Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = DBM equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2752 KB  
Article
Compact Dual-Band Rectifier with Self-Matched Branches Using Comprehensive Impedance Control
by Adel Barakat, Willy Jordan and Ramesh K. Pokharel
Electronics 2025, 14(5), 933; https://doi.org/10.3390/electronics14050933 - 26 Feb 2025
Viewed by 786
Abstract
The use of multi-band matching for rectifiers leads to design complexity. Instead, recent advancements suggested self-matched branches combined in parallel to enable multi-band operation. However, this method controls only the imaginary part. In this paper, we propose an efficient dual-band rectifier with compact [...] Read more.
The use of multi-band matching for rectifiers leads to design complexity. Instead, recent advancements suggested self-matched branches combined in parallel to enable multi-band operation. However, this method controls only the imaginary part. In this paper, we propose an efficient dual-band rectifier with compact realization. The rectifier consists of two self-matched parallel branches. Each branch provides comprehensive impedance control over real and imaginary parts in the corresponding band independent of the design frequency. The branch impedance matching is analyzed theoretically, and design equations are presented. To verify the proposed theory, a compact dual-band rectifier was fabricated with a compact area of only 0.42 cm2 after excluding the area required for the RF connector. The measured RF-DC power conversion efficiency (PCE) was >50% for input power (Pin) ranging from −5.5 dBm to 11 dBm at 390 MHz with a peak of 69%. Also, the PCE was >50% for P_in ranging from −4 dBm to 12 dBm at 690 MHz with a peak of 68%. The fabricated rectifier operates with a wide load range from 0.5 KΩ to 3 KΩ with PCE > 50% at both bands when P_in = 5 dBm. Full article
Show Figures

Figure 1

17 pages, 9213 KB  
Article
Automated Transformer Selection for RFIC Design: Accelerating Development with a Comprehensive Database
by Jeffrey Torres-Clarke, Neda Mendoza-Calvo, Javier del Pino, Sunil Khemchandani and David Galante-Sempere
Electronics 2025, 14(3), 615; https://doi.org/10.3390/electronics14030615 - 5 Feb 2025
Viewed by 1800
Abstract
The design of transformers, a key component of radio frequency integrated circuits (RFICs), is traditionally carried out through an iterative process involving extensive electromagnetic simulations. While process design kits (PDKs) offer tools based on interpolation or fitting equations to simplify parameter estimation, these [...] Read more.
The design of transformers, a key component of radio frequency integrated circuits (RFICs), is traditionally carried out through an iterative process involving extensive electromagnetic simulations. While process design kits (PDKs) offer tools based on interpolation or fitting equations to simplify parameter estimation, these tools are restricted to standard geometries, leaving designers to manually simulate and optimize custom designs. This approach is inefficient and resource intensive. This paper proposes an automated process to generate a database containing the physical and electrical parameters of a wide range of transformers. This database is part of a tool designed to efficiently identify the desired transformer. To evaluate the tool’s effectiveness in reducing the time required for design, a millimeter-wave (mm-Wave) 69.4–74.2 GHz differential low-noise amplifier (LNA) is designed using GlobalFoundries 45 nm silicon-on-insulator (SOI) technology. This circuit demonstrates a noise figure (NF) of 4.1 dB, a gain of 10.1 dB, an input third-order intercept point (IIP3) of −10.78 dBm, and a power consumption of 4.7 mW from a 0.406 V DC supply. Moreover, the simulated performance achieves these specifications within a highly compact area of 0.12 mm2. The transformer selection process for the circuit takes only a few seconds, whereas the conventional method of manual transformer design and electromagnetic simulation would require a significantly greater amount of time. Full article
(This article belongs to the Special Issue New Advances in Semiconductor Devices/Circuits)
Show Figures

Figure 1

24 pages, 838 KB  
Article
On Deadlock Analysis and Characterization of Labeled Petri Nets with Undistinguishable and Unobservable Transitions
by Amal Zaghdoud and Zhiwu Li
Mathematics 2024, 12(22), 3523; https://doi.org/10.3390/math12223523 - 12 Nov 2024
Viewed by 1592
Abstract
This work addresses the analysis and characterization of deadlocks in discrete-event systems modeled by labeled Petri nets (LPNs) with undistinguishable and unobservable transitions. To provide a solution for the notorious problem, it is essential to present an effective characterization in such a way [...] Read more.
This work addresses the analysis and characterization of deadlocks in discrete-event systems modeled by labeled Petri nets (LPNs) with undistinguishable and unobservable transitions. To provide a solution for the notorious problem, it is essential to present an effective characterization in such a way that deadlock control and synthesis are technically and methodologically possible. To this end, we introduce the notion of dangerous implicit vectors (DIVs), which implicitly threaten the system deadlock-freedom. The set of dead markings is divided into two subsets: dead basis markings (DBMs) and dangerous implicit markings (DIMs). An algorithm is designed to compute the sets of DIVs and DIMs at a given basis state of a system. Moreover, by virtue of linear algebraic equations, we formulate sufficient conditions for identifying the existence of blocking markings in an LPN. Finally, an algorithm is developed to construct an observed graph that is a compendious presentation of the reachability graph of a net system, with respect to the existence of dead reaches. At the end of this paper, experiment results that illustrate the correctness and effectiveness of the reported solution are presented. Full article
(This article belongs to the Special Issue Discrete Event Dynamic Systems and Applications)
Show Figures

Figure 1

16 pages, 3903 KB  
Article
A Broadband Three-Way Series Doherty Power Amplifier with Deep Power Back-Off Efficiency Enhancement for 5G Application
by Xianfeng Que, Jun Li and Yanjie Wang
Electronics 2024, 13(10), 1882; https://doi.org/10.3390/electronics13101882 - 11 May 2024
Cited by 6 | Viewed by 3240
Abstract
This article presents a new broadband three-way series Doherty power amplifier (DPA) topology, which enables a broadband output power back-off (OBO) efficiency enhancement of up to 10 dB or higher. The proposed DPA topology achieves Doherty load modulation and three-way power combining through [...] Read more.
This article presents a new broadband three-way series Doherty power amplifier (DPA) topology, which enables a broadband output power back-off (OBO) efficiency enhancement of up to 10 dB or higher. The proposed DPA topology achieves Doherty load modulation and three-way power combining through a transformer, which requires only a low coupling factor, thus facilitating its implementation in double-sided PCBs or monolithic microwave integrated circuit (MMIC) processes. The design equations for the proposed DPA topology are proposed and analyzed in detail. A proof-of-concept PA at the 2.1–2.8 GHz band using commercial GaN transistors was designed and fabricated to validate the proposed concept. Within the operating frequency band, it achieves a saturated output power (Psat) of 44.5–46.5 dBm with a peak drain efficiency (DE) of 60–72%, and 43–52% DE at 10 dB OBO. Moreover, under a 20 MHz long-term evolution (LTE)-modulated signal, the PA demonstrates a 36.8–37.5 dBm average output power (Pavg) and 47–53% average drain efficiency (DEavg). Notably, the adjacent channel leakage ratio (ACLR) is as low as −35–−28.2 dBc without any digital predistortion (DPD). Full article
Show Figures

Figure 1

24 pages, 15262 KB  
Article
Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan
by Thi-Hong-Nhi Vuong, Tso-Ren Wu, Yi-Xuan Huang and Tai-Wen Hsu
J. Mar. Sci. Eng. 2023, 11(5), 936; https://doi.org/10.3390/jmse11050936 - 27 Apr 2023
Cited by 5 | Viewed by 2815
Abstract
Rapid expansions of the offshore wind industry have stimulated a renewed interest in the behavior of offshore wind turbines. Monopile, tripod, and jack-up wind turbines support most offshore wind turbines. These foundations are sensitive to scour, reducing their ultimate capacity and altering their [...] Read more.
Rapid expansions of the offshore wind industry have stimulated a renewed interest in the behavior of offshore wind turbines. Monopile, tripod, and jack-up wind turbines support most offshore wind turbines. These foundations are sensitive to scour, reducing their ultimate capacity and altering their dynamic response. However, the existing approaches ignore the seabed’s rheological properties in the scour process. This study focuses on the scour development around the wind turbine foundation in the Changhua wind farm in Taiwan. The simulation results explain the influence of different hydrodynamic mechanisms on the local scours in a cohesive fluid, such as regular waves, random waves, and constant currents. A newly non-Newtonian fluid model, the Discontinuous Bi-viscous Model (DBM), reproduces closet mud material nature without many empirical coefficients and an empirical formula. This new rheology model is integrated and coupled into the Splash3D model, which resolves the Navier–Stokes equations with a PLIC-VOF surface-tracking algorithm. The deformation of the scour hole, the backfilling, and the maximum scour depth are exhibited around the wind turbines. Waves, including regular and irregular waves, do not increase the scour depth compared with currents only. In the case of random wave–current coupling, the results present a signal of scour evolution. However, the scour depth is shallow at 0.033S/D0.046. Full article
Show Figures

Figure 1

10 pages, 4281 KB  
Article
Extremely Efficient DFB Lasers with Flat-Top Intra-Cavity Power Distribution in Highly Erbium-Doped Fibers
by Amirhossein Tehranchi and Raman Kashyap
Sensors 2023, 23(3), 1398; https://doi.org/10.3390/s23031398 - 26 Jan 2023
Cited by 6 | Viewed by 3004
Abstract
High-performance erbium-doped DFB fiber lasers are presently required for several sensing applications, whilst the current efficiency record is only a few percent. Additionally, a flat-top intra-cavity power distribution that is not provided in traditional DFB lasers is preferred. Moreover, cavity lengths of <20 [...] Read more.
High-performance erbium-doped DFB fiber lasers are presently required for several sensing applications, whilst the current efficiency record is only a few percent. Additionally, a flat-top intra-cavity power distribution that is not provided in traditional DFB lasers is preferred. Moreover, cavity lengths of <20 cm are attractive for fabrication and packaging. These goals can be achieved using highly erbium-doped fiber (i.e., 110 dB/m absorption at 1530 nm), providing high gain with proper engineering of coupling coefficients. In this paper, for a given background fiber loss, first the optimum intra-cavity signal powers for various pump powers are numerically calculated. Then, for a fully unidirectional laser, optimum coupling profiles are determined. Design diagrams, including contour maps for optimum cavity lengths, maximum output powers, maximum intra-cavity signal powers, and quality factors considering various pump powers and background fiber losses, are presented. The laser pump and intra-cavity signal distribution are also calculated for a realistic, feasible modified coupling profile considering a strong unidirectionality. The DFB laser is finally simulated using generalized coupled-mode equations for such modified profiles. The efficiency of more than 22% can be realized, which is the highest reported for DFB lasers based only on erbium-doped fiber. Full article
(This article belongs to the Special Issue Fiber Grating Sensors: Design, Fabrication, and Application)
Show Figures

Figure 1

17 pages, 713 KB  
Article
The Functional Expansion Approach for Solving NPDEs as a Generalization of the Kudryashov and G/G Methods
by Carmen Ionescu, Corina N. Babalic, Radu Constantinescu and Raluca Efrem
Symmetry 2022, 14(4), 827; https://doi.org/10.3390/sym14040827 - 15 Apr 2022
Cited by 8 | Viewed by 2522
Abstract
This paper presents the functional expansion approach as a generalized method for finding traveling wave solutions of various nonlinear partial differential equations. The approach can be seen as a combination of the Kudryashov and G/G solving methods. It allowed the [...] Read more.
This paper presents the functional expansion approach as a generalized method for finding traveling wave solutions of various nonlinear partial differential equations. The approach can be seen as a combination of the Kudryashov and G/G solving methods. It allowed the extension of the first method to the use of second order auxiliary equations, and, at the same time, it allowed non-standard G/G-solutions to be generated. The functional expansion is illustrated here on the Dodd–Bullough–Mikhailov model, using a linear second order ordinary differential equation as an auxiliary equation. Full article
(This article belongs to the Special Issue Advances in Nonlinear Dynamics and Symmetry)
Show Figures

Figure 1

21 pages, 13137 KB  
Article
Building Shadow Detection on Ghost Images
by Guoqing Zhou and Hongjun Sha
Remote Sens. 2020, 12(4), 679; https://doi.org/10.3390/rs12040679 - 19 Feb 2020
Cited by 20 | Viewed by 5166
Abstract
Although many efforts have been made on building shadow detection from aerial images, little research on simultaneous shadows detection on both building roofs and grounds has been presented. Hence, this paper proposes a new method for simultaneous shadow detection on ghost image. In [...] Read more.
Although many efforts have been made on building shadow detection from aerial images, little research on simultaneous shadows detection on both building roofs and grounds has been presented. Hence, this paper proposes a new method for simultaneous shadow detection on ghost image. In the proposed method, a corner point on shadow boundary is selected and its 3D approximate coordinate is calculated through photogrammetric collinear equation on the basis of assumption of average elevation within the aerial image. The 3D coordinates of the shadow corner point on shadow boundary is used to calculate the solar zenith angle and the solar altitude angle. The shadow areas on the ground, at the moment of aerial photograph shooting are determined by the solar zenith angle and the solar altitude angle with the prior information of the digital building model (DBM). Using the relationship between the shadows of each building and the height difference of buildings, whether there exists a shadow on the building roof is determined, and the shadow area on the building roof on the ghost image is detected on the basis of the DBM. High-resolution aerial images located in the City of Denver, Colorado, USA are used to verify the proposed method. The experimental results demonstrate that the shadows of the 120 buildings in the study area are completely detected, and the success rate is 15% higher than the traditional shadow detection method based on shadow features. Especially, when the shadows occur on the ground and on the buildings roofs, the successful rate of shadow detection can be improved by 9.42% and 33.33% respectively. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Graphical abstract

18 pages, 7059 KB  
Article
A Power Processing Circuit for Indoor Wi-Fi Energy Harvesting for Ultra-Low Power Wireless Sensors
by Ermeey Abd Kadir and Aiguo Patrick Hu
Appl. Sci. 2017, 7(8), 827; https://doi.org/10.3390/app7080827 - 11 Aug 2017
Cited by 8 | Viewed by 5441
Abstract
This article proposes a complete power processing circuit for an indoor 2.45 GHz Wi-Fi energy harvesting system. The proposed power processing circuit works by using power harvested from indoor Wi-Fi transmitters. The overall system of this work is simplified as an equivalent circuit [...] Read more.
This article proposes a complete power processing circuit for an indoor 2.45 GHz Wi-Fi energy harvesting system. The proposed power processing circuit works by using power harvested from indoor Wi-Fi transmitters. The overall system of this work is simplified as an equivalent circuit and analyzed mathematically. A two-port network is analyzed in formulating the relevant equations of the equivalent circuit. The importance of matching the impedance of a harvesting antenna to the rectifier circuit is highlighted by using simulation analysis, and it is shown that the impedance matching for both components has satisfied the conditions for a high sensitivity circuit and radio frequency-to-direct current (RF-to-DC) power conversion. Actual experiments showed that the proposed power processing circuit could operate with an incident power as low as −50 dBm. It has been found that the proposed harvesting system stored 0.11 J in a 200 mF supercapacitor as the storage device in 20 hours of the experimentation periods. Moreover, actual results for the overall energy harvesting system is compared with previous research, and it has been found that the proposed system has advantages over the listed works. Full article
(This article belongs to the Special Issue Smart Home and Energy Management Systems)
Show Figures

Figure 1

Back to TopTop