paper proposes a novel communication and energy management strategy to address challenges related to [...] Read more.
Effective communication among distributed energy sources (DESs) is essential for optimizing energy allocation across power sources, loads, and storage devices in integrated renewable energy and energy management systems. This paper proposes a novel communication and energy management strategy to address challenges related to communication interference and inefficiencies in energy management. The proposed strategy employs the DC bus as a communication medium, enabling module coordination via pulsed voltage signals. Controller modules regulate the bus voltage based on the energy state of the bus and control the supplementary or absorptive energy flow from slave modules to maintain voltage stability. Simultaneously, communication between the master and slave modules is achieved through pulsed voltage signals of varying pulse widths, and power sharing is realized via droop control. Experimental results demonstrate that the proposed method effectively distributes energy across different voltage levels, enabling the controller modules to precisely regulate the voltage of the slave modules under varying load conditions. Full article
Show Figures

Figure 1

13 pages, 958 KiB  
Article
Modeling and Simulation of Autonomous DC Microgrid with Variable Droop Controller
by Rekha P. Nair and Kanakasabapathy Ponnusamy
Appl. Sci. 2025, 15(9), 5080; https://doi.org/10.3390/app15095080 - 2 May 2025
Cited by 1 | Viewed by 803
Abstract
The emergence of highly efficient and cost-effective power converters, coupled with the growing diversity of DC loads, has elevated the importance of DC microgrids to a level comparable with AC microgrids in the modern power industry. DC microgrids are free from synchronization and [...] Read more.
The emergence of highly efficient and cost-effective power converters, coupled with the growing diversity of DC loads, has elevated the importance of DC microgrids to a level comparable with AC microgrids in the modern power industry. DC microgrids are free from synchronization and reactive power dynamics, making them more reliable and cost-effective. In autonomous mode, achieving effective voltage regulation and satisfactory power sharing is critical to ensuring the overall stability of the microgrid. As the common DC bus of the microgrid connects distributed generators (DGs), storage devices, and loads through power electronic converters (PECs), the controllers of these PECs must regulate the bus voltage effectively, track reference signals to meet power demands, and enable satisfactory load sharing. In this work, a real time decentralized droop controller is implemented for an islanded DC microgrid to enhance the voltage regulation at the DC bus and current sharing efficacy between the sources subject to load transients. A novel control strategy is presented in which the conventional droop control is modified considering the load dynamics. The performance of the proposed control strategy is compared with the conventional voltage droop control strategy. The fluctuations in the DC bus voltage, which is the major cause of voltage instability of the DC microgrid is effectively reduced by the proposed strategy. The proposed strategy is validated by comparing it with the conventional fixed droop control method on the MATLAB Simulink platform. The variable droop control strategy outperforms the fixed droop method by addressing sudden voltage fluctuations in the DC bus, which occur due to the inherent load current dependency of the fixed droop approach. This technique achieves enhanced voltage regulation, which is crucial for microgrid stability. Full article
(This article belongs to the Special Issue Challenges for Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

21 pages, 11935 KiB  
Article
Coordinated Control of Multi-Port Power Router Based on DC Bus Voltage Droop Regulation
by Caihong Zhao, Guanglin Sha, Haoqing Wang, Pingkang Zheng, Ning Liu and Qing Duan
Energies 2025, 18(5), 1243; https://doi.org/10.3390/en18051243 - 3 Mar 2025
Viewed by 684
Abstract
Coordinated operation among various converters within a power router (PR) is crucial for ensuring its normal operation. Since the power balance among converters in a DC PR is reflected by the DC bus voltage level, maintaining stable DC bus voltage control is particularly [...] Read more.
Coordinated operation among various converters within a power router (PR) is crucial for ensuring its normal operation. Since the power balance among converters in a DC PR is reflected by the DC bus voltage level, maintaining stable DC bus voltage control is particularly important as it directly affects the coordinated operation of each converter. This study proposes a coordinated control strategy for multi-port power routers based on DC bus voltage droop regulation, addressing the limitations of existing methods that rely on communication and complex control units. Based on DC bus voltage signals, all power ports automatically switch their operating states, ensuring that only one converter operates in voltage source mode at any given time, thereby maintaining the system’s bus voltage and power balance. This enables effective coordination among converters and ensures stable system operation without requiring communication between converters, simplifying control while maintaining internal system stability. Full article
Show Figures

Figure 1

13 pages, 3021 KiB  
Article
A Coordinated Frequency Regulation Strategy Integrating Power Generation, Energy Storage, and DC Transmission for Offshore Wind Power MMC-HVDC Transmission Systems
by Yangqing Dan, Chenxuan Wang, Keheng Lou, Jinhua Huang, Guoteng Wang, Zheng Xu and Ying Huang
Energies 2025, 18(3), 531; https://doi.org/10.3390/en18030531 - 24 Jan 2025
Cited by 2 | Viewed by 1038
Abstract
With the increasing proportion of renewable energy in power grids, the inertia level and frequency regulation capability of modern power systems have declined. In response, this paper proposes a coordinated frequency regulation strategy integrating power generation, energy storage, and DC transmission for offshore [...] Read more.
With the increasing proportion of renewable energy in power grids, the inertia level and frequency regulation capability of modern power systems have declined. In response, this paper proposes a coordinated frequency regulation strategy integrating power generation, energy storage, and DC transmission for offshore wind power MMC-HVDC transmission systems, aimed at improving the frequency stability of onshore power grids. First, considering the inability of the receiving-end MMC-HVDC converter station under constant DC voltage control to directly respond to AC system frequency variations, a frequency regulation method is developed based on constant DC voltage control. The approach employs DC voltage as a transmission signal to coordinate the responses of wind turbines and energy storage systems. Subsequently, based on the energy storage configuration of the onshore renewable energy aggregation station, a secondary frequency regulation strategy is proposed. This strategy integrates offshore wind power, MMC-HVDC transmission system, and energy storage systems, balancing AC frequency regulation and the recovery of the state of charge (SOC) of the energy storage system. Finally, the proposed method is tested on a modified IEEE 39-bus system, the results demonstrate that the minimum frequency value can be in-creased by 37.5%, the system frequency can be restored to the initial state after secondary FM, and the results demonstrate its effectiveness. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 3897 KiB  
Article
Proposal of Low-Speed Sensorless Control of IPMSM Using a Two-Interval Six-Segment High-Frequency Injection Method with DC-Link Current Sensing
by Daniel Konvicny, Pavol Makys and Alex Franko
Energies 2024, 17(22), 5789; https://doi.org/10.3390/en17225789 - 20 Nov 2024
Viewed by 840
Abstract
This paper proposes a modification to existing saliency-based, sensorless control strategy for interior permanent magnet synchronous motors. The proposed approach leverages a two-interval, six-segment high-frequency voltage signal injection technique. It aims to improve rotor position and speed estimation accuracy when utilizing a single [...] Read more.
This paper proposes a modification to existing saliency-based, sensorless control strategy for interior permanent magnet synchronous motors. The proposed approach leverages a two-interval, six-segment high-frequency voltage signal injection technique. It aims to improve rotor position and speed estimation accuracy when utilizing a single current sensor positioned in the inverter’s DC-bus circuit. The key innovation lies in modifying both the high-frequency signal injection and demodulation processes to address challenges in accurate phase current reconstruction and rotor position estimation, at low and zero speeds. A significant modification to the traditional high-frequency voltage signal injection method is introduced, which involves splitting the signal injection and the field-oriented control algorithm into two distinct sampling and switching periods. This approach ensures that no portion of the injected voltage space vector falls into the immeasurable region of space vector modulation, which could otherwise compromise current measurements. The dual-period structure, termed the two-interval six-segment high-frequency injection, allows for more precise current measurement during the signal injection period while maintaining optimal motor control during the field-oriented control period. Furthermore, this paper explores a different demodulation technique that improves the estimation of rotor position and speed. By employing a synchronous filter in combination with a phase-locked loop, the proposed method enhances the robustness of the system against noise and inaccuracies typically encountered in phase current reconstruction. The effectiveness of the proposed modifications is demonstrated through comprehensive simulation results. These results confirm that the enhanced method offers more reliable rotor position and speed estimates compared to the existing sensorless technique, making it particularly suitable for applications requiring high precision in motor control. Full article
Show Figures

Figure 1

21 pages, 12536 KiB  
Article
An Energy Management System for Distributed Energy Storage System Considering Time-Varying Linear Resistance
by Yuanliang Fan, Zewen Li, Xinghua Huang, Dongtao Luo, Jianli Lin, Weiming Chen, Lingfei Li and Ling Yang
Electronics 2024, 13(21), 4327; https://doi.org/10.3390/electronics13214327 - 4 Nov 2024
Cited by 1 | Viewed by 1039
Abstract
As the proportion of renewable energy in energy use continues to increase, to solve the problem of line impedance mismatch leading to the difference in the state of charge (SOC) of each distributed energy storage unit (DESU) and the DC bus voltage drop, [...] Read more.
As the proportion of renewable energy in energy use continues to increase, to solve the problem of line impedance mismatch leading to the difference in the state of charge (SOC) of each distributed energy storage unit (DESU) and the DC bus voltage drop, a distributed energy storage system control strategy considering the time-varying line impedance is proposed in this paper. By analyzing the fundamental frequency harmonic components of the pulse width modulation (PWM) signal carrier of the converter output voltage and output current, we can obtain the impedance information and, thus, compensate for the bus voltage drop. Then, a novel, droop-free cooperative controller is constructed to achieve SOC equalization, current sharing, and voltage regulation. Finally, the validity of the system is verified by a hardware-in-the-loop experimental platform. Full article
(This article belongs to the Special Issue Emerging Technologies in DC Microgrids)
Show Figures

Figure 1

25 pages, 3602 KiB  
Article
Real-Time Simulation System for Small Scale Regional Integrated Energy Systems
by Wei Jiang, Renjie Qi, Song Xu and Seiji Hashimoto
Energies 2024, 17(13), 3211; https://doi.org/10.3390/en17133211 - 29 Jun 2024
Cited by 2 | Viewed by 1220
Abstract
Regional Integrated Energy Systems (RIESs) integrate wide spectrum of energy sources and storage with optimized energy management and further pollution reduction. This paper presents a real-time simulation system for RIESs powered by multiple digital signal processors (DSPs) with different means of data exchange. [...] Read more.
Regional Integrated Energy Systems (RIESs) integrate wide spectrum of energy sources and storage with optimized energy management and further pollution reduction. This paper presents a real-time simulation system for RIESs powered by multiple digital signal processors (DSPs) with different means of data exchange. The RIES encompasses the DC microgrid (DMG), the district heat network (DHN), and the natural gas network (NGN). To realize multi-energy flow simulation, averaged switch models are investigated for different types of device-level units in the DMG, and the unified energy path method is used to build circuit-dual models of the DHN and NGN. A hierarchical island strategy (HIS) and a multi-energy dispatch strategy (MEDS) are proposed to enhance the energy flow control and operating efficiency. The two-layer HIS can adjust the operating status of device-level units in real time to achieve bus voltage stability in the DMG; MEDS uses energy conversion devices to decouple multi-energy flows and adopts the decomposed flow method to calculate the flow results for each network. The real-time simulation hardware platform is built, and both electricity-led and thermal-led experiments are carried out to verify the accuracy of models and the effectiveness of the proposed strategy. The proposed system with an energy management strategy aims to provide substantial theoretical and practical contributions to the control and simulation of RIESs, thus supporting the advancement of integrated energy systems. Full article
Show Figures

Figure 1

19 pages, 7526 KiB  
Article
Operational Strategy of a DC Inverter Heat Pump System Considering PV Power Fluctuation and Demand-Side Load Characteristics
by Yilin Li, Yang Lu, Jie Sun, Tianhang Wang, Shiji Zong, Tongyu Zhou and Xin Wang
Buildings 2024, 14(4), 1139; https://doi.org/10.3390/buildings14041139 - 18 Apr 2024
Cited by 3 | Viewed by 2425
Abstract
With the increase in application of solar PV systems, it is of great significance to develop and investigate direct current (DC)-powered equipment in buildings with flexible operational strategies. A promising piece of building equipment integrated in PV-powered buildings, DC inverter heat pump systems [...] Read more.
With the increase in application of solar PV systems, it is of great significance to develop and investigate direct current (DC)-powered equipment in buildings with flexible operational strategies. A promising piece of building equipment integrated in PV-powered buildings, DC inverter heat pump systems often operate with strategies either focused on the power supply side or on the building demand side. In this regard, the aim of this study was to investigate the operational strategy of a DC inverter heat pump system for application in an office building with a PV power system. Firstly, the PV power fluctuation and demand-side load characteristics were analyzed. Then, a series of heat transfer and heat pump system models were developed. A reference building model was developed for simulating the performance of the system. A control logic of the DC inverter heat pump was proposed with a certain level of flexibility and capability considering both the characteristics of the PV power generation and the demand-side heating load. MATLAB/Simulink 2021 software was used for simulation. The simulation results show that the DC inverter heat pump is able to regulate its own power according to the change signal of the bus voltage such that the DC distribution network can achieve power balance and thus provide enough energy for a room. This study can provide a reference for developing flexible operational strategies for DC inverter heat pump systems. The proposed strategy can also help to improve the systems’ performance when they are applied in buildings with distributed PV systems. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—2nd Edition)
Show Figures

Figure 1

15 pages, 1999 KiB  
Article
Overvoltage Suppression Strategy of LCC-HVDC Delivery System Based on Hydropower Phase Control Participation
by Xiaorong Wu, Bin Cao, Huabo Shi, Peng Shi, Yuhong Wang, Jianquan Liao, Yuanqi Li and Weigang Zeng
Electronics 2024, 13(7), 1223; https://doi.org/10.3390/electronics13071223 - 26 Mar 2024
Cited by 1 | Viewed by 1010
Abstract
In a high-voltage direct current (HVDC) transmission system, commutation failure at the receiving end may lead to transient overvoltage at the sending end converter bus of the weak alterative current (AC) system. Firstly, the principle calculation method of overvoltage generation at the sending [...] Read more.
In a high-voltage direct current (HVDC) transmission system, commutation failure at the receiving end may lead to transient overvoltage at the sending end converter bus of the weak alterative current (AC) system. Firstly, the principle calculation method of overvoltage generation at the sending end after commutation failure is analyzed. Combined with the output characteristics of the hydroelectric excitation system, a coordinated control strategy for hydroelectric and DC systems is proposed. Since the voltage and current values at the DC outlet of the rectifier side change first after a fault occurs at the receiving end, the relationship equation between DC voltage and AC bus voltage is derived and it is used as an input signal to construct additional excitation control for hydropower stations. The proposed strategy is verified by establishing a simulation hydrogen–wind–solar model bundled via a DC sending system in PSCAD/EMTDC. The simulation results illustrate that the transient overvoltage suppression rates are all more than 35%, and the maximum is 38.53%. The proposed strategy can reduce the overvoltage by 0.126 p.u. compared with the International Council on Large Electric Systems (CIGRE) standard control strategy. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

20 pages, 11011 KiB  
Article
Design and Implementation of Single-Phase Grid-Connected Low-Voltage Battery Inverter for Residential Applications
by Akekachai Pannawan, Tanakorn Kaewchum, Chayakarn Saeseiw, Piyadanai Pachanapan, Marko Hinkkanen and Sakda Somkun
Electronics 2024, 13(6), 1014; https://doi.org/10.3390/electronics13061014 - 7 Mar 2024
Cited by 4 | Viewed by 3409
Abstract
Integrating residential energy storage and solar photovoltaic power generation into low-voltage distribution networks is a pathway to energy self-sufficiency. This paper elaborates on designing and implementing a 3 kW single-phase grid-connected battery inverter to integrate a 51.2-V lithium iron phosphate battery pack with [...] Read more.
Integrating residential energy storage and solar photovoltaic power generation into low-voltage distribution networks is a pathway to energy self-sufficiency. This paper elaborates on designing and implementing a 3 kW single-phase grid-connected battery inverter to integrate a 51.2-V lithium iron phosphate battery pack with a 220 V 50 Hz grid. The prototyped inverter consists of an LCL-filtered voltage source converter (VSC) and a dual active bridge (DAB) DC-DC converter, both operated at a switching frequency of 20 kHz. The VSC adopted a fast DC bus voltage control strategy with a unified current harmonic mitigation. Meanwhile, the DAB DC-DC converter employed a proportional-integral regulator to control the average battery current with a dynamic DC offset mitigation of the medium-frequency transformer’s currents embedded in the single-phase shift modulation scheme. The control schemes of the two converters were implemented on a 32-bit TMS320F280049C microcontroller in the same interrupt service routine. This work presents a synchronization technique between the switching signal generation of the two converters and the sampling of analog signals for the control system. The prototyped inverter had an efficiency better than 90% and a total harmonic distortion in the grid current smaller than 1.5% at the battery power of ±1.5 kW. Full article
(This article belongs to the Special Issue Systems and Technologies for Smart Homes and Smart Grids)
Show Figures

Figure 1

26 pages, 10479 KiB  
Article
A Bidirectional Grid-Friendly Charger Design for Electric Vehicle Operated under Pulse-Current Heating and Variable-Current Charging
by Ningzhi Jin, Jianjun Wang, Yalun Li, Liangxi He, Xiaogang Wu, Hewu Wang and Languang Lu
Sustainability 2024, 16(1), 367; https://doi.org/10.3390/su16010367 - 30 Dec 2023
Cited by 2 | Viewed by 2641
Abstract
Low-temperature preheating, fast charging, and vehicle-to-grid (V2G) capabilities are important factors for the further development of electric vehicles (EVs). However, for conventional two-stage chargers, the EV charging/discharging instructions and grid instructions cannot be addressed simultaneously for specific requirements, pulse heating and variable-current charging [...] Read more.
Low-temperature preheating, fast charging, and vehicle-to-grid (V2G) capabilities are important factors for the further development of electric vehicles (EVs). However, for conventional two-stage chargers, the EV charging/discharging instructions and grid instructions cannot be addressed simultaneously for specific requirements, pulse heating and variable-current charging can cause high-frequency power fluctuations at the grid side. Therefore, it is necessary to design a bidirectional grid-friendly charger for EVs operated under pulse-current heating and variable-current charging. The DC bus, which serves as the medium connecting the bidirectional DC–DC and bidirectional DC–AC, typically employs capacitors. This paper analyzes the reasons why the use of capacitors in the DC bus cannot satisfy the grid and EV requirements, and it proposes a new DC bus configuration that utilizes energy storage batteries instead of capacitors. Due to the voltage-source characteristics of the energy storage batteries, EV instructions and grid instructions can be flexibly and smoothly scheduled by using phase-shift control and adaptive virtual synchronous generator (VSG) control, respectively. In addition, the stability of the control strategy is demonstrated using small signal modeling. Finally, typical operating conditions (such as EV pulse preheating, fast charging with variable current, and grid peak shaving and valley filling) are selected for validation. The results show that in the proposed charger, the grid scheduling instructions and EV charging/discharging instructions do not interfere with each other, and different commands between EVs also do not interfere with each other under a charging pile with dual guns. Without affecting the requirements of EVs, the grid can change the proportion of energy supply based on actual scenarios and can also obtain energy from either EVs or energy storage batteries. For the novel charger, the pulse modulation time for EVs consistently achieves a steady state within 0.1 s; thus, the pulse modulation speed is as much as two times faster than that of conventional chargers with identical parameters. Full article
Show Figures

