Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = D. citri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2543 KB  
Article
Syntaxin-1A Silencing by RNAi Disrupts Growth and Reproduction in the Asian Citrus Psyllid, Diaphorina citri
by Dingming Dong, Xingmin Wang, Baoli Qiu, Changqing Chang and Changfei Guo
Insects 2025, 16(9), 901; https://doi.org/10.3390/insects16090901 - 28 Aug 2025
Viewed by 818
Abstract
Diaphorina citri is the primary global vector of “Candidatus Liberibacter asiaticus”, the bacterium responsible for Huanglongbing. Syntaxin-1A (Syx1A), a member of the Qa-SNARE family, is essential for vesicle fusion and signal transduction, though its function in hemipteran insects remains poorly [...] Read more.
Diaphorina citri is the primary global vector of “Candidatus Liberibacter asiaticus”, the bacterium responsible for Huanglongbing. Syntaxin-1A (Syx1A), a member of the Qa-SNARE family, is essential for vesicle fusion and signal transduction, though its function in hemipteran insects remains poorly understood. This study presents the first comprehensive analysis of Syx1A expression in D. citri. Transcripts were detected across all life stages, with peak expression in the salivary glands. RNAi silencing of Syx1A reduced mRNA levels by 39.0% in nymphs and 58.0% in adults, resulting in 58.3% nmortality in nymphs within 5 days and 73.3% in adults within seven days, along with significant weight loss. Treated females showed marked declines in fecundity, ovarian degeneration, and deficient yolk deposition. RT-qPCR confirmed significant downregulation of Vg1, VgA, and VgR. These findings establish Syx1A as a regulator of growth and reproduction in citrus psyllids via modulation of yolk synthesis. RNAi targeting of Syx1A represents a promising strategy for ecologically sound pest control and may contribute to efforts in halting the transmission of the Huanglongbing pathogen CLas. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

27 pages, 3634 KB  
Article
Characterising the Associated Virome and Microbiota of Asian Citrus Psyllid (Diaphorina citri) in Samoa
by Kayvan Etebari, Angelika M. Tugaga, Gayatri Divekar, Olo Aleni Uelese, Sharydia S. A. Tusa, Ellis Vaega, Helmy Sasulu, Loia Uini, Yuanhang Ren and Michael J. Furlong
Pathogens 2025, 14(8), 801; https://doi.org/10.3390/pathogens14080801 - 10 Aug 2025
Viewed by 724
Abstract
The Asian citrus psyllid (Diaphorina citri) is an economically important pest of citrus as it is a vector of the bacterium (Candidatus Liberibacter asiaticus, CLas) that causes huanglongbing disease (HLB). Understanding the virome of D. citri is important for [...] Read more.
The Asian citrus psyllid (Diaphorina citri) is an economically important pest of citrus as it is a vector of the bacterium (Candidatus Liberibacter asiaticus, CLas) that causes huanglongbing disease (HLB). Understanding the virome of D. citri is important for uncovering factors that influence vector competence, to support biosecurity surveillance, and to identify candidate agents for biological control. Previous studies have identified several D. citri-associated viruses from various geographical populations of this pest. To further investigate virus diversity in this pest, high-throughput sequencing was used to analyse D. citri populations from the Samoan islands of Upolu and Savai’i. Eleven novel viruses from the Yadokariviridae, Botourmiaviridae, Nodaviridae, Mymonaviridae, Partitiviridae, Totiviridae, and Polymycoviridae were identified as well as some that corresponded to unclassified groups. In addition, microbiome analysis revealed the presence of several endosymbiotic microorganisms, including Wolbachia, as well as some plant pathogenic fungi, including Botrytis cinerea. However, the causative agent of HLB disease (CLas) was not detected in the RNA-Seq data. These findings highlight the complex and diverse microbiota associated with D. citri and suggest potential interactions and dynamics between microorganisms and psyllid-associated viruses. Further research is needed to understand the ecological significance of these discoveries, and whether the novel viruses play a role in regulating field populations of the psyllid. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Graphical abstract

11 pages, 713 KB  
Article
Evaluation of Laboratory Toxicities and Field Application of Plant Spray Oil and Its Mixture with Metarhizium anisopliae Against Diaphorina citri Kuwayama (Hemiptera: Liviidae)
by Dasong Chen, Jiaqi Suo, Jianquan Yan, Lijia Chen, Fenghao Chen, Jianying Huang, Haitao Duan, Gecheng Ouyang and Xiang Meng
Insects 2025, 16(7), 663; https://doi.org/10.3390/insects16070663 - 25 Jun 2025
Viewed by 865
Abstract
Overusing chemicals to manage Diaphorina citri has created insecticide resistance and negative impacts on the natural ecosystem. This has prompted the need to develop new methods of control. In the present study, we evaluated the toxicity of plant spray oil, Metarhizium anisopliae, [...] Read more.
Overusing chemicals to manage Diaphorina citri has created insecticide resistance and negative impacts on the natural ecosystem. This has prompted the need to develop new methods of control. In the present study, we evaluated the toxicity of plant spray oil, Metarhizium anisopliae, and their combined formulations against D. citri adults through laboratory bioassays. We tested varying concentrations and application doses of the individual agents and their mixtures to determine synergistic effects. The optimal mixing ratio of M. anisopliae and plant spray oil for enhanced pest control efficacy was also identified. The results showed that the control effect of plant spray oil and M. anisopliae on D. citri became more pronounced as the concentration increased. When the two were mixed in different proportions, the synergistic effect of plant spray oil was the strongest when the mixing ratio was 5:5. Field trials demonstrated that a combined treatment of plant spray oil emulsion (9.10 g/L) and M. anisopliae (1 × 108 spores/mL) achieved over 80% relative control efficacy against adult D. citri by the 6th day post-treatment. Its efficacy further increased to 96.28% by the 8th day, demonstrating its potential to replace chemical control methods. This study provides a practical example for exploring biopesticides and leveraging the synergistic effects of biogenic pesticides in preventing and controlling pests. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

25 pages, 4740 KB  
Article
Field Evaluation of Different Unmanned Aerial Spraying Systems Applied to Control Panonychus citri in Mountainous Citrus Orchards
by Zongyin Cui, Li Cui, Xiaojing Yan, Yifang Han, Weiguang Yang, Yilong Zhan, Jiapei Wu, Yingdong Qin, Pengchao Chen and Yubin Lan
Agriculture 2025, 15(12), 1283; https://doi.org/10.3390/agriculture15121283 - 13 Jun 2025
Viewed by 778
Abstract
In mountainous citrus orchards, the application of conventional ground sprayers for the control of citrus red mite (Panonychus citri) is often constrained by complex terrain and low operational efficiency. The Unmanned Aerial Spraying System (UASS), due to its low-altitude, low-volume, and [...] Read more.
In mountainous citrus orchards, the application of conventional ground sprayers for the control of citrus red mite (Panonychus citri) is often constrained by complex terrain and low operational efficiency. The Unmanned Aerial Spraying System (UASS), due to its low-altitude, low-volume, and high-maneuverability characteristics, has emerged as a promising alternative for pest management in such challenging environments. To evaluate the spray performance and field efficacy of different UASS types in controlling P. citri, five representative UASS models (JX25, DP, T1000, E-A2021, and T20), four mainstream pesticide formulations, and four novel tank-mix adjuvants were systematically assessed in a field experiment conducted in a typical hilly citrus orchard. The results showed that T20 delivered the best overall spray deposition, with upper canopy coverage reaching 10.63%, a deposition of 3.01 μg/cm2, and the highest pesticide utilization (43.2%). E-A2021, equipped with a centrifugal nozzle, produced the finest droplets and highest droplet density (120.3–151.4 deposits/cm2), but its deposition and coverage were lowest due to drift. Nonetheless, it exhibited superior penetration (dIPR 72.3%, dDPR 73.5%), facilitating internal canopy coverage. T1000, operating at higher flight parameters, had the weakest deposition. Formulation type had a limited impact, with microemulsions (MEs) outperforming emulsifiable concentrates (ECs) and suspension concentrates (SCs). All adjuvants improved spray metrics, especially Yimanchu and Silwet, which enhanced pesticide utilization to 46.8% and 46.4% for E-A2021 and DP, respectively. Adjuvant use increased utilization by 4.6–11.9%, but also raised ground losses by 1.5–4.2%, except for Yimanchu, which reduced ground loss by 2.3%. In terms of control effect, the rapid efficacy (1–7 days after application, DAA) of UASS spraying was slightly lower than that of ground sprayers—electric spray gun (ESG), while its residual efficacy (14–25 DAA) was slightly higher. The addition of adjuvants improved both rapid and residual efficacy, making it comparable to or even better than ESG. E-A2021 with 5% abamectin·etoxazole ME (5A·E) and Yimanchu achieved 97.4% efficacy at 25 DAA. Among UASSs, T20 showed the rapid control, while E-A2021 outperformed JX25 and T1000 due to finer droplets effectively targeting P. citri. In residual control (14–25 DAA), JX25 with 45% bifenazate·etoxazole SC (45B·E) was most effective, followed by T20. 5A·E and 45B·E showed better residual efficacy than abamectin-based formulations, which declined more rapidly. Adjuvants significantly extended control duration, with Yimanchu performing best. This study demonstrates that with optimized spraying parameters, nozzle types, and adjuvants, UASSs can match or surpass ground spraying in P. citri control in hilly citrus orchards, providing valuable guidance for precision pesticide application in complex terrain. Full article
(This article belongs to the Special Issue Smart Spraying Technology in Orchards: Innovation and Application)
Show Figures

Graphical abstract

12 pages, 2035 KB  
Brief Report
Identification and Characterization of Diaporthe citri as the Causal Agent of Melanose in Lemon in China
by Yang Zhou, Liangfen Yin, Wei Han, Chingchai Chaisiri, Xiangyu Liu, Xiaofeng Yue, Qi Zhang, Chaoxi Luo and Peiwu Li
Plants 2025, 14(12), 1771; https://doi.org/10.3390/plants14121771 - 10 Jun 2025
Cited by 1 | Viewed by 828
Abstract
Lemon, widely used in food, medicine, cosmetics, and other industries, has considerable value as a commodity and horticultural product. Previous research has shown that the fungus Diaporthe citri infects several citrus species, including mandarin, lemon, sweet orange, pomelo, and grapefruit, in China. Although [...] Read more.
Lemon, widely used in food, medicine, cosmetics, and other industries, has considerable value as a commodity and horticultural product. Previous research has shown that the fungus Diaporthe citri infects several citrus species, including mandarin, lemon, sweet orange, pomelo, and grapefruit, in China. Although D. citri has been reported to cause melanose disease in lemons in China, key pathological evidence, such as Koch’s postulates fulfillment on lemon fruits and detailed morphological characterization, is still lacking. In May 2018, fruits, leaves, and twigs were observed to be infected with melanose disease in lemon orchards in Chongqing municipality in China. The symptoms appeared as small black discrete spots on the surface of fruits, leaves, and twigs without obvious prominent and convex pustules. D. citri was isolated consistently from symptomatic organs and identified provisionally based on the morphological characteristics. The identification was confirmed using sequencing and multigene phylogenetic analysis of ITS, TUB, TEF, HIS, and CAL regions. Pathogenicity tests were performed using a conidium suspension, and melanose symptoms similar to those observed in the field were reproduced. To our knowledge, this study provides the first comprehensive evidence for D. citri as a causal agent of melanose disease in lemons in China, including morphological characterization and pathogenicity assays on lemon fruits. This report broadens the spectrum of hosts of D. citri in China and provides useful information for the management of melanose in lemons. Full article
(This article belongs to the Collection Plant Disease Diagnostics and Surveillance in Plant Protection)
Show Figures

Figure 1

16 pages, 1666 KB  
Article
Effective Identification of Variety and Origin of Chenpi Using Hyperspectral Imaging Assisted with Chemometric Models
by Hangxiu Liu, Youyou Wang, Yiheng Wang, Jingyi Wang, Hanqing Hu, Xinyi Zhong, Qingjun Yuan and Jian Yang
Foods 2025, 14(11), 1979; https://doi.org/10.3390/foods14111979 - 3 Jun 2025
Viewed by 723
Abstract
Geographical origins and varietal characteristics can significantly affect the quality of Citri Reticulatae Pericarpium (Chenpi), making rapid and accurate identification essential for consumer protection. To overcome the inefficiency and high cost of conventional detection methods, this study proposed a nondestructive approach that integrates [...] Read more.
Geographical origins and varietal characteristics can significantly affect the quality of Citri Reticulatae Pericarpium (Chenpi), making rapid and accurate identification essential for consumer protection. To overcome the inefficiency and high cost of conventional detection methods, this study proposed a nondestructive approach that integrates hyperspectral imaging (HSI) with deep learning to classify Chenpi varieties and their geographical origins. Hyperspectral data were collected from 15 Chenpi varieties (citrus peel) across 13 major production regions in China using three dataset configurations: exocarp-facing-upward (Z), endocarp-facing-upward (F), and a fused dataset combining random orientations (ZF). Convolutional neural networks (CNNs) were developed and compared with conventional machine learning models, including partial least-squares discriminant analysis (PLS-DA), support vector machines (SVMs), and a multilayer perceptron (MLP). The CNN model achieved 96.39% accuracy for varietal classification with the ZF dataset, while the Z-PLSDA model optimized with second derivative (D2) preprocessing and competitive adaptive reweighted sampling (CARS) feature selection attained 91.67% accuracy in geographical origin discrimination. Feature wavelength selection strategies, such as CARS, simplified the model complexity while maintaining a classification performance comparable to that of the full-spectrum models. These findings demonstrated that HSI combined with deep learning could provide a rapid, nondestructive, and cost-effective solution for Chenpi quality assessment and origin traceability. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

23 pages, 5736 KB  
Article
The Anti-Inflammatory Effects and Molecular Mechanism of Citri Reticulatae Pericarpium Essential Oil: A Combined GC-MS and Network Pharmacology Study
by Junmei Pu, Jiabao Cui, Hui Yang, Jianxin Cao, Shanshan Xiao and Guiguang Cheng
Foods 2025, 14(9), 1455; https://doi.org/10.3390/foods14091455 - 23 Apr 2025
Viewed by 1609
Abstract
This study investigated the chemical composition and anti-inflammatory effects of essential oils extracted from Citrus aurantium flower, Citrus sinensis, Brazilian Citrus sinensis, Citrus limon, Citrus bergamia, and Citri Reticulatae Pericarpium using steam distillation and gas chromatography-mass spectrometry (GC-MS). Their [...] Read more.
This study investigated the chemical composition and anti-inflammatory effects of essential oils extracted from Citrus aurantium flower, Citrus sinensis, Brazilian Citrus sinensis, Citrus limon, Citrus bergamia, and Citri Reticulatae Pericarpium using steam distillation and gas chromatography-mass spectrometry (GC-MS). Their anti-inflammatory activities were assessed in LPS-stimulated RAW 264.7 cells. Among them, Citri Reticulatae Pericarpium essential oil (CRPEO) exhibited the most potent anti-inflammatory effects, with D-Limonene (76.51%), α-Pinene (2.68%), and Linalool (2.11%) as its primary constituents. The CCK-8 assay showed that the essential oil exhibited no cytotoxicity on HaCaT cells at a concentration of 50 μg/mL. CRPEO significantly preserved cell viability and reduced the production of pro-inflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and nitric oxide (NO). Gene expression analysis via RT-qPCR further confirmed the downregulation of TNF-α, IL-6, IL-1β, and inducible nitric oxide synthase (iNOS) at the mRNA level. Network pharmacology and molecular docking studies were employed to identify α-Bulnesene as a key bioactive component of CRPEO and revealed that its principal target is the NLR Family Pyrin Domain-Containing 3 (NLRP3) inflammasome. These findings highlight the strong anti-inflammatory potential of CRPEO and suggest its promising therapeutic application for inflammation-related conditions. Full article
Show Figures

Figure 1

20 pages, 17279 KB  
Article
In Vitro Structural Characteristics and Antioxidant and Expectorant Activities of Polysaccharides from Citri grandis fructus immaturus
by Jingwen Li, Suifen Mo, Yingshan Feng, Yan Xiang, Chen Ni, Qing Luo, Jing Zhou, Yujia Wang, Ruoting Zhan and Ping Yan
Antioxidants 2025, 14(4), 491; https://doi.org/10.3390/antiox14040491 - 18 Apr 2025
Viewed by 613
Abstract
The aim of this study was to investigate the structural characteristics of four polysaccharides derived from Citri grandis fructus immaturus and their antioxidant and expectorant activities. ECP1 fraction passing through a 500 kDa dialysis bag (ECP1A) and ECP2 fraction retained in a 300 [...] Read more.
The aim of this study was to investigate the structural characteristics of four polysaccharides derived from Citri grandis fructus immaturus and their antioxidant and expectorant activities. ECP1 fraction passing through a 500 kDa dialysis bag (ECP1A) and ECP2 fraction retained in a 300 kDa dialysis bag (ECP2B) had molecular weights of 340 and 1217 kDa, respectively. All four polysaccharides were composed of six monosaccharides, including l-rhamnose, d-arabinose, d-xylose, d-mannose, d-glucose, and d-galactose, with molar ratios of 1.99:52.38:6.99:2.64:5.15:31.15 for ECP1A and 1.54:65.13:6.34:2.51:3.58:22.07 for ECP2B. ECP1A had an α/β-glucopyranose ring, and the glycosyl groups were linked mainly by 1→4, 1→2, or 1→6 glycosidic bonds. It likely adopted a single-stranded helical conformation. ECP2B had a β-glucopyranose ring, and the glycosyl groups were linked mainly by 1→4, 1→2, or 1→6 glycosidic bonds. Furthermore, in vitro experiments showed that ECP1A displayed excellent antioxidant activity (IC50 = 0.4614 mg/mL). ECP2B significantly inhibited MUC5AC mucin content expression in the mucus hypersecretion model of BEAS-2B cells, thus exerting an expectorant effect. A significant negative correlation was observed between the molecular weight of Citri grandis fructus immaturus polysaccharides and their antioxidant activity, and the uronic acid and d-arabinose contents of these polysaccharides exhibited strong negative trends with both antioxidant and expectorant activities. This study shows the potential for developing and utilizing polysaccharides from Citri grandis fructus immaturus as an antioxidant and expectorant agent. Full article
Show Figures

Figure 1

11 pages, 603 KB  
Article
Impact of Direct Contact and Ingestion of Selected Insecticides on the Predator Harmonia axyridis of Citrus Psyllids
by Jing Pan, Gaoqi Cheng, Minjue Liu, Xiangfeng Pan, Zhigang Ouyang, Zhanjun Lu and Yimin Du
Insects 2025, 16(2), 126; https://doi.org/10.3390/insects16020126 - 27 Jan 2025
Cited by 1 | Viewed by 1257
Abstract
The Asian citrus psyllid, Diaphorina citri, serves as the primary vector for Huanglongbing (HLB) by transmitting Candidatus Liberibacter asiaticus. Lambda-cyhalothrin and thiamethoxam are commonly employed for the control of D. citri. The multicolored Asian lady beetle, or harlequin ladybird, Harmonia axyridis [...] Read more.
The Asian citrus psyllid, Diaphorina citri, serves as the primary vector for Huanglongbing (HLB) by transmitting Candidatus Liberibacter asiaticus. Lambda-cyhalothrin and thiamethoxam are commonly employed for the control of D. citri. The multicolored Asian lady beetle, or harlequin ladybird, Harmonia axyridis, is an important predator of D. citri in both greenhouse and field settings. The effectiveness of integrated pest management (IPM) relies on the judicious use of selective insecticides that minimize harm to natural enemies. However, the effects of these insecticides on H. axyridis’ predation of D. citri remain thoroughly unexplored. In this study, we assessed the toxicity of lambda-cyhalothrin and thiamethoxam to H. axyridis and examined their impact on the functional response of this predator to D. citri using direct contact exposure methods. We also evaluated the indirect effects on predator voracity through ingestion exposure. Our results demonstrated that exposure to both insecticides at LC50 concentrations significantly prolonged the developmental durations of H. axyridis larval stages. The type-II functional response model effectively described the prey consumption patterns of H. axyridis, revealing a significant reduction in predation capacity across all life stages, particularly among second instar larvae, which experienced reductions of 85.30% and 88.58% following lambda-cyhalothrin and thiamethoxam treatments, respectively. Furthermore, H. axyridis’ predation significantly declined when feeding on D. citri contaminated at LC50 concentrations. These findings indicate that lambda-cyhalothrin and thiamethoxam adversely affect the predation of H. axyridis, both via direct contact and ingestion. Evaluating the potential impacts of these insecticides on H. axyridis is critical for the development of effective IPM strategies targeting D. citri. Full article
(This article belongs to the Special Issue Genetics and Evolution of Ladybird Beetles in Biological Control)
Show Figures

Graphical abstract

20 pages, 6922 KB  
Article
Genetic Diversity of Diaphorina citri and Its Endosymbiont Across Diffusion Frontier and Epidemic Areas of Citrus Huanglongbing in China
by Jin Yang, Ai-Jun Huang, Jun Zhou, Ping You, Xiang Li, Han Luo and Long Yi
Diversity 2025, 17(1), 60; https://doi.org/10.3390/d17010060 - 17 Jan 2025
Viewed by 1272
Abstract
Citrus huanglongbing (HLB) is one of the most severe diseases affecting the citrus industry, with Diaphorina citri (Hemiptera: Liviidae) serving as its primary natural vector. To understand the genetic diversity and population structure of D. citri in the context of HLB diffusion, we [...] Read more.
Citrus huanglongbing (HLB) is one of the most severe diseases affecting the citrus industry, with Diaphorina citri (Hemiptera: Liviidae) serving as its primary natural vector. To understand the genetic diversity and population structure of D. citri in the context of HLB diffusion, we analyzed 13 populations from the HLB diffusion frontier and 25 populations from epidemic areas in China. The HLB diffusion frontier areas refer to the peripheral regions of HLB distribution in China, including the western Zhejiang, southern Jiangsu, northern Jiangxi, northern Hunan, and eastern Sichuan provinces. In contrast, the HLB epidemic areas represent regions in China where HLB is actively widespread and causing significant impacts. We utilized mitochondrial genes (COI, ND5, and Cytb) of D. citri and housekeeping genes (dnaQ, rpoC, and argH) of its endosymbiont Candidatus Carsonella ruddii (Ca. C. ruddii) for this analysis. Our findings revealed that the D. citri and Ca. C. ruddii in different regions showed low haplotype diversity and nucleotide diversity. While the genetic variation in D. citri populations primarily occurred within populations, the endosymbiont showed contrasting patterns in the HLB epidemic areas. We identified three dispersal paths: (1) migration of the Yunnan population to Sichuan, Guizhou, and Guangxi; (2) movement of the Guangdong population to Fujian, Jiangxi, and Zhejiang; and (3) dispersal of the Guangdong population to Hunan and Guangxi. Our study suggests that D. citri populations at the HLB diffusion frontier are predominantly transmitted from neighboring epidemic areas. Full article
Show Figures

Figure 1

14 pages, 4669 KB  
Article
Enhanced Control Efficacy of Different Insecticides Mixed with Mineral Oil Against Asian Citrus Psyllid, Diaphorina citri Kuwayama, Under Varying Climates
by Wei Hu, Kejing Wang, Xiaoyue Zhong, Pei Jiang, Shunchang Zhang, Zhanjun Lu, Zhixiang Zhang, Long Yi and Ning Zhang
Insects 2025, 16(1), 28; https://doi.org/10.3390/insects16010028 - 30 Dec 2024
Cited by 1 | Viewed by 1709
Abstract
Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Liviidae), is one of the most devastating pests in citrus orchards due to its role in transmitting Huanglongbing (HLB). Currently, chemical control remains the most effective strategy for ACP management. Mineral oils are commonly used as [...] Read more.
Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Liviidae), is one of the most devastating pests in citrus orchards due to its role in transmitting Huanglongbing (HLB). Currently, chemical control remains the most effective strategy for ACP management. Mineral oils are commonly used as insecticides or adjuvants in integrated pest management (IPM) practices. To extend the product life of synthetic pesticides, we evaluated the toxicity of chlorpyrifos (CPF), thiamethoxam (THX), or pyriproxyfen (PPF) mixed with mineral oil Lvying (LY) against ACP nymphs under different weather conditions. Individual application of CPF, THX, and PPF effectively controlled against ACP nymphs under no rain conditions, with mortality rates varying from 20 to 100% during 1–5 d after treatment. The addition of LY at 1.0% or 0.5% rates to CPF, THX, and PPF significantly enhanced their control efficacy, achieving sustained mortality rates from 60 to 100% during the same period. Light rain had less impact on the control efficacy of these insecticide mixtures compared to individual insecticides. However, cumulative rainfall above 20 mm significantly reduced the control efficacy of individual insecticides and their mixtures. The addition of LY decreased both surface tension and contact angle of THX solution on citrus leaves, thereby enhancing the solution’s wetting and increasing THX deposition. Moreover, the rainfastness of THX was improved after adding LY, leading to a greater retention on the leaves. LY at a rate of 1.0% exhibited excellent efficacy against ACP nymphs, and observations using scanning electron microscopy (SEM) showed that LY altered ACP mouthpart morphology and blocked spiracles, likely contributing to its insecticidal effects. This study revealed that mineral oils can serve as both insecticides to combine with synthetic pesticides for enhancing toxicity against ACP and as adjuvants to facilitate the deposition and rainfastness of synthetic pesticides on leaves, which could be recommended for sustainable ACP management in citrus orchards. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 3141 KB  
Article
Transcriptomic Characterization of Phototransduction Genes of the Asian Citrus Psyllid Diaphorina citri Kuwayama
by Shao-Ping Chen, Xue-Mei Chu, Mei-Xiang Chi, Jian Zhao and Rong-Zhou Qiu
Insects 2024, 15(12), 966; https://doi.org/10.3390/insects15120966 - 4 Dec 2024
Viewed by 1410
Abstract
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The [...] Read more.
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The RNAi technique was employed to inhibit LW-opsin gene expression, followed by RNA-Seq analysis to identify phototransduction genes. Finally, RT-qPCR was performed to validate whether genes in the phototransduction pathway were affected by the inhibition of LW-opsin expression. A total of 87 genes were identified within the transcriptome as involved in phototransduction based on KEGG functional annotation. Of these, 71 genes were identified as enriched in the phototransduction-fly pathway. These genes encode key proteins in this process, including Gqα, Gqβ, Gqγ, phospholipase C β (PLCβ), the cation channel transient receptor potential (TRP), and TRP-like (TRPL), among others. Moreover, the LOC103513214 (Gqβ) and LOC103518375 (ninaC) genes exhibited reduced expression when LW-opsin gene expression was suppressed. Our results provide a basis for further investigation of phototransduction in D. citri. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

12 pages, 5757 KB  
Article
Toxicity of Flonicamid to Diaphorina citri (Hemiptera: Liviidae) and Its Identification and Expression of Kir Channel Genes
by Jiangyue Zhu, Xinjing Wang, Yunfei Mo, Beibei Wu, Tuyong Yi and Zhongxia Yang
Insects 2024, 15(11), 900; https://doi.org/10.3390/insects15110900 - 18 Nov 2024
Cited by 3 | Viewed by 1381
Abstract
Flonicamid is a selective insecticide effective against piercing–sucking insects. Although its molecular target has been identified in other species, the specific effects and detailed mechanism of action in Diaphorina citri Kuwayama remain poorly understood. In this study, we determined that the LC50 [...] Read more.
Flonicamid is a selective insecticide effective against piercing–sucking insects. Although its molecular target has been identified in other species, the specific effects and detailed mechanism of action in Diaphorina citri Kuwayama remain poorly understood. In this study, we determined that the LC50 of flonicamid for D. citri adults was 16.6 mg AI L−1 after 4 days of exposure. To explore the relevant mechanisms, the treatments with acetone and with 20 mg AI L−1 flonicamid for 96 h were collected as samples for RNA-Seq. The analysis of the transcriptomes revealed 345 differentially expressed genes (DEGs) in D. citri adults subjected to different treatments. Among these DEGs, we focused on the inward-rectifying potassium (Kir) channel genes, which have been extensively studied as potential targets of flonicamid. Three Kir subunit genes (Dckir1, Dckir2, Dckir3) in D. citri were successfully cloned and identified. Furthermore, the expression profiles of these DcKirs were investigated using RT-qPCR and showed that their expression significantly increased after D. citri eclosion to adulthood, particularly for DcKir3. The DcKirs were predominantly expressed in gut tissues, with DcKir1 and DcKir2 exhibiting high expression levels in the hindgut and midgut, respectively, while DcKir3 showing high expression in the midgut and Malpighian tubules. This study provides insights into the potential roles of Kir subunits in D. citri and enhances our understanding of the physiological effects of flonicamid in this pest. Full article
(This article belongs to the Special Issue Effects of Environment and Food Stress on Insect Population)
Show Figures

Figure 1

15 pages, 2332 KB  
Article
Repellency, Toxicity, and Chemical Composition of Plant Essential Oils from Myrtaceae against Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera Liviidae)
by Yi-Jie Li, Tian-Ao Liu, Hang Zhao, Yang Han, Bing-Hai Lou, Cui-Yun Lei, Ya-Qin Song and Hong-Bo Jiang
Molecules 2024, 29(14), 3390; https://doi.org/10.3390/molecules29143390 - 18 Jul 2024
Viewed by 2357
Abstract
Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main [...] Read more.
Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47–93.15 mL/L, and for adults, it was 60.72–111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils, 2nd Edition)
Show Figures

Figure 1

10 pages, 790 KB  
Article
Insecticide Efficacy of Green Synthesis Silver Nanoparticles on Diaphorina citri Kuwayama (Hemiptera: Liviidae)
by Vidal Zavala-Zapata, Sonia N. Ramírez-Barrón, Maricarmen Sánchez-Borja, Luis A. Aguirre-Uribe, Juan Carlos Delgado-Ortiz, Sergio R. Sánchez-Peña, Juan Mayo-Hernández, Josué I. García-López, Jesus A. Vargas-Tovar and Agustín Hernández-Juárez
Insects 2024, 15(7), 469; https://doi.org/10.3390/insects15070469 - 23 Jun 2024
Cited by 7 | Viewed by 4022
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of Liberibacter asiaticus Jagoueix et al. and Liberibacter americanus Teixeira et al., causal agents of the critical yellow dragon disease or Huanglongbing (HLB), which affects citrus production worldwide. Recently, green synthetic nanoparticles have emerged as a potential [...] Read more.
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of Liberibacter asiaticus Jagoueix et al. and Liberibacter americanus Teixeira et al., causal agents of the critical yellow dragon disease or Huanglongbing (HLB), which affects citrus production worldwide. Recently, green synthetic nanoparticles have emerged as a potential alternative to control of agricultural insect pests. The insecticide effect of silver nanoparticles (AgNPs) on 2nd instar nymphs of D. citri under laboratory and greenhouse conditions was evaluated. Mortality was recorded 24, 48, and 72 h after application on D. citri nymphs under both laboratory and greenhouse conditions. The laboratory results showed that AgNPs caused 97.84 and 100% mortality at 32 and 64 ppm, respectively, 72 h after treatment. In the greenhouse, AgNPs caused 78.69 and 80.14% mortality using 64 and 128 ppm 72 h after application. This research is the first to evaluate the green synthesis AgNPs on D. citri and are a promising strategy to control the pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop