Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3357 KB  
Review
How Does African Swine Fever Virus Evade the cGAS-STING Pathway?
by Can Lin, Chenyang Zhang, Nanhua Chen, François Meurens, Jianzhong Zhu and Wanglong Zheng
Pathogens 2024, 13(11), 957; https://doi.org/10.3390/pathogens13110957 - 2 Nov 2024
Cited by 8 | Viewed by 3870
Abstract
African swine fever (ASF), a highly infectious and devastating disease affecting both domestic pigs and wild boars, is caused by the African swine fever virus (ASFV). ASF has resulted in rapid global spread of the disease, leading to significant economic losses within the [...] Read more.
African swine fever (ASF), a highly infectious and devastating disease affecting both domestic pigs and wild boars, is caused by the African swine fever virus (ASFV). ASF has resulted in rapid global spread of the disease, leading to significant economic losses within the swine industry. A significant obstacle to the creation of safe and effective ASF vaccines is the existing knowledge gap regarding the pathogenesis of ASFV and its mechanisms of immune evasion. The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway is a major pathway mediating type I interferon (IFN) antiviral immune response against infections by diverse classes of pathogens that contain DNA or generate DNA in their life cycles. To evade the host’s innate immune response, ASFV encodes many proteins that inhibit the production of type I IFN by antagonizing the cGAS-STING signaling pathway. Multiple proteins of ASFV are involved in promoting viral replication by protein–protein interaction during ASFV infection. The protein QP383R could impair the function of cGAS. The proteins EP364R, C129R and B175L could disturb the function of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). The proteins E248R, L83L, MGF505-11L, MGF505-7R, H240R, CD2v, E184L, B175L and p17 could interfere with the function of STING. The proteins MGF360-11L, MGF505-7R, I215L, DP96R, A151R and S273R could affect the function of TANK Binding Kinase 1 (TBK1) and IκB kinase ε (IKKε). The proteins MGF360-14L, M1249L, E120R, S273R, D129L, E301R, DP96R, MGF505-7R and I226R could inhibit the function of Interferon Regulatory Factor 3 (IRF3). The proteins MGF360-12L, MGF505-7R/A528R, UBCv1 and A238L could inhibit the function of nuclear factor kappa B (NF-Κb). Full article
(This article belongs to the Special Issue Infection and Immunity in Animals)
Show Figures

Figure 1

19 pages, 5455 KB  
Article
AVA-NP-695 Selectively Inhibits ENPP1 to Activate STING Pathway and Abrogate Tumor Metastasis in 4T1 Breast Cancer Syngeneic Mouse Model
by Avijit Goswami, Barnali Deb, Sandeep Goyal, Abhishek Gosavi, Mukund Mali, Ashwita M. Martis, Princy Khurana, Mukesh Gangar, Digambar Raykar, Ankita Mohanty and Aditya Kulkarni
Molecules 2022, 27(19), 6721; https://doi.org/10.3390/molecules27196721 - 9 Oct 2022
Cited by 18 | Viewed by 7407
Abstract
Cyclic GMP-AMP synthase (cGAS) is an endogenous DNA sensor that synthesizes cyclic guanosine monophosphate–adenosine monophosphate (2′3′-cGAMP) from ATP and GTP. 2′3′-cGAMP activates the stimulator of interferon genes (STING) pathway, resulting in the production of interferons and pro-inflammatory cytokines. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is [...] Read more.
Cyclic GMP-AMP synthase (cGAS) is an endogenous DNA sensor that synthesizes cyclic guanosine monophosphate–adenosine monophosphate (2′3′-cGAMP) from ATP and GTP. 2′3′-cGAMP activates the stimulator of interferon genes (STING) pathway, resulting in the production of interferons and pro-inflammatory cytokines. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the phosphodiesterase that negatively regulates the STING pathway by hydrolyzing 2′3′-cGAMP. It has been established that the cGAS–STING pathway plays a major role in inhibiting tumor growth by upregulating T cell response. Herein, we demonstrate that AVA-NP-695, a selective and highly potent ENPP1 inhibitor, apart from the immunomodulatory effect also modulates cancer metastasis by negatively regulating epithelial–mesenchymal transition (EMT). We established that the combined addition of 2′3′-cGAMP and AVA-NP-695 significantly abrogated the transforming growth factor beta (TGF-ꞵ)-induced EMT in MDA-MB-231 cells. Finally, results from the in vivo study showed superior tumor growth inhibition and impact on tumor metastasis of AVA-NP-695 compared to Olaparib and PD-1 in a syngeneic 4T1 breast cancer mouse model. The translation of efficacy from in vitro to in vivo 4T1 tumor model provides a strong rationale for the therapeutic potential of AVA-NP-695 against triple-negative breast cancer (TNBC) as an immunomodulatory and anti-metastatic agent. Full article
(This article belongs to the Special Issue Small Molecules in Targeted Cancer Therapy)
Show Figures

Figure 1

15 pages, 2069 KB  
Article
Development of Novel Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) Inhibitors for Tumor Immunotherapy
by Xiang Wang, Xing Lu, Daojing Yan, Yajun Zhou and Xiangshi Tan
Int. J. Mol. Sci. 2022, 23(13), 7104; https://doi.org/10.3390/ijms23137104 - 26 Jun 2022
Cited by 17 | Viewed by 4981
Abstract
The cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes–TANK-binding kinase 1–interferon regulating factor 3 (cGAS-STING-TBK1-IRF3) axis is now acknowledged as the major signaling pathway in innate immune responses. However, 2′,3′-cGAMP as a STING stimulator is easily recognized and degraded by ecto-nucleotide pyrophosphatase/phosphodiesterase 1 [...] Read more.
The cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes–TANK-binding kinase 1–interferon regulating factor 3 (cGAS-STING-TBK1-IRF3) axis is now acknowledged as the major signaling pathway in innate immune responses. However, 2′,3′-cGAMP as a STING stimulator is easily recognized and degraded by ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which reduces the effect of tumor immunotherapy and promotes metastatic progression. In this investigation, the structure-based virtual screening strategy was adopted to discover eight candidate compounds containing zinc-binding quinazolin-4(3H)-one scaffold as ENPP1 inhibitors. Subsequently, these novel inhibitors targeting ENPP1 were synthesized and characterized by NMR and high-resolution mass spectra (HRMS). In bioassays, 7-fluoro-2-(((5-methoxy-1H-imidazo[4,5-b]pyridin-2-yl)thio)methyl)quina-zolin-4(3H)-one(compound 4e) showed excellent activity against the ENPP1 at the molecular and cellular levels, with IC50 values of 0.188 μM and 0.732 μM, respectively. Additionally, compound 4e had superior selectivity towards metastatic breast cancer cells (4T1) than towards normal cells (LO2 and 293T) in comparison with cisplatin, indicating that compound 4e can potentially be used in metastatic breast cancer therapy. On the other hand, compound 4e upgraded the expression levels of IFN-β in vivo by preventing the ENPP1 from hydrolyzing the cGAMP to stimulate a more potent innate immune response. Therefore, this compound might be applied to boost antitumor immunity for cancer immunotherapy. Overall, our work provides a strategy for the development of a promising drug candidate targeting ENPP1 for tumor immunotherapy. Full article
(This article belongs to the Special Issue Small Molecules, Influence of Molecular Pathways 2.0)
Show Figures

Figure 1

18 pages, 3556 KB  
Article
Interference on Cytosolic DNA Activation Attenuates Sepsis Severity: Experiments on Cyclic GMP–AMP Synthase (cGAS) Deficient Mice
by Peerapat Visitchanakun, Warerat Kaewduangduen, Awirut Chareonsappakit, Paweena Susantitaphong, Prapaporn Pisitkun, Patcharee Ritprajak, Natavudh Townamchai and Asada Leelahavanichkul
Int. J. Mol. Sci. 2021, 22(21), 11450; https://doi.org/10.3390/ijms222111450 - 23 Oct 2021
Cited by 32 | Viewed by 5217
Abstract
Although the enhanced responses against serum cell-free DNA (cfDNA) in cases of sepsis—a life-threatening organ dysfunction due to systemic infection—are understood, the influence of the cytosolic DNA receptor cGAS (cyclic guanosine monophosphate–adenosine monophosphate (GMP–AMP) synthase) on sepsis is still unclear. Here, experiments on [...] Read more.
Although the enhanced responses against serum cell-free DNA (cfDNA) in cases of sepsis—a life-threatening organ dysfunction due to systemic infection—are understood, the influence of the cytosolic DNA receptor cGAS (cyclic guanosine monophosphate–adenosine monophosphate (GMP–AMP) synthase) on sepsis is still unclear. Here, experiments on cGAS deficient (cGAS-/-) mice were conducted using cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injection sepsis models and macrophages. Severity of CLP in cGAS-/- mice was less severe than in wildtype (WT) mice, as indicated by mortality, serum LPS, cfDNA, leukopenia, cytokines (TNF-α, IL-6 and IL-10), organ histology (lung, liver and kidney) and spleen apoptosis. With the LPS injection model, serum cytokines in cGAS-/- mice were lower than in WT mice, despite the similar serum cfDNA level. Likewise, in LPS-activated WT macrophages, the expression of several mitochondria-associated genes (as revealed by RNA sequencing analysis) and a profound reduction in mitochondrial parameters, including maximal respiration (determined by extracellular flux analysis), DNA (mtDNA) and mitochondrial abundance (revealed by fluorescent staining), were demonstrated. These data implied the impact of cfDNA resulting from LPS-induced cell injury. In parallel, an additive effect of bacterial DNA on LPS, seen in comparison with LPS alone, was demonstrated in WT macrophages, but not in cGAS-/- cells, as indicated by supernatant cytokines (TNF-α and IL-6), M1 proinflammatory polarization (iNOS and IL-1β), cGAS, IFN-γ and supernatant cyclic GMP–AMP (cGAMP). In conclusion, cGAS activation by cfDNA from hosts (especially mtDNA) and bacteria was found to induce an additive proinflammatory effect on LPS-activated macrophages which was perhaps responsible for the more pronounced sepsis hyperinflammation observed in WT mice compared with the cGAS-/- group. Full article
Show Figures

Figure 1

14 pages, 1557 KB  
Article
cGAMP Promotes Germinal Center Formation and Production of IgA in Nasal-Associated Lymphoid Tissue
by Hiromi Takaki, Ken Takashima, Hiroyuki Oshiumi, Akira Ainai, Tadaki Suzuki, Hideki Hasegawa, Misako Matsumoto and Tsukasa Seya
Med. Sci. 2017, 5(4), 35; https://doi.org/10.3390/medsci5040035 - 18 Dec 2017
Cited by 16 | Viewed by 5680
Abstract
Induction of immunoglobulin (Ig) A in the mucosa of the upper respiratory tract and the nasal cavity protects against influenza virus infection. Cyclic dinucleotides (CDNs) are used as mucosal adjuvants to enhance the immunogenicity of intranasal influenza hemagglutinin (HA) vaccines. The adjuvant activity [...] Read more.
Induction of immunoglobulin (Ig) A in the mucosa of the upper respiratory tract and the nasal cavity protects against influenza virus infection. Cyclic dinucleotides (CDNs) are used as mucosal adjuvants to enhance the immunogenicity of intranasal influenza hemagglutinin (HA) vaccines. The adjuvant activity of 2′3′ cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) on Ig production was investigated in nasal-associated lymphoid tissue (NALT), serum of wild-type C57BL/6J, and stimulator of interferon genes (STING)-deficient mice, which do not recognize cGAMP. Mice were vaccinated intranasally with a HA vaccine with or without the cGAMP adjuvant. IgA and IgG production, T-cell responses, germinal center formation, and cytokine expression in NALT were assayed. cGAMP enhanced IgA and IgG production, and promoted T-cell responses. Intranasal administration of cGAMP activated both NALT and systemic immune cells, induced a favorable cytokine environment for IgA induction, and promoted germinal center formation. The cGAMP effect was STING-dependent. Taken together, cGAMP as an HA vaccine adjuvant promoted a STING-dependent NALT environment suitable for the enhancement of IgA production. Full article
(This article belongs to the Section Immunology and Infectious Diseases)
Show Figures

Figure 1

10 pages, 553 KB  
Review
cGAS/STING Pathway in Cancer: Jekyll and Hyde Story of Cancer Immune Response
by Debojit Bose
Int. J. Mol. Sci. 2017, 18(11), 2456; https://doi.org/10.3390/ijms18112456 - 18 Nov 2017
Cited by 54 | Viewed by 12783
Abstract
The last two decades have witnessed enormous growth in the field of cancer immunity. Mechanistic insights of cancer immunoediting have not only enhanced our understanding but also paved the way to target and/or harness the innate immune system to combat cancer, called cancer [...] Read more.
The last two decades have witnessed enormous growth in the field of cancer immunity. Mechanistic insights of cancer immunoediting have not only enhanced our understanding but also paved the way to target and/or harness the innate immune system to combat cancer, called cancer immunotherapy. Cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon genes(STING) pathway has recently emerged as nodal player in cancer immunity and is currently being explored as potential therapeutic target. Although therapeutic activation of this pathway has shown promising anti-tumor effects in vivo, evidence also indicates the role of this pathway in inflammation mediated carcinogenesis. This review highlights our current understanding of cGAS/STING pathway in cancer, its therapeutic targeting and potential alternate approaches to target this pathway. Optimal therapeutic targeting and artificial tunability of this pathway still demand in depth understanding of cGAS/STING pathway regulation and homeostasis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop