Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = Cu, Ag, Au nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1574 KB  
Review
Nanoparticle-Based Assays for Antioxidant Capacity Determination
by Jolanta Flieger, Natalia Żuk, Ewelina Grabias-Blicharz, Piotr Puźniak and Wojciech Flieger
Antioxidants 2025, 14(12), 1506; https://doi.org/10.3390/antiox14121506 - 15 Dec 2025
Cited by 1 | Viewed by 743
Abstract
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation [...] Read more.
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation of other molecules during processing and storage. There are many classical methods for assessing antioxidant capacity/activity, which are based on mechanisms such as hydrogen atom transfer (HAT), single electron transfer (SET), electron transfer with proton conjugation (HAT/SET mixed mode assays) or the chelation of selected transition metal ions (e.g., Fe2+ or Cu1+). The antioxidant capacity (AOxC) index value can be expressed in terms of standard AOs (e.g., Trolox or ascorbic acid) equivalents, enabling different products to be compared. However, there is currently no standardized method for measuring AOxC. Nanoparticle sensors offer a new approach to assessing antioxidant status and can be used to analyze environmental samples, plant extracts, foodstuffs, dietary supplements and clinical samples. This review summarizes the available information on nanoparticle sensors as tools for assessing antioxidant status. Particular attention has been paid to nanoparticles (with a size of less than 100 nm), including silver (AgNPs), gold (AuNPs), cerium oxide (CeONPs) and other metal oxide nanoparticles, as well as nanozymes. Nanozymes belong to an advanced class of nanomaterials that mimic natural enzymes due to their catalytic properties and constitute a novel signal transduction strategy in colorimetric and absorption sensors based on the localized surface plasmon resonance (LSPR) band. Other potential AOxC sensors include quantum dots (QDs, <10 nm), which are particularly useful for the sensitive detection of specific antioxidants (e.g., GSH, AA and baicalein) and can achieve very good limits of detection (LOD). QDs and metallic nanoparticles (MNPs) operate on different principles to evaluate AOxC. MNPs rely on optical changes resulting from LSPR, which are monitored as changes in color or absorbance during synthesis, growth or aggregation. QDs, on the other hand, primarily utilize changes in fluorescence. This review aims to demonstrate that, thanks to its simplicity, speed, small sample volumes and relatively inexpensive instrumentation, nanoparticle-based AOxC assessment is a useful alternative to classical approaches and can be tailored to the desired aim and analytes. Full article
Show Figures

Figure 1

22 pages, 1115 KB  
Review
An Assessment of Fabrication, Properties, and Medical Applications of Chitosan–Nanometal Coatings
by Michał Bartmański
Materials 2025, 18(23), 5322; https://doi.org/10.3390/ma18235322 - 26 Nov 2025
Viewed by 905
Abstract
Chitosan (chit) is a specific polymer, an oligosaccharide, that demonstrates several important properties alone or in combination with other compounds or elements. These important properties include being biocompatible with the human body and simultaneously effective in destroying bacteria. Moreover, it is a smart [...] Read more.
Chitosan (chit) is a specific polymer, an oligosaccharide, that demonstrates several important properties alone or in combination with other compounds or elements. These important properties include being biocompatible with the human body and simultaneously effective in destroying bacteria. Moreover, it is a smart polymer, as it can change its properties when the pH value decreases below about 7. Therefore, chitosan is widely applied in dermo-cosmetics, but it is also intensively investigated for its use in food preservation and the targeted regeneration of teeth in dentistry. Due to these advantageous characteristics, chitosan has been employed in numerous coating systems for biomedical applications. These coatings can be fabricated through a wide variety of procedures involving different deposition techniques, process parameters, and the chemical characteristics of the environment, solution, air or vacuum, as well as the substrate. Chitosan–metallic coatings have often been investigated; however, the use of elementary metals in the form of nanoparticles (NPs) was rarely reported. The main part of this paper is focused on the presentation of chitosan–metallic NPs, in particular, an application of potentially antibacterial noble and semi-noble metals such as Au, Ag, Cu, and Zn, intensively investigated by the author. The deposition methods and their limitations, the differences in properties of such coatings and those possessing Ag, Sr, Zn, and other metals in the form of cations in chemical compounds, and the perspectives of chit–MeNPs (metal nanoparticles) are thoroughly considered, and future research is proposed. Full article
Show Figures

Figure 1

32 pages, 5875 KB  
Systematic Review
Thermally Conductive Biopolymers in Regenerative Medicine and Oncology: A Systematic Review
by Ivett Poma-Paredes, Oscar Vivanco-Galván, Darwin Castillo-Malla and Yuliana Jiménez-Gaona
Pharmaceuticals 2025, 18(11), 1708; https://doi.org/10.3390/ph18111708 - 11 Nov 2025
Viewed by 699
Abstract
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced [...] Read more.
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced biopolymers in hyperthermia-based therapies, (ii) appraise evidence from clinical and preclinical studies, (iii) identify and classify principal applications in regenerative medicine. Methods: A PRISMA-guided systematic review (2020–2025) with predefined inclusion/exclusion criteria was conducted and complemented by a bibliometric analysis using VOSviewer for mapping and visualization. Results: Modifying biopolymers—via functionalization with photothermal or magnetic nanoagents (Au; Fe2O3/Fe3O4/CoFe2O4; CuS; Ag; MXenes, e.g., Nb2C), crosslinking strategies, and hybrid formulations—significantly increased thermal conductivity, enabling localized hyperthermia and controlled drug release. In vitro and in vivo studies showed that europium-doped iron oxide nanoparticles embedded in chitosan generated heat efficiently while sparing healthy tissues, underscoring the need to balance biocompatibility and thermal performance. Hydrogel systems enriched with carbon nanomaterials (graphene, carbon nanotubes) and matrices such as GelMA, PNIPAM, hyaluronic acid, and PLA/PLGA demonstrated tissue compatibility and effective thermal behavior; graphene was compatible with neural tissue without inducing inflammation. Conclusions: Thermally conductive biopolymers show growing potential for oncology and regenerative medicine. The evidence supports further academic and interdisciplinary research to optimize safety, performance, and translational pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

18 pages, 6073 KB  
Article
Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles
by Bedour Almalki, Maymounah A. Alrayyani, Effat A. Bahaidarah, Maha M. Alotaibi, Shaista Taimur, Dalal Alezi, Fatmah M. Alshareef and Nazeeha S. Alkayal
Polymers 2025, 17(18), 2443; https://doi.org/10.3390/polym17182443 - 9 Sep 2025
Viewed by 707
Abstract
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil [...] Read more.
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil and water ecosystems has led to poor water quality. Noble metal nanoparticles (MNPs), for instance, Pd, Ag, Pt, and Au, have emerged as promising solutions for addressing environmental pollution. However, the practical utilization of MNPs faces challenges as they tend to aggregate and lose stability. To overcome this issue, the reverse double-solvent method (RDSM) was utilized to synthesis melamine-based porous polyaminals (POPs) as a supportive material for the in situ growing of silver nanoparticles (Ag NPs). The porous structure of melamine-based porous polyaminals, featuring aminal-linked (-HN-C-NH-) and triazine groups, provides excellent binding sites for capturing Ag+ ions, thereby improving the dispersion and stability of the nanoparticles. The resulting material exhibited ultrafine particle sizes for Ag NPs, and the incorporation of Ag NPs within the porous polyaminals demonstrated a high surface area (~279 m2/g) and total pore volume (1.21 cm3/g), encompassing micropores and mesopores. Additionally, the Ag NPs@POPs showcased significant capacity for CO2 capture (2.99 mmol/g at 273 K and 1 bar) and effectively removed Cu (II), with a remarkable removal efficiency of 99.04%. The nitrogen-rich porous polyaminals offer promising prospects for immobilizing and encapsulating Ag nanoparticles, making them outstanding adsorbents for selectively capturing carbon dioxide and removing metal ions. Pursuing this approach holds immense potential for various environmental applications. Full article
(This article belongs to the Collection Progress in Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 846 KB  
Review
Usefulness of Nanoparticles in the Fight Against Esophageal Cancer: A Comprehensive Review of Their Therapeutic Potential
by Gabriel Tchuente Kamsu and Eugene Jamot Ndebia
Appl. Nano 2025, 6(3), 18; https://doi.org/10.3390/applnano6030018 - 1 Sep 2025
Viewed by 1578
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for the majority of esophageal cancers worldwide, with a poor prognosis and increasing resistance to conventional treatments. Faced with these limitations, nanoparticles (NPs) are attracting growing interest as innovative therapeutic agents capable of improving specificity and efficacy [...] Read more.
Esophageal squamous cell carcinoma (ESCC) accounts for the majority of esophageal cancers worldwide, with a poor prognosis and increasing resistance to conventional treatments. Faced with these limitations, nanoparticles (NPs) are attracting growing interest as innovative therapeutic agents capable of improving specificity and efficacy and reducing systemic toxicity. This study critically examines the pharmacological effects, mechanisms of action, and toxicity profiles of different metallic or organic nanoparticles tested on ESCC cell lines. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines were followed by a meticulous literature search of Google Scholar, Web of Science, PubMed/Medline, and Scopus databases to achieve this goal. The results show that the anti-tumor properties vary according to the type of nanoparticle (copper(II) oxide (CuO), silver (Ag), gold (Au), nickel(II) oxide (NiO), nano-curcumin, etc.), the synthesis method (chemical vs. green), and the biological activity assessment method (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Bromodeoxyuridine (BrdU), Cell Counting Kit-8 (CCK8) assays, etc.). NPs derived from green synthesis, such as those based on Moringa oleifera, Photinia glabra, or pomegranate bark, exhibit moderate cytotoxic activity (50% inhibitory concentration (IC50) between 92 and 500 µg/mL) but show good tolerance on normal cells. In contrast, chemically synthesized NPs, such as Cu(II) complexes with 1,3,5-benzenetricarboxylic acid (H3btc) or 1,2,4-triazole (Htrz), show lower IC50 (34–86 µM), indicating more marked cytotoxicity towards cancer cells, although data on their toxicity are sometimes lacking. In addition, multifunctional nanoparticles, such as gold-based nano-conjugates targeting Cluster of Differentiation 271 (CD271) or systems combined with doxorubicin, show remarkable activity with IC50 below 3 µM and enhanced tumor selectivity, positioning them among the most promising candidates for future clinical application against ESCC. The most frequently observed mechanisms of action include induction of apoptosis (↑caspases, ↑p53, ↓Bcl-2), oxidative stress, and inhibition of proliferation. In conclusion, this work identifies several promising nanoparticles (silver nanoparticles derived from Photinia glabra (PG), gold-based nano-immunoconjugates targeting CD271, and silver–doxorubicin complexes) for future pharmaceutical exploitation against ESCC. However, major limitations remain, such as the lack of methodological standardization, insufficient in vivo and clinical studies, and poor industrial transposability. Future prospects include the development of multifunctional nanocomposites, the integration of biomarkers for personalized targeting, and long-term toxicological assessment. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

15 pages, 2650 KB  
Article
Durable Antibacterial Performance of Au–Ag–Cu Thin Films Prepared by Magnetron Sputtering: Real-World Applications
by Agata Markowska-Szczupak, Rafał J. Wróbel, Anna Kiełbus-Rąpała and Beata Michalkiewicz
Molecules 2025, 30(16), 3348; https://doi.org/10.3390/molecules30163348 - 12 Aug 2025
Cited by 1 | Viewed by 966
Abstract
The growing prevalence of bacteria resistant to antibiotics and conventional disinfectants is a cause for concern and underscores the necessity of developing new strategies to prevent the transmission of microorganisms. To this end, nanocrystalline Cu, Au, and Ag nanoparticles were employed to fabricate [...] Read more.
The growing prevalence of bacteria resistant to antibiotics and conventional disinfectants is a cause for concern and underscores the necessity of developing new strategies to prevent the transmission of microorganisms. To this end, nanocrystalline Cu, Au, and Ag nanoparticles were employed to fabricate various coatings using the sputtering technique. Then, the antibacterial activity of the coatings against Gram-negative Escherichia coli and Gram-positive Staphylocococcus epidermidis was investigated. The coating obtained by co-sputtering of Au, Ag, and Cu exhibited the most pronounced antibacterial properties. This coating was applied to disposable BIC ballpoint pens, which were subsequently used by clients in two public institutions. After three months of regular use, the antibacterial properties of the coatings were re-evaluated. It was confirmed that this coating led to a significant reduction (log5 CFU/mL) in the bacterial presence on the treated surface within 0.5 h. These results support further investigation into the underlying mechanism, which is likely based on the synergistic interaction of the employed noble metal nanoparticles. Full article
(This article belongs to the Special Issue Recent Advances in Antibacterial Nanomaterials)
Show Figures

Graphical abstract

16 pages, 4346 KB  
Article
First-Principles Calculations of Plasmon-Induced Hot Carrier Properties of μ-Ag3Al
by Zihan Zhao, Hai Ren, Yucheng Wang, Xiangchao Ma, Jiali Jiang, Linfang Wei and Delian Liu
Nanomaterials 2025, 15(10), 761; https://doi.org/10.3390/nano15100761 - 19 May 2025
Viewed by 992
Abstract
Non-radiative decay of surface plasmon (SP) offers a novel paradigm for efficient conversion of photons into carriers. However, the narrow bandwidth of SP has been a significant obstacle to the widespread applications. Previously, research and applications mainly focused on noble metals such as [...] Read more.
Non-radiative decay of surface plasmon (SP) offers a novel paradigm for efficient conversion of photons into carriers. However, the narrow bandwidth of SP has been a significant obstacle to the widespread applications. Previously, research and applications mainly focused on noble metals such as Au, Ag, and Cu. In this article, we report an Ag-Al alloy material, μ-Ag3Al, in which the surface plasmon operating bandwidth is 1.7 times that of Ag and hot carrier transport properties are comparable with those of AuAl. The results show that μ-Ag3Al allows efficient direct interband electronic transitions from ultraviolet (UV) to near infrared range. Spherical nanoparticles of μ-Ag3Al exhibit the localized surface plasmon resonance (LSPR) effect in the ultraviolet region. Its surface plasmon polariton (SPP) shows strong non-radiative decay at 3.36 eV, which is favorable for the generation of high-energy hot carriers. In addition, the penetration depth of SPP in μ-Ag3Al remains high across the UV to the near-infrared range. Moreover, the transport properties of hot carriers in μ-Ag3Al are comparable with those in Al, borophene and Au-Al intermetallic compounds. These properties can provide guidance for the design of plasmon-based photodetectors, solar cells, and photocatalytic reactors. Full article
Show Figures

Figure 1

28 pages, 12614 KB  
Article
Nanoparticles as New Antifungals in the Prevention of Bovine Mycotic Mastitis Caused by Candida spp. and Diutina spp.—In Vitro Studies
by Magdalena Kot, Agata Lange, Weronika Jabłońska, Aleksandra Kalińska, Barbara Nasiłowska, Wojciech Skrzeczanowski and Marcin Gołębiewski
Molecules 2025, 30(10), 2086; https://doi.org/10.3390/molecules30102086 - 8 May 2025
Cited by 4 | Viewed by 1628
Abstract
Bacterial infections are the primary cause of mastitis in dairy cattle. Fungal mastitis occurs in 1–12% of cases. Antibiotic therapy, the standard treatment for mastitis, has led to antibiotic-resistant bacteria, reducing treatment efficacy and increasing fungal mastitis occurrence. Antibiotics lack biocidal effects [...] Read more.
Bacterial infections are the primary cause of mastitis in dairy cattle. Fungal mastitis occurs in 1–12% of cases. Antibiotic therapy, the standard treatment for mastitis, has led to antibiotic-resistant bacteria, reducing treatment efficacy and increasing fungal mastitis occurrence. Antibiotics lack biocidal effects on fungi, which often exhibit resistance to antifungal agents. This study evaluated the antifungal properties of nanoparticles (NPs) against Candida albicans, Candida glabrata, Candida parapsilosis, Diutina rugosa var. rugosa, Diutina catenulata, and Diutina rugosa. Tested NPs included gold (AuNPs), silver (AgNPs), copper (CuNPs), iron with hydrophilic carbon coating (FeCNPs) (1.56–25 mg/L), and platinum (PtNPs) (0.625–10 mg/L), along with their complexes. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) at 0.75–25 mg/L for AuNPs, AgNPs, CuNPs, and FeCNPs and 0.313–10 mg/L for PtNPs, as well as fungal sensitivity to standard antifungals, were determined. Each strain showed different sensitivities depending on the NPs used and their concentrations. C. glabrata was the most resistant to nanoparticles, while D. catenulata was the most susceptible. PtNPs and FeCNPs showed no or weak biocidal properties. Some mycotic-resistant strains were sensitive to nanoparticles. This study indicates a high in vitro antifungal potential for the application of nanoparticles, especially AgCuNPs, as a new effective non-antibiotic agent for the prevention and control of mycotic mastitis in dairy cattle. Full article
Show Figures

Figure 1

31 pages, 8352 KB  
Article
Novel Trimethoprim-Based Metal Complexes and Nanoparticle Functionalization: Synthesis, Structural Analysis, and Anticancer Properties
by Abbas M. Abbas, Hossam H. Nasrallah, A. Aboelmagd, W. Christopher Boyd, Haitham Kalil and Adel S. Orabi
Inorganics 2025, 13(5), 144; https://doi.org/10.3390/inorganics13050144 - 1 May 2025
Cited by 2 | Viewed by 2040
Abstract
In this study, we synthesized a novel trimethoprim derivative, 4-(((2-amino-5-(3,4,5-trimethoxybenzyl) pyrimidine-4-yl)imino)methyl)benzene-1,3-diol (HD), by the reaction of trimethoprim with 2,4-dihydroxybenzaldehyde. We then prepared metal complexes of this derivative with Cu(II), Co(II), Ni(II), Ag(I), and Zn(II) and functionalized them with ZnO and Au nanoparticles. Their [...] Read more.
In this study, we synthesized a novel trimethoprim derivative, 4-(((2-amino-5-(3,4,5-trimethoxybenzyl) pyrimidine-4-yl)imino)methyl)benzene-1,3-diol (HD), by the reaction of trimethoprim with 2,4-dihydroxybenzaldehyde. We then prepared metal complexes of this derivative with Cu(II), Co(II), Ni(II), Ag(I), and Zn(II) and functionalized them with ZnO and Au nanoparticles. Their structures were confirmed through 1H NMR, mass spectrometry, FTIR, conductivity, thermal analysis, magnetic susceptibility, X-ray diffraction, UV-Vis spectroscopy, and TEM, revealing octahedral geometries for all complexes. Surface features were investigated using density functional theory (DFT) analysis. Pharmacokinetic parameters and target enzymes for HD and its complexes were computed using the SwissADME web tool, with the BOILED-Egg model indicating that HD and its Cu complex should be passively permeable via the blood-brain barrier and highly absorbed by the gastrointestinal tract (GIT), unlike the Ni, Co, Ag, and Zn complexes, which are predicted to show low GIT absorption. Molecular docking studies with the Caspase-3 enzyme (PDB code: 3GJQ) using the AutoDock 4.2 software demonstrated binding energies of −7.66, −8.36, −9.05, −8.62, −6.90, and −7.81 kcal/mol for HD and the Cu, Co, Ni, Ag, and Zn complexes, respectively, compared to −6.54 and −4.63 kcal/mol for TMP and 5-FU (5-fluorouracil), indicating a potential superior anticancer potential of the novel compounds. The anticancer activities of these complexes were evaluated using the MTT assay. The IC50 values for 5-FU, TMP, HD, Cu-HD, HD@ZnONPs, Cu-HD@ZnONPs, HD@AuNPs, and Cu-HD@AuNPs were found to be 32.53, 80.76, 114.7, 61.66, 77, 53.13, 55.06, and 50.81 µg/mL, respectively. Notably, all derivatives exhibited higher activity against the HepG-2 cancer cell line than TMP, except for HD, which showed similar effectiveness to TMP. Real-time PCR analysis revealed that the Au-HD@AuNPs and Cu-HD@AuNPs significantly increased caspase-3 inhibition by 4.35- and 4.5-fold and P53 expression by 3.05- and 3.41-fold, respectively, indicating enhanced pro-apoptotic gene expression and apoptosis induction in HepG2 cells. Our findings demonstrate that these novel derivatives possess significant anticancer properties, with some complexes showing superior activity compared to standard drugs such as 5-Fluorouracil (5-FU) and Trimethoprim (TMP). This study highlights the potential of these nanocomposites as promising candidates for cancer therapy. Full article
Show Figures

Figure 1

36 pages, 5860 KB  
Review
Extraction of Metallic Nanoparticles from Electronic Waste for Biomedical Applications: Pioneering Sustainable Technological Progress
by Sunil Kumar, Harbinder Singh, Harjeevan Singh, Himanshi Soni, Mikhael Bechelany and Jagpreet Singh
Sustainability 2025, 17(5), 2100; https://doi.org/10.3390/su17052100 - 28 Feb 2025
Cited by 3 | Viewed by 3641
Abstract
The extraction of metallic nanoparticles (MNPs) from waste electrical and electronic equipment (WEEE) has gained extensive attention from researchers for eco-friendly, reliable, and sustainable alternative protocol over the traditional linear economic approach (make-use-dispose) for boosting the circular economy. A plethora of MNPs including [...] Read more.
The extraction of metallic nanoparticles (MNPs) from waste electrical and electronic equipment (WEEE) has gained extensive attention from researchers for eco-friendly, reliable, and sustainable alternative protocol over the traditional linear economic approach (make-use-dispose) for boosting the circular economy. A plethora of MNPs including metals/metal oxide nanoparticles having a size dimension ranging from 1–100 nanometers (nm) have been extracted from these WEEE by using different chemical, physical, and biological methods. Recovery of certain precious MNPs can be achieved by dismantling and recycling electronic waste items in the form of gold (Au), platinum (Pt), zinc oxide (ZnO), silver (Ag), and copper oxide (CuO). These MNPs provide a huge range of applications such as antibacterial, therapeutic, target drug delivery, and biotechnological applications. This comprehensive review provides in-depth knowledge of the synthesis of MNPs using different techniques from WEEE and delves into their potential applications in biomedical fields with in-depth mechanisms. This article also discussed global challenges and opportunities in this area for adopting the concept of circular economy to conserve natural resources for future generations and hence create a greener environment and protect our planet. Full article
Show Figures

Figure 1

19 pages, 4003 KB  
Article
Plasmon-Enhanced CO2 Reduction to Liquid Fuel via Modified UiO-66 Photocatalysts
by Alaa Elsafi, Zeineb Theihmed, Amna Al-Yafei, Alaa Alkhateeb, Ahmed Abotaleb, Muhammad Anwar, Kamal Mroue, Brahim Aissa and Alessandro Sinopoli
Catalysts 2025, 15(1), 70; https://doi.org/10.3390/catal15010070 - 14 Jan 2025
Cited by 2 | Viewed by 2887
Abstract
Metal–organic frameworks (MOFs) have emerged as versatile materials with remarkably high surface areas and tunable properties, attracting significant attention for various applications. In this work, the modification of a UiO-66 MOF with metal nanoparticles (NPs) is investigated for the purpose of enhancing its [...] Read more.
Metal–organic frameworks (MOFs) have emerged as versatile materials with remarkably high surface areas and tunable properties, attracting significant attention for various applications. In this work, the modification of a UiO-66 MOF with metal nanoparticles (NPs) is investigated for the purpose of enhancing its photocatalytic activity for CO2 reduction to liquid fuels. Several NPs (Au, Cu, Ag, Pd, Pt, and Ni) were loaded into the UiO-66 framework and employed as photocatalysts. The synergistic effects of plasmonic resonance and MOF characteristics were investigated to improve photocatalytic performance. The synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), confirming the successful integration of metal NPs onto the UiO-66 framework. Morphological analysis revealed distinct distributions and sizes of NPs on the UiO-66 surface for different metals. Photocatalytic CO2 reduction experiments demonstrated enhanced activity of plasmonic MOFs, yielding methanol and ethanol. The findings revealed by this study provide valuable insights into tailoring MOFs for improved photocatalytic applications through the incorporation of plasmonic metal nanoparticles. Full article
Show Figures

Figure 1

13 pages, 8642 KB  
Article
Analysis and Optimization of Light Absorption and Scattering Properties of Metal Nanocages
by Enhao Shao, Paerhatijiang Tuersun, Dilishati Wumaier, Shuyuan Li and Aibibula Abudula
Nanomaterials 2024, 14(19), 1603; https://doi.org/10.3390/nano14191603 - 4 Oct 2024
Cited by 2 | Viewed by 2554
Abstract
Metal nanocages exhibit localized surface plasmon resonance that strongly absorbs and scatters light at specific wavelengths, making them potentially valuable for photothermal therapy and biological imaging applications. However, investigations on metal nanocages are still confined to high-cost and small-scale synthesis. The comprehensive analysis [...] Read more.
Metal nanocages exhibit localized surface plasmon resonance that strongly absorbs and scatters light at specific wavelengths, making them potentially valuable for photothermal therapy and biological imaging applications. However, investigations on metal nanocages are still confined to high-cost and small-scale synthesis. The comprehensive analysis of optical properties and optimal size parameters of metal nanocages is rarely reported. This paper simulates the effects of materials (Ag, Au, and Cu), size parameters, refractive index of the surrounding medium, and orientation on the light absorption and scattering characteristics of the nanocages using the finite-element method and the size-dependent refractive-index model for metal nanoparticles. The results show that the Ag nanocages have excellent light absorption and scattering characteristics and respond significantly to the size parameters, while the refractive index and orientation of the surrounding medium have less effect on them. The Au nanocages also possess superior light absorption properties at specific incident wavelengths. This study also identified the optimized sizes of three metal nanocages at incident light wavelengths commonly used in biomedicine; it was also found that, under deep therapy conditions, Ag nanocages in particular exhibit the highest volume absorption and scattering coefficients of 0.708 nm−1 and 0.583 nm−1, respectively. These findings offer theoretical insights into preparing target nanocage particles for applications in photothermal therapy and biological imaging. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Nanomaterials)
Show Figures

Figure 1

13 pages, 4169 KB  
Article
Preliminary In Vitro Evaluation of Silver, Copper and Gold Nanoparticles as New Antimicrobials for Pathogens That Induce Bovine Locomotion Disorders
by Aleksandra Kalińska, Cezary Wawryło, Wiktoria Tlatlik, Marcin Gołębiewski, Magdalena Kot, Agata Lange and Sławomir Jaworski
Int. J. Mol. Sci. 2024, 25(17), 9494; https://doi.org/10.3390/ijms25179494 - 31 Aug 2024
Cited by 3 | Viewed by 1686
Abstract
Lameness is a crucial problem in dairy farming. It worsens the welfare of cattle, reduces the milk yield, and causes economic losses. The etiology of lameness is varied and the cattle’s condition may be infectious or non-infectious. The aim of this research was [...] Read more.
Lameness is a crucial problem in dairy farming. It worsens the welfare of cattle, reduces the milk yield, and causes economic losses. The etiology of lameness is varied and the cattle’s condition may be infectious or non-infectious. The aim of this research was to analyze the biocidal properties of silver (AgNPs), gold (AuNPs), and copper (CuNPs) nanoparticles against bacteria causing lameness in cattle. The isolated pathogens used were Aerococcus viridans, Corynebacterium freneyi, Corynebacterium xerosis, and Trueperella pyogenes. The tested concentrations of nanoparticles were 50, 25, 12.5, 6.25, 3.125, and 1.56 mg/L. The methods used included the isolation of pathogens using standard microbiological procedures and their identification using mass spectrometry, physicochemical analysis, transmission electron microscopy, and cytotoxicity tests. Studies have shown that AgNPs at 3.125 and 1.56 mg/L concentrations, and CuNPs at 25 and 12.5 mg/L concentrations, have strong biocidal properties, while AuNPs have the weakest antimicrobial properties. The very limited number of in vivo studies focusing on lameness prevention in cattle indicate that new solutions need to be developed. However, further studies are necessary to evaluate if nanoparticles (NPs) may, in the future, become components of innovative biocides used to prevent lameness in dairy cattle. Full article
(This article belongs to the Special Issue Antimicrobial Materials and Nanoparticles 2.0)
Show Figures

Figure 1

20 pages, 4552 KB  
Review
Recent Advances in the Development of Metal/Metal Oxide Nanoparticle and Antibiotic Conjugates (MNP–Antibiotics) to Address Antibiotic Resistance: Review and Perspective
by Abdullah, Tayyaba Jamil, Muhammad Atif, Shumaila Khalid, Kamel Metwally, Galal Yahya, Mihaela Moisa and Daniela Simona Cavalu
Int. J. Mol. Sci. 2024, 25(16), 8915; https://doi.org/10.3390/ijms25168915 - 16 Aug 2024
Cited by 16 | Viewed by 3660
Abstract
As per the World Health Organization (WHO), antimicrobial resistance (AMR) is a natural phenomenon whereby microbes develop or acquire genes that render them resistant. The rapid emergence and spread of this phenomenon can be attributed to human activity specifically, the improper and excessive [...] Read more.
As per the World Health Organization (WHO), antimicrobial resistance (AMR) is a natural phenomenon whereby microbes develop or acquire genes that render them resistant. The rapid emergence and spread of this phenomenon can be attributed to human activity specifically, the improper and excessive use of antimicrobials for the treatment, prevention, or control of infections in humans, animals, and plants. As a result of this factor, many antibiotics have reduced effectiveness against microbes or may not work fully. Thus, there is a pressing need for the development of new antimicrobial agents in order to counteract antimicrobial resistance. Metallic nanoparticles (MNPs) are well known for their broad antimicrobial properties. Consequently, the use of MNPs with current antibiotics holds significant implications. MNPs, including silver nanoparticles (AgNPS), zinc oxide nanoparticles (ZnONPs), copper nanoparticles (CuNPs), and gold nanoparticles (AuNPs), have been extensively studied in conjunction with antibiotics. However, their mechanism of action is still not completely understood. The interaction between these MNPs and antibiotics can be either synergistic, additive, or antagonistic. The synergistic effect is crucial as it represents the desired outcome that researchers aim for and can be advantageous for the advancement of new antimicrobial agents. This article provides a concise and academic description of the recent advancements in MNP and antibiotic conjugates, including their mechanism of action. It also highlights their possible use in the biomedical field and major challenges associated with the use of MNP–antibiotic conjugates in clinical practice. Full article
(This article belongs to the Special Issue Antimicrobial Materials and Nanoparticles 2.0)
Show Figures

Figure 1

14 pages, 2244 KB  
Article
High-Order Harmonics Generation Using Spherical and Non-Spherical Nanoparticles
by Rashid A. Ganeev and Aigars Atvars
Nanomaterials 2024, 14(12), 1010; https://doi.org/10.3390/nano14121010 - 11 Jun 2024
Cited by 1 | Viewed by 1746
Abstract
The conversion efficiency of 800 nm, 65 fs radiation toward high-order harmonic generation (HHG) in laser-induced plasmas containing spherical and non-spherical nanoparticles (NPs) produced during the laser ablation of different metals in water using 1064 nm, 70 ps pulses was analyzed. Non-spherical NPs [...] Read more.
The conversion efficiency of 800 nm, 65 fs radiation toward high-order harmonic generation (HHG) in laser-induced plasmas containing spherical and non-spherical nanoparticles (NPs) produced during the laser ablation of different metals in water using 1064 nm, 70 ps pulses was analyzed. Non-spherical NPs of different forms (triangle, cubic, bowtie, rod, rectangular, ellipsoid, etc.) were synthesized during the aging of some spherical NPs (In, Al, and Cu) in water. These NPs were then dried on the glass substrates and ablated to produce plasmas comprising nanostructured species of different morphologies. It was shown that harmonic generation in all synthesized non-spherical NPs was less efficient by a factor of at least five than in the initial spherical NP. Meanwhile, the spherical NPs that maintained the morphology state during aging (Ni, Ag, Mn, and Au) showed almost similar HHG conversion efficiency compared to the fresh spherical NPs. In all cases, the HHG conversion efficiency using spherical and non-spherical nanoparticles was notably larger compared to the atomic and ionic single-particle plasmas of the same elemental composition. NP plasmas demonstrated featureless harmonic distributions, contrary to the indium and manganese atomic/ionic plasmas, when the resonance enhancement of harmonics was observed. Full article
Show Figures

Figure 1

Back to TopTop