Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = CsPbBr2I quantum dots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1346 KiB  
Article
Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
by Shiyi He, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao and Xiaoping Ouyang
Materials 2025, 18(15), 3691; https://doi.org/10.3390/ma18153691 - 6 Aug 2025
Abstract
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low [...] Read more.
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low luminous intensity and significant self-absorption. Therefore, an enhanced method was proposed to tune the wavelength of materials via coating perovskite quantum dot (QD) films. Three-layer samples based on GZO were primarily investigated and characterized. Radioluminescence (RL) spectra from each face of the samples, as well as their decay times, were obtained. Lower temperatures further enhanced the luminous intensity of the samples. Its overall luminous intensity increased by 2.7 times at 60 K compared to room temperature. The changes in the RL processes caused by perovskite QD and low temperatures were discussed using the light tuning and transporting model. In addition, an experiment under a pico-second electron beam was conducted to verify their pulse response and decay time. Accordingly, the samples were successfully applied in beam state monitoring of nanosecond pulsed proton beams, which indicates that GZO wafer coating with perovskite QD films has broad application prospects in pulsed radiation detection. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

16 pages, 1820 KiB  
Article
Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3
by Ying Lv, Menghan Duan, Jie An, Yunpeng Wang and Luchao Du
Nanomaterials 2025, 15(14), 1065; https://doi.org/10.3390/nano15141065 - 9 Jul 2025
Viewed by 397
Abstract
Lead halide perovskite quantum dots, also known as perovskite nanocrystals, are considered one of the most promising photovoltaic materials for solar cells due to their outstanding optoelectronic properties and simple preparation techniques. The key factors restricting the photoelectric conversion efficiency of solar cell [...] Read more.
Lead halide perovskite quantum dots, also known as perovskite nanocrystals, are considered one of the most promising photovoltaic materials for solar cells due to their outstanding optoelectronic properties and simple preparation techniques. The key factors restricting the photoelectric conversion efficiency of solar cell systems are the separation and transmission performances of charge carriers. Here, femtosecond time-resolved ultrafast spectroscopy was used to measure the interfacial charge transfer dynamics of different sizes of CsPbBr3 assembled with TiO2. The effect of perovskite size on the charge transfer is discussed. According to our experimental data analysis, the time constants of the interfacial electron transfer and charge recombination of the assembled systems of CsPbBr3 and titanium dioxide become larger when the size of the CsPbBr3 nanocrystals increases. We discuss the physical mechanism by which the size of perovskites affects the rate of charge transfer in detail. We expect that our experimental results provide experimental support for the application of novel quantum dots for solar cell materials. Full article
(This article belongs to the Special Issue Metal Halide Perovskite Nanocrystals and Thin Films)
Show Figures

Figure 1

9 pages, 2715 KiB  
Article
Three-Dimensional High-Resolution Laser Lithography of CsPbBr3 Quantum Dots in Photoresist with Sub-100 nm Feature Size
by Boyuan Cai, Haoran Jiang, Run Bai, Shengting Zhu, Yinan Zhang, Haoyi Yu, Min Gu and Qiming Zhang
Nanomaterials 2025, 15(7), 531; https://doi.org/10.3390/nano15070531 - 31 Mar 2025
Cited by 1 | Viewed by 674
Abstract
Perovskite quantum dots (PQDs), with their excellent optical properties, have become a leading semiconductor material in the field of optoelectronics. However, to date, it has been a challenge to achieve the three-dimensional high-resolution patterning of perovskite quantum dots. In this paper, an in [...] Read more.
Perovskite quantum dots (PQDs), with their excellent optical properties, have become a leading semiconductor material in the field of optoelectronics. However, to date, it has been a challenge to achieve the three-dimensional high-resolution patterning of perovskite quantum dots. In this paper, an in situ femtosecond laser-direct-writing technology was demonstrated for three-dimensional high-resolution patterned CsPbBr3 PQDs using a two-photon photoresist nanocomposite doped with the CsPbBr3 perovskite precursor. By adjusting the laser processing parameters, the minimum line width of the PQDs material was confirmed to be 98.6 nm, achieving a sub-100 nm PQDs nanowire for the first time. In addition, the fluorescence intensity of the laser-processed PQDs can be regulated by the laser power. Our findings provide a new technology for fabricating high-resolution display devices based on laser-direct-writing CsPbBr3 PQDs materials. Full article
(This article belongs to the Special Issue Nano-Optics and Nanophotonics)
Show Figures

Figure 1

15 pages, 5983 KiB  
Article
Mn2+-Doped CsPbBr2I Quantum Dots Photosensitive Films for High-Performance Photodetectors
by Mengwei Chen, Wei Huang, Chenguang Shen, Yingping Yang and Jie Shen
Nanomaterials 2025, 15(6), 444; https://doi.org/10.3390/nano15060444 - 15 Mar 2025
Viewed by 824
Abstract
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped [...] Read more.
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped CsPbBr2I QDs with varying concentrations were synthesized via the one-pot method in this work. By replacing Pb2+ ions, moderate Mn2+ doping caused lattice contraction and improved crystallinity. At the same time, Mn2+-doping effectively passivated surface defects, reducing the defect density by 33%, and suppressed non-radiative recombination, thereby improving photoluminescence (PL) intensity and carrier mobility. The optimized Mn:CsPbBr2I QDs-based photodetector exhibited superior performance, with a dark current of 1.19 × 10−10 A, a photocurrent of 1.29 × 10−5 A, a responsivity (R) of 0.83 A/W, a specific detectivity (D*) of 3.91 × 1012 Jones, an on/off ratio up to 105, and the response time reduced to less than 10 ms, all outperforming undoped CsPbBr2I QDs devices. Stability tests demonstrated enhanced durability, retaining 80% of the initial photocurrent after 200 s of cycling (compared to 50% for undoped devices) and stable operation over 20 days. This work offers a workable strategy for rational doping and structural optimization in the construction of high-performance perovskite optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofilms)
Show Figures

Figure 1

12 pages, 3447 KiB  
Article
High Performance Phototransistor Based on 0D-CsPbBr3/2D-MoS2 Heterostructure with Gate Tunable Photo-Response
by Chen Yang, Yangyang Xie, Lei Zheng, Hanqiang Liu, Peng Liu, Fang Wang, Junqing Wei and Kailiang Zhang
Nanomaterials 2025, 15(4), 307; https://doi.org/10.3390/nano15040307 - 17 Feb 2025
Cited by 2 | Viewed by 969
Abstract
Monolayer MoS2 has been widely researched in high performance phototransistors for its high carrier mobility and strong photoelectric conversion ability. However, some defects in MoS2, such as vacancies or impurities, provide more possibilities for carrier recombination; thus, restricting the formation [...] Read more.
Monolayer MoS2 has been widely researched in high performance phototransistors for its high carrier mobility and strong photoelectric conversion ability. However, some defects in MoS2, such as vacancies or impurities, provide more possibilities for carrier recombination; thus, restricting the formation of photocurrents and resulting in decreased responsiveness. Herein, all-inorganic CsPbBr3 perovskite quantum dots (QDs) with high photoelectric conversion efficiency and light absorption coefficients are introduced to enhance the responsivity of a 2D MoS2 phototransistor. The CsPbBr3/MoS2 heterostructure has a type II energy band, and it has a high responsivity of ~1790 A/W and enhanced detectivity of ~2.4 × 1011 Jones. Additionally, the heterostructure CsPbBr3/MoS2 enables the synergistic effect mechanism of photoconduction and photogating effects with the gate tunable photo-response, which could also contribute to an improved performance of the MoS2 phototransistor. This work provides new strategies for performance phototransistors and is expected to play an important role in many fields, such as optical communication, environmental monitoring and biomedical imaging, and promote the development and application of related technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