Figure 1

23 pages, 4099 KiB  
Article
Effective Energy Management Strategy with Model-Free DC-Bus Voltage Control for Fuel Cell/Battery/Supercapacitor Hybrid Electric Vehicle System
by Omer Abbaker Ahmed Mohammed, Lingxi Peng, Gomaa Haroun Ali Hamid, Ahmed Mohamed Ishag and Modawy Adam Ali Abdalla
Machines 2023, 11(10), 944; https://doi.org/10.3390/machines11100944 - 7 Oct 2023
Cited by 15 | Viewed by 2219
Abstract
This article presents a new design method of energy management strategy with model-free DC-Bus voltage control for the fuel-cell/battery/supercapacitor hybrid electric vehicle (FCHEV) system to enhance the power performance, fuel consumption, and fuel cell lifetime by considering regulation of DC-bus voltage. First, an [...] Read more.
This article presents a new design method of energy management strategy with model-free DC-Bus voltage control for the fuel-cell/battery/supercapacitor hybrid electric vehicle (FCHEV) system to enhance the power performance, fuel consumption, and fuel cell lifetime by considering regulation of DC-bus voltage. First, an efficient frequency-separating based-energy management strategy (EMS) is designed using Harr wavelet transform (HWT), adaptive low-pass filter, and interval type–2 fuzzy controller (IT2FC) to determine the appropriate power distribution for different power sources. Second, the ultra-local model (ULM) is introduced to re-formulate the FCHEV system by the knowledge of the input and output signals. Then, a novel adaptive model-free integral terminal sliding mode control (AMFITSMC) based on nonlinear disturbance observer (NDO) is proposed to force the actual values of the DC-link bus voltage and the power source’s currents track their obtained reference trajectories, wherein the NDO is used to approximate the unknown dynamics of the ULM. Moreover, the Lyapunov theorem is used to verify the stability of AMFITSMC via a closed-loop system. Finally, the FCHEV system with the presented method is modeled on a Matlab/Simulink environment, and different driving schedules like WLTP, UDDS, and HWFET driving cycles are utilized for investigation. The corresponding simulation results show that the proposed technique provides better results than the other methods, such as operational mode strategy and fuzzy logic control, in terms of the reduction of fuel consumption and fuel cell power fluctuations. Full article
Show Figures

Figure 1

24 pages, 10964 KiB  
Article
Large-Signal Stability Analysis for Islanded DC Microgrids with n+1 Parallel Energy-Storage Converters
by Xinbo Liu, Yiran Zhang, Yongbing Suo, Xiaotong Song and Jinghua Zhou
Electronics 2023, 12(19), 4032; https://doi.org/10.3390/electronics12194032 - 25 Sep 2023
Cited by 2 | Viewed by 1370
Abstract
In islanded DC microgrids, the negative impedance characteristics of constant power loads (CPLs) usually introduce instability influences; on the contrary, hybrid energy-storage systems (HESSs) constituted of batteries and supercapacitors (SCs) have stabilization advantages. To guarantee the large-signal stability of islanded DC microgrids with [...] Read more.
In islanded DC microgrids, the negative impedance characteristics of constant power loads (CPLs) usually introduce instability influences; on the contrary, hybrid energy-storage systems (HESSs) constituted of batteries and supercapacitors (SCs) have stabilization advantages. To guarantee the large-signal stability of islanded DC microgrids with n+1 parallel energy-storage converters, an equivalent model is first constructed based on the control strategies of the converters. Then, according to the mixed potential function theory, a large-signal stability criterion, considering powers, inductors, capacitors, the DC bus voltage, the equivalent internal resistances of batteries, the proportional parameters of the inner current loop of n battery DC–DC converters, the proportional parameter of the outer power control loop of the SC DC–DC converter, and the proportional parameter of the inner current loop of the CPLs, is derived. Furthermore, the proposed large-signal stability criterion is optimized via the use of droop control for n battery converters, and coefficients related to the droop coefficients are also taken into account. These involved control parameters reveal the process of regulating the HESS and CPLs instead of ideal modeling and significantly reduce the conservatism of the criterion to some extent. In addition, on the basis of the large-signal stability criterion presented herein, the maximum CPL power that the islanded DC microgrids can stably support is obtained. Finally, simulation and experimental results verify the validity of the provided large-signal-stability criterion. The given procedure of analyzing large-signal stability is more consistent with planning and operating actual DC microgrids. Full article
(This article belongs to the Special Issue Application of Power Electronics Technology in Energy System)
Show Figures

Figure 1

25 pages, 5567 KiB  
Article
A Droop-Controlled Interlink Converter for a Dual DC Bus Nanogrid with Decentralized Control
by Ahmad M. A. Malkawi, Ayman AL-Quraan and Luiz A. C. Lopes
Sustainability 2023, 15(13), 10394; https://doi.org/10.3390/su151310394 - 30 Jun 2023
Cited by 3 | Viewed by 1494
Abstract
This paper proposed a dual DC bus nanogrid with 380 V and 48 V buses and allows the integration of distributed energy resources on two buses. The proposed system employs an interlink converter to enable power sharing between the buses. The integration of [...] Read more.
This paper proposed a dual DC bus nanogrid with 380 V and 48 V buses and allows the integration of distributed energy resources on two buses. The proposed system employs an interlink converter to enable power sharing between the buses. The integration of distributed energy resources has been found to enhance the reliability of the low-voltage bus in comparison to those that lack such integration. The integration process requires the introduction of a new V-I curve for the interlink converter within a DC nanogrid controlled by DC bus signaling and droop control. Furthermore, selecting a power electronics converter for the interlink converter is essential. This paper employs a dual active bridge with galvanic isolation as an interlink converter and proposes a control strategy for the converter that relies on DC bus signaling and droop control. Moreover, this control methodology serves the purpose of preventing any detrimental impact of the interlink converter on the DC buses through the reprogramming of the V-I curve. Subsequently, the suggested control methodology underwent simulation testing via MATLAB/Simulink, which included two different test categories. Initially, the DAB was evaluated as an interlink converter, followed by a comprehensive assessment of the interlink converter in a complete dual DC bus nanogrid. The results indicate that the DAB has the potential to function as an interlink converter while the suggested control approach effectively manages the power sharing between the two buses. Full article
(This article belongs to the Special Issue Applications and Technologies of Renewable Energy)
Show Figures

Figure 1

14 pages, 2186 KiB  
Article
Coordinate Fault Ride-Through Strategy for Connection of Offshore Wind Farms Using Voltage Source-Converter-Based High-Voltage Direct-Current Transmission under Single Polar Fault
by Huiying Zhou, Siyang Ge and Liang Qin
Sensors 2023, 23(12), 5760; https://doi.org/10.3390/s23125760 - 20 Jun 2023
Cited by 4 | Viewed by 1729
Abstract
In a system where wind farms are connected to the grid via a bipolar flexible DC transmission, the occurrence of a short-time fault at one of the poles results in the active power emitted by the wind farm being transmitted through the non-faulty [...] Read more.
In a system where wind farms are connected to the grid via a bipolar flexible DC transmission, the occurrence of a short-time fault at one of the poles results in the active power emitted by the wind farm being transmitted through the non-faulty pole. This condition leads to an overcurrent in the DC system, thereby causing the wind turbine to disconnect from the grid. Addressing this issue, this paper presents a novel coordinated fault ride-through strategy for flexible DC transmission systems and wind farms, which eliminates the need for additional communication equipment. The proposed strategy leverages the power characteristics of the doubly fed induction generator (DFIG) under different terminal voltage conditions. By considering the safety constraints of both the wind turbine and the DC system, as well as optimizing the active power output during wind farm faults, the strategy establishes guidelines for the wind farm bus voltage and the crowbar switch signal. Moreover, it harnesses the power regulation capability of the DFIG rotor-side crowbar circuit to enable fault ride-through in the presence of single-pole short-time faults in the DC system. Simulation results demonstrate that the proposed coordinated control strategy effectively mitigates overcurrent in the non-faulty pole of flexible DC transmission during fault conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop