Defect-Induced Modulation of Electronic and Optical Properties in Monolayer CsPb2Br5: Implications for Fiber-Optic Sensing Applications
Abstract
1. Introduction
2. Computational Conditions
2.1. Modeling of Defect
2.2. Computational Methods
3. Results and Discussion
3.1. Structures and Formation Energies of Vacancy Defects
3.2. Electronic Properties of Vacancy Defects
3.3. Optical Properties of Vacancy Defects
3.3.1. Optical Response of ds−CsPb2Br5
3.3.2. Optical Response of ss−CsPb2Br5
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = cl, br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal halide perovskite for next−generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, H.; Lee, J.; Jung, Y.; Jung, J.; Cho, J.; Lee, T.; Kang, K. Unlocking the potential of metal halide perovskite thermoelectrics through electrical doping: A critical review. EcoMat 2023, 5, e12406. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, W. How the structures and properties of two−dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers. J. Phys. Chem. Lett. 2017, 8, 1517. [Google Scholar] [CrossRef]
- Cai, B.; Li, X.; Gu, Y.; Harb, M.; Li, J.; Xie, M.; Cao, F.; Song, J.; Zhang, S.; Cavallo, L.; et al. Quantum confinement effect of two−dimensional all−inorganic halide perovskites. Sci. China Mater. 2017, 60, 811. [Google Scholar] [CrossRef]
- Lan, C.; Zhou, Z.; Wei, R.; Ho, J.C. Two−dimensional perovskite materials: From synthesis to energy−related applications. Mater. Today Energy 2019, 11, 61. [Google Scholar] [CrossRef]
- Acharyya, P.; Pal, P.; Samanta, P.K.; Sarkar, A.; Pati, S.K.; Biswas, K. Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties. Nanoscale 2019, 11, 4001. [Google Scholar] [CrossRef]
- Bao, C.; Yang, J.; Bai, S.; Xu, W.; Yan, Z.; Xu, Q.; Liu, J.; Zhang, W.; Gao, F. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Wang, S.; Long, D.; Li, M.; Guo, Y.; Zhong, Z.; Wu, K.; Wang, D.; Zhang, T. Synthesis of all−inorganic CsPb2 Br5 perovskite and determination of its luminescence mechanism. RSC Adv. 2017, 7, 54002. [Google Scholar] [CrossRef]
- Wang, K.; Wu, L.; Li, L.; Yao, H.; Qian, H.; Yu, S. Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angew. Chem. Int. Ed. 2016, 55, 8328. [Google Scholar] [CrossRef]
- Bresolin, B.-M.; Park, Y.; Bahnemann, D. Recent progresses on metal halide perovskite−based material as potential photocatalyst. Catalysts 2020, 10, 709. [Google Scholar] [CrossRef]
- Yang, J.; Manganaris, P.; Mannodi−Kanakkithodi, A. A high−throughput computational dataset of halide perovskite alloys. Digit. Discov. 2023, 2, 856. [Google Scholar] [CrossRef]
- Savill, K.J.; Ulatowski, A.M.; Herz, L.M. Optoelectronic properties of tin–lead halide perovskites. ACS Energy Lett. 2021, 6, 2413. [Google Scholar] [CrossRef]
- Yu, C.-J.; Ri, I.-C.; Ri, H.-M.; Jang, J.-H.; Kim, Y.-S.; Jong, U.-G. First−principles study on structural, electronic and optical properties of halide double perovskite Cs2AgBX6 (B = in, sb; X = F, cl, br, I). RSC Adv. 2023, 13, 16012. [Google Scholar] [CrossRef]
- Yin, W.-J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 63903. [Google Scholar] [CrossRef]
- Chen, D.; Ding, J.; Tan, Q.; Yang, P.; Liu, Y.; Wang, Q. Roles of defects in perovskite CsPbX3 (X = I, br, cl): A first−principles investigation. Phys. Scr. 2024, 99, 115911. [Google Scholar] [CrossRef]
- Liu, B.; Jia, X.; Nie, Y.; Zhu, Y.; Ye, H. The thermodynamical and optical properties of surface bromine vacancy in two−dimensional CsPbBr3: A first principles study. Appl. Surf. Sci. 2022, 584, 152626. [Google Scholar] [CrossRef]
- Liu, W.W.; Liu, Y.C.; Cui, C.Y.; Niu, S.T.; Niu, W.J.; Liu, M.C.; Liu, M.J.; Gu, B.; Zhang, L.Y.; Zhao, K.; et al. All−inorganic CsPbBr3 perovskite solar cells with enhanced efficiency by exploiting lone pair electrons via passivation of crystal boundary using carbon nitride (g−C3N4) nanosheets. Mater. Today Energy 2021, 21, 100782. [Google Scholar] [CrossRef]
- Kang, J.; Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489. [Google Scholar] [CrossRef]
- Zhang, S.; He, J.; Guo, X.; Su, J.; Lin, Z.; Zhang, J.; Guo, L.; Hao, Y.; Chang, J. Crystallization dynamic control of perovskite films with suppressed phase transition and reduced defects for highly efficient and stable all−inorganic perovskite solar cells. ACS Mater. Lett. 2023, 5, 1497. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R.H.; Cheetham, A.K. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2017, 2, 16099. [Google Scholar] [CrossRef]
- Meggiolaro, D.; De Angelis, F. First−principles modeling of defects in lead halide perovskites: Best practices and open issues. ACS Energy Lett. 2018, 3, 2206. [Google Scholar] [CrossRef]
- Xue, H.; Chen, Z.; Tao, S.; Brocks, G. Defects in halide perovskites: Does it help to switch from 3D to 2D? ACS Energy Lett. 2024, 9, 2343. [Google Scholar] [CrossRef] [PubMed]
- Rana, R.; Limmer, D.T. On the interplay of electronic and lattice screening on exciton binding in two−dimensional lead halide perovskites. Nano Lett. 2025, 25, 4727. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Yu, W.; Zhou, Y.; Wong, W.; He, W.; Loh, K.P.; Jiang, X.-F.; Xu, Q.-H. Indirect−to−direct bandgap transition in layered metal halide perovskite—CsPb2Br5. J. Mater. Chem. A 2023, 11, 4292. [Google Scholar] [CrossRef]
- Jiang, N.; Wei, J.; Lv, M.; Rong, Y.; Wang, C.; Liu, Y.; Wei, G.; Han, X.; Wang, Y.; Liu, Y.; et al. Phase evolution and fluorescence stability of CsPb2Br5 microwires and their application in stable and sensitive photodetectors. J. Mater. Chem. C 2023, 11, 6046. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, X.; Zhang, H.; Zhang, R.; Hu, K.; Zhou, X.; Xie, Y. Enhancing orange−red emission by doping/codoping CsPb2Br5 with cations through a room−temperature aqueous−phase synthesis. CrystEngComm 2024, 26, 5249. [Google Scholar] [CrossRef]
- Iyikanat, F.; Sari, E.; Sahin, H. Thinning CsPb2Br5 perovskite down to monolayers: Cs−dependent stability. Phys. Rev. B 2017, 96, 155442. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Su, X.; Hadjiev, V.G.; Dai, S.; Qin, Z.; Calderon Benavides, H.A.; Ni, Y.; Li, Q.; Jian, J.; et al. Extrinsic green photoluminescence from the edges of 2D cesium lead halides. Adv. Mater. 2019, 31, 1902492. [Google Scholar] [CrossRef]
- Han, C.; Li, C.; Zang, Z.; Wang, M.; Sun, K.; Tang, X.; Du, J. Tunable luminescent CsPb2Br5 nanoplatelets: Applications in light−emitting diodes and photodetectors. Photonics Res. 2017, 5, 473. [Google Scholar] [CrossRef]
- Zhou, Y.-Q.; Xu, J.; Liu, J.-B.; Liu, B.-X. Green emission induced by intrinsic defects in all−inorganic perovskite CsPb2Br5. J. Phys. Chem. Lett. 2019, 10, 6118. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab−initio total energy calculations for metals and semiconductors using a plane−wave basis set. Comput. Mater. Sci. 1996, 6, 15. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user−friendly interface facilitating high−throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented−wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented−wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Evarestov, R.A.; Kotomin, E.A.; Senocrate, A.; Kremer, R.K.; Maier, J. First−principles comparative study of perfect and defective CsPbX3 (X = Br, I) crystals. Phys. Chem. Chem. Phys. 2020, 22, 3914. [Google Scholar] [CrossRef]
- Dursun, I.; De Bastiani, M.; Turedi, B.; Alamer, B.; Shkurenko, A.; Yin, J.; El-Zohry, A.M.; Gereige, I.; AlSaggaf, A.; Mohammed, O.F.; et al. CsPb2Br5 single crystals: Synthesis and characterization. ChemSusChem 2017, 10, 3746. [Google Scholar] [CrossRef]
- Li, G.; Wang, H.; Zhu, Z.; Chang, Y.; Zhang, T.; Song, Z.; Jiang, Y. Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap. Chem. Commun. 2016, 52, 11296. [Google Scholar] [CrossRef]
- Mannodi-Kanakkithodi, A.; Park, J.-S.; Cao, D.H.; Jeon, N.; Martinson, A.B.F.; Chan, M.K.Y. First−Principles Study of Intrinsic and Extrinsic Point Defects in Lead−Based Hybrid Perovskites. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, USA, 10–15 June 2018; pp. 495–498. [Google Scholar]
Structures | Bond Lengths (Å) | ||
---|---|---|---|
Pb−Br1 | Pb−Br2 | Pb−Br3 | |
ds−CsPb2Br5 | 3.180 | 2.949 | 3.408 |
ds−CsPb2Br5−VBr−c | 3.153–3.244 | 2.951 | 3.291 |
ds−CsPb2Br5−VBr−b | 3.054–3.277 | 2.858–2.893 | 3.088–3.244 |
ds−CsPb2Br5−VCs | 3.125 | 2.899 | 3.236 |
ds−CsPb2Br5−VPb | 2.994–3.255 | 2.892–3.099 | 3.107–3.479 |
ss−CsPb2Br5 | 3.184 | 2.868 | 3.226 |
ss−CsPb2Br5−VBr−c | 3.081–3.230 | 2.875–2.884 | 3.101–3.251 |
ss−CsPb2Br5−VBr−b | 3.157–3.277 | 2.858–2.893 | 3.088–3.244 |
ss−CsPb2Br5−VCs | 3.109 | 2.884 | 3.237 |
ss−CsPb2Br5−VPb | 2.966–3.212 | 2.832–2.875 | 2.934–3.426 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, M.; Fan, W.; Wei, S.; Wang, J. Defect-Induced Modulation of Electronic and Optical Properties in Monolayer CsPb2Br5: Implications for Fiber-Optic Sensing Applications. Photonics 2025, 12, 638. https://doi.org/10.3390/photonics12070638
An M, Fan W, Wei S, Wang J. Defect-Induced Modulation of Electronic and Optical Properties in Monolayer CsPb2Br5: Implications for Fiber-Optic Sensing Applications. Photonics. 2025; 12(7):638. https://doi.org/10.3390/photonics12070638
Chicago/Turabian StyleAn, Meiqi, Wenxuan Fan, Shengsheng Wei, and Junqiang Wang. 2025. "Defect-Induced Modulation of Electronic and Optical Properties in Monolayer CsPb2Br5: Implications for Fiber-Optic Sensing Applications" Photonics 12, no. 7: 638. https://doi.org/10.3390/photonics12070638
APA StyleAn, M., Fan, W., Wei, S., & Wang, J. (2025). Defect-Induced Modulation of Electronic and Optical Properties in Monolayer CsPb2Br5: Implications for Fiber-Optic Sensing Applications. Photonics, 12(7), 638. https://doi.org/10.3390/photonics12070638