9 pages, 2206 KiB  
Article
Development of Model Representations of Materials with Ordered Distribution of Vacancies
by Ekaterina N. Muratova, Vyacheslav A. Moshnikov and Anton A. Zhilenkov
Crystals 2024, 14(12), 1095; https://doi.org/10.3390/cryst14121095 - 19 Dec 2024
Viewed by 661
Abstract
This paper presents an overview of research results on the physical and technological features of crystal formation with an ordered distribution of vacancies. It is noted that the composition and properties of complex chalcogenide phases are not always described by the traditional concepts [...] Read more.
This paper presents an overview of research results on the physical and technological features of crystal formation with an ordered distribution of vacancies. It is noted that the composition and properties of complex chalcogenide phases are not always described by the traditional concepts behind Kroeger’s theory. Model concepts are considered in which the carriers of properties in the crystalline state are not molecules, but an elementary crystalline element with a given arrangement of nodes with atoms and vacancies. It is established that the introduction of the term “quasi-element atom” of the zero group for a vacancy allows us to predict a number of compounds with an ordered distribution of vacancies. Examples of the analysis of peritectic multicomponent compounds and solid solutions based on them are given. Quasi-crystalline concepts are applicable to perovskite materials used in solar cells. It is shown that the photoluminescence of perovskite lead-cesium halides is determined by crystalline structural subunits i.e., the anionic octets. This is the reason for the improvement in the luminescent properties of colloidal quantum CsPbBr3 dots under radiation exposure conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

10 pages, 5775 KiB  
Article
Perovskite Quantum Dot/Zinc Oxide Composite Films for Enhanced Luminance
by Nikita Khairnar, Hyukmin Kwon, Sunwoo Park, Sangwook Park, Hayoon Lee and Jongwook Park
Crystals 2024, 14(11), 937; https://doi.org/10.3390/cryst14110937 - 29 Oct 2024
Cited by 1 | Viewed by 1340
Abstract
We conducted experiments utilizing the scattering effect of zinc oxide (ZnO) to enhance the photoluminescence (PL) intensity of cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs). This study involved investigating the method for creating a CsPbBr3 and ZnO mixture and [...] Read more.
We conducted experiments utilizing the scattering effect of zinc oxide (ZnO) to enhance the photoluminescence (PL) intensity of cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs). This study involved investigating the method for creating a CsPbBr3 and ZnO mixture and determining the optimal mixing ratio. A mixture dispersion of CsPbBr3 and ZnO, prepared at a 1:0.015 weight ratio through shaking, was fabricated into a film using the spin coating method. The PL intensity of this film showed a relative increase of 20% compared to the original CsPbBr3 QD film without ZnO. The scattering effect of ZnO was confirmed through ultraviolet-visible (UV-Vis) absorption and transient PL experiments, and a long-delayed exciton lifetime was observed in the optimized mixture dispersion thin film. The morphology of the fabricated film was characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). For the CsPbBr3-ZnO mixture (1:0.0015) film, crystal domains of approximately 10 nm were observed using TEM. Through AFM analysis, an excellent film roughness of 4.6 nm was observed, further confirming the potential of perovskite QD/ZnO composite films as promising materials for enhanced photoconversion intensity. In future studies, applying this method to other perovskite materials and metal oxides for the optimization of photoconversion composite materials is expected to enable the fabrication of highly efficient perovskite QD/metal oxide composite films. Full article
(This article belongs to the Special Issue Progress and Prospects of Perovskite Films)
Show Figures

Figure 1

15 pages, 4011 KiB  
Article
Performance Enhancement of Hole Transport Layer-Free Carbon-Based CsPbIBr2 Solar Cells through the Application of Perovskite Quantum Dots
by Qi Yu, Wentian Sun and Shu Tang
Nanomaterials 2024, 14(20), 1651; https://doi.org/10.3390/nano14201651 - 14 Oct 2024
Cited by 1 | Viewed by 1413
Abstract
CsPbIBr2, with its suitable bandgap, shows great potential as the top cell in tandem solar cells. Nonetheless, its further development is hindered by a high defect density, severe carrier recombination, and poor stability. In this study, CsPbI1.5Br1.5 quantum [...] Read more.
CsPbIBr2, with its suitable bandgap, shows great potential as the top cell in tandem solar cells. Nonetheless, its further development is hindered by a high defect density, severe carrier recombination, and poor stability. In this study, CsPbI1.5Br1.5 quantum dots were utilized as an additive in the ethyl acetate anti-solvent, while a layer of CsPbBr3 QDs was introduced between the ETL and the CsPbIBr2 light-harvester film. The combined effect of these two QDs enhanced the nucleation, crystallization, and growth of CsPbIBr2 perovskite, yielding high-quality films characterized by an enlarged crystal size, reduced grain boundaries, and smooth surfaces. And a wider absorption range and better energy band alignment were achieved owing to the nano-size effect of QDs. These improvements led to a decreased defect density and the suppression of non-radiative recombination. Additionally, the presence of long-chain organic molecules in the QD solution promoted the formation of a hydrophobic surface, significantly enhancing the long-term stability of CsPbIBr2 PSCs. Consequently, the devices achieved a PCE of 9.20% and maintained an initial efficiency of 85% after 60 days of storage in air. Thus, this strategy proves to be an effective approach for the preparation of efficient and stable CsPbIBr2 PSCs. Full article
Show Figures

Figure 1

16 pages, 5371 KiB  
Article
Perovskite Nanocrystal-Coated Inorganic Scintillator-Based Fiber-Optic Gamma-ray Sensor with Higher Light Yields
by Seokhyeon Jegal, Siwon Song, Jae Hyung Park, Jinhong Kim, Seunghyeon Kim, Sangjun Lee, Cheol Ho Pyeon, Sin Kim and Bongsoo Lee
Photonics 2024, 11(10), 936; https://doi.org/10.3390/photonics11100936 - 4 Oct 2024
Viewed by 1498
Abstract
Radiation possesses inherent physical characteristics, such as penetrability and radionuclide energy, which enable its widespread applicability in fields such as medicine, industry, environment, security, and research. Advancements in scintillator-based radiation detection technology have led to revolutionary changes by ensuring the safe use and [...] Read more.
Radiation possesses inherent physical characteristics, such as penetrability and radionuclide energy, which enable its widespread applicability in fields such as medicine, industry, environment, security, and research. Advancements in scintillator-based radiation detection technology have led to revolutionary changes by ensuring the safe use and precise measurement of radiation. Nevertheless, certain fields require higher scintillation yields to obtain more refined and detailed results. Therefore, in this study, we explored inorganic scintillators coated with perovskite nanomaterials to detect gamma rays with high light yields. By mixing perovskite with a polymer, we improved the intrinsic characteristics of quantum dots, which otherwise failed to maintain their performance over time. On this basis, we investigated the interactions among inorganic scintillators and a mixed material (CsPbBr3 + PMMA) and confirmed an increase in the scintillation yield and measurement trends. Furthermore, optimized scintillation yield measurement experiments facilitated gamma spectroscopy, demonstrating the validity of our approach through the analysis of the peak channel increases in the energy spectra of various gamma sources in relation to the increased scintillation yield. Full article
Show Figures

Figure 1

13 pages, 4891 KiB  
Article
Förster Resonance Energy Transfer and Enhanced Emission in Cs4PbBr6 Nanocrystals Encapsulated in Silicon Nano-Sheets for Perovskite Light Emitting Diode Applications
by Araceli Herrera Mondragon, Roberto Gonzalez Rodriguez, Noah Hurley, Sinto Varghese, Yan Jiang, Brian Squires, Maoding Cheng, Brooke Davis, Qinglong Jiang, Mansour Mortazavi, Anupama B. Kaul, Jeffery L. Coffer, Jingbiao Cui and Yuankun Lin
Nanomaterials 2024, 14(19), 1596; https://doi.org/10.3390/nano14191596 - 3 Oct 2024
Cited by 1 | Viewed by 1907
Abstract
Encapsulating Cs4PbBr6 quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated Cs4PbBr6 [...] Read more.
Encapsulating Cs4PbBr6 quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated Cs4PbBr6 ellipsoidal nanocrystals and pseudo-spherical quantum dots in silicon nano-sheets and their enhanced photoluminescence (PL). For a sample with low concentrations of quantum dots in silicon nano-sheets, the emission from Cs4PbBr6 pseudo-spherical quantum dots is quenched and is dominated with Pb2+ ion/silicene emission, which is very stable during the whole measurement period. For a high concentration of Cs4PbBr6 ellipsoidal nanocrystals in silicon nano-sheets, we have observed Förster resonance energy transfer with up to 87% efficiency through the oscillation of two PL peaks when UV excitation switches between on and off, using recorded video and PL lifetime measurements. In an area of a non-uniform sample containing both ellipsoidal nanocrystals and pseudo-spherical quantum dots, where Pb2+ ion/silicene emissions, broadband emissions from quantum dots, and bandgap edge emissions (515 nm) appear, the 515 nm peak intensity increases five times over 30 min of UV excitation, probably due to a photon recycling effect. This irradiated sample has been stable for one year of ambient storage. Cs4PbBr6 quantum dots encapsulated in silicon nano-sheets can lead to applications of halide perovskite light emitting diodes (PeLEDs) and integration with traditional semiconductor materials. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electric Applications)
Show Figures

Figure 1

11 pages, 2174 KiB  
Article
Size Uniformity of CsPbBr3 Perovskite Quantum Dots via Manganese-Doping
by Mi Zhang, Xue Han, Changgang Yang, Guofeng Zhang, Wenli Guo, Jialu Li, Zhihao Chen, Bin Li, Ruiyun Chen, Chengbing Qin, Jianyong Hu, Zhichun Yang, Ganying Zeng, Liantuan Xiao and Suotang Jia
Nanomaterials 2024, 14(15), 1284; https://doi.org/10.3390/nano14151284 - 30 Jul 2024
Cited by 4 | Viewed by 2906
Abstract
The achievement of size uniformity and monodispersity in perovskite quantum dots (QDs) requires the implementation of precise temperature control and the establishment of optimal reaction conditions. Nevertheless, the accurate control of a range of reaction variables represents a considerable challenge. This study addresses [...] Read more.
The achievement of size uniformity and monodispersity in perovskite quantum dots (QDs) requires the implementation of precise temperature control and the establishment of optimal reaction conditions. Nevertheless, the accurate control of a range of reaction variables represents a considerable challenge. This study addresses the aforementioned challenge by employing manganese (Mn) doping to achieve size uniformity in CsPbBr3 perovskite QDs without the necessity for the precise control of the reaction conditions. By optimizing the Mn:Pb ratio, it is possible to successfully dope CsPbBr3 QDs with the appropriate concentrations of Mn²⁺ and achieve a uniform size distribution. The spectroscopic measurements on single QDs indicate that the appropriate Mn²⁺ concentrations can result in a narrower spectral linewidth, a longer photoluminescence (PL) lifetime, and a reduced biexciton Auger recombination rate, thus positively affecting the PL properties. This study not only simplifies the size control of perovskite QDs but also demonstrates the potential of Mn-doped CsPbBr3 QDs for narrow-linewidth light-emitting diode applications. Full article
(This article belongs to the Special Issue Semiconductor Quantum Dots: Synthesis, Properties and Applications)
Show Figures

Figure 1

23 pages, 22654 KiB  
Review
Ligand Engineering of Inorganic Lead Halide Perovskite Quantum Dots toward High and Stable Photoluminescence
by Changbo Deng, Qiuping Huang, Zhengping Fu and Yalin Lu
Nanomaterials 2024, 14(14), 1201; https://doi.org/10.3390/nano14141201 - 15 Jul 2024
Cited by 5 | Viewed by 3810
Abstract
The ligand engineering of inorganic lead halide perovskite quantum dots (PQDs) is an indispensable strategy to boost their photoluminescence stability, which is pivotal for optoelectronics applications. CsPbX3 (X = Cl, Br, I) PQDs exhibit exceptional optical properties, including high color purity and [...] Read more.
The ligand engineering of inorganic lead halide perovskite quantum dots (PQDs) is an indispensable strategy to boost their photoluminescence stability, which is pivotal for optoelectronics applications. CsPbX3 (X = Cl, Br, I) PQDs exhibit exceptional optical properties, including high color purity and tunable bandgaps. Despite their promising characteristics, environmental sensitivity poses a challenge to their stability. This article reviews the solution-based synthesis methods with ligand engineering. It introduces the impact of factors like humidity, temperature, and light exposure on PQD’s instability, as well as in situ and post-synthesis ligand engineering strategies. The use of various ligands, including X- and L-type ligands, is reviewed for their effectiveness in enhancing stability and luminescence performance. Finally, the significant potential of ligand engineering for the broader application of PQDs in optoelectronic devices is also discussed. Full article
Show Figures

Figure 1

10 pages, 4274 KiB  
Communication
Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications
by Xing Huang, Kuanxin Lv, Wenqiang Zhu, Zhenzhen Li and Hang Zhao
Molecules 2024, 29(14), 3249; https://doi.org/10.3390/molecules29143249 - 9 Jul 2024
Viewed by 1288
Abstract
Efficient, low-cost photocatalysts with mild synthesis conditions and stable photocatalytic behavior have always been the focus in the field of photocatalysis. This study proves that non-quantum-dot Cs2PbI2Cl2-based materials, created by a simple method, can be successfully employed [...] Read more.
Efficient, low-cost photocatalysts with mild synthesis conditions and stable photocatalytic behavior have always been the focus in the field of photocatalysis. This study proves that non-quantum-dot Cs2PbI2Cl2-based materials, created by a simple method, can be successfully employed as new high-efficient photocatalysts. The results demonstrate that two-dimensional Cs2PbI2Cl2 perovskite can achieve over three times higher photocatalytic performance compared to three-dimensional CsPbBr3 perovskite. Moreover, the photocatalytic performance of Cs2PbI2Cl2 can be further improved by constructing a heterojunction structure, such as Cs2PbI2Cl2/CsPbBr3. Cs2PbI2Cl2 can connect well with CsPbBr3 through a simple method, resulting in tight bonding at the interface and efficient carrier transfer. Cs2PbI2Cl2/CsPbBr3 exhibits notable 5-fold and 10-fold improvements in photocatalytic performance and rate compared to CsPbBr3. Additionally, Cs2PbI2Cl2/CsPbBr3 demonstrates superb stable catalytic performance, with nearly no decrease in photocatalytic performance after 7 months (RH = 20% ± 10, T = 25 °C ± 5). This study also reveals that the photocatalytic process based on Cs2PbI2Cl2/CsPbBr3 can directly oxidize organic matter using holes, without relying on the generation of intermediate reactive oxygen species from water or oxygen (such as ·OH or ·O2), showcasing further potential for achieving high photocatalytic efficiency and selectivity in anhydrous/anaerobic catalytic reactions and treating recalcitrant pollutants. Full article
(This article belongs to the Special Issue Chemical Properties of Photoelectric Materials)
Show Figures

Figure 1

13 pages, 4662 KiB  
Article
In Situ Synthesis of CsPbX3/Polyacrylonitrile Nanofibers with Water-Stability and Color-Tunability for Anti-Counterfeiting and LEDs
by Yinbiao Shi, Xiaojia Su, Xiaoyan Wang and Mingye Ding
Polymers 2024, 16(11), 1568; https://doi.org/10.3390/polym16111568 - 1 Jun 2024
Cited by 3 | Viewed by 1488
Abstract
Inorganic CsPbX3 (X = Cl, Br, I) perovskite quantum dots (PQDs) have attracted widespread attention due to their excellent optical properties and extensive application prospects. However, their inherent structural instability significantly hinders their practical application despite their outstanding optical performance. To enhance [...] Read more.
Inorganic CsPbX3 (X = Cl, Br, I) perovskite quantum dots (PQDs) have attracted widespread attention due to their excellent optical properties and extensive application prospects. However, their inherent structural instability significantly hinders their practical application despite their outstanding optical performance. To enhance stability, an in situ electrospinning strategy was used to synthesize CsPbX3/polyacrylonitrile composite nanofibers. By optimizing process parameters (e.g., halide ratio, electrospinning voltage, and heat treatment temperature), all-inorganic CsPbX3 PQDs have been successfully grown in a polyacrylonitrile (PAN) matrix. During the electrospinning process, the rapid solidification of electrospun fibers not only effectively constrained the formation of large-sized PQDs but also provided effective physical protection for PQDs, resulting in the improvement in the water stability of PQDs by minimizing external environmental interference. Even after storage in water for over 100 days, the PQDs maintained approximately 93.5% of their photoluminescence intensity. Through the adjustment of halogen elements, the as-obtained composite nanofibers exhibited color-tunable luminescence in the visible light region, and based on this, a series of multicolor anti-counterfeiting patterns were fabricated. Additionally, benefiting from the excellent water stability and optical performance, the CsPbBr3/PAN composite film was combined with red-emitting K2SiF6:Mn4+ (KSF) on a blue LED (460 nm), producing a stable and efficient WLED device with a color temperature of around 6000 K and CIE coordinates of (0.318, 0.322). These results provide a general approach to synthesizing PQDs/polymer nanocomposites with excellent water stability and multicolor emission, thereby promoting their practical applications in multifunctional optoelectronic devices and advanced anti-counterfeiting. Full article
(This article belongs to the Special Issue New Advances in Polymer Electrospun Fibers)
Show Figures

Figure 1

11 pages, 13409 KiB  
Article
Heterojunctions of Mercury Selenide Quantum Dots and Halide Perovskites with High Lattice Matching and Their Photodetection Properties
by Chengye Yu, Yufeng Shan, Jiaqi Zhu, Dingyue Sun, Xiaohong Zheng, Na Zhang, Jingshan Hou, Yongzheng Fang, Ning Dai and Yufeng Liu
Materials 2024, 17(8), 1864; https://doi.org/10.3390/ma17081864 - 18 Apr 2024
Cited by 3 | Viewed by 1711
Abstract
Heterojunction semiconductors have been extensively applied in various optoelectronic devices due to their unique carrier transport characteristics. However, it is still a challenge to construct heterojunctions based on colloidal quantum dots (CQDs) due to stress and lattice mismatch. Herein, HgSe/CsPbBrxI3−x [...] Read more.
Heterojunction semiconductors have been extensively applied in various optoelectronic devices due to their unique carrier transport characteristics. However, it is still a challenge to construct heterojunctions based on colloidal quantum dots (CQDs) due to stress and lattice mismatch. Herein, HgSe/CsPbBrxI3−x heterojunctions with type I band alignment are acquired that are derived from minor lattice mismatch (~1.5%) via tuning the ratio of Br and I in halide perovskite. Meanwhile, HgSe CQDs with oleylamine ligands can been exchanged with a halide perovskite precursor, acquiring a smooth and compact quantum dot film. The photoconductive detector based on HgSe/CsPbBrxI3−x heterojunction presents a distinct photoelectric response under an incident light of 630 nm. The work provides a promising strategy to construct CQD-based heterojunctions, simultaneously achieving inorganic ligand exchange, which paves the way to obtain high-performance photodetectors based on CQD heterojunction films. Full article
(This article belongs to the Topic Advances in Inorganic Synthesis)
Show Figures

Figure 1

Back to TopTop