Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = Clotrimazole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1953 KiB  
Article
Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania
by Antoaneta Ene, Liliana Teodorof, Carmen Lidia Chiţescu, Adrian Burada, Cristina Despina, Gabriela Elena Bahrim, Aida Mihaela Vasile, Daniela Seceleanu-Odor and Elena Enachi
Appl. Sci. 2025, 15(9), 5009; https://doi.org/10.3390/app15095009 - 30 Apr 2025
Viewed by 884
Abstract
The assessment of surface water quality of the Danube River and Black Sea was performed taking into account the amounts determined for heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn), nutrients (compounds of N and P, chlorophyll a), emerging contaminants [...] Read more.
The assessment of surface water quality of the Danube River and Black Sea was performed taking into account the amounts determined for heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn), nutrients (compounds of N and P, chlorophyll a), emerging contaminants (CECs) (pharmaceutics and endocrine disruptors—19 quantified compounds, out of 30 targeted chemicals), heterotrophic bacteria and total coliforms, in thirty-two locations from the lower Danube sector (starting with km 375 up to the river mouths), the Danube Delta Biosphere Reserve (three Danube branches—Chilia, Sulina, and Sf. Gheorghe) and the Romanian coastal area of the Black Sea. The heavy metals levels were found in the following ranges: 3.0–6.5 μg/L As; 0.51–1.32 μg/L Cd; 21.6–61.2 μg/L Cr; 10.2–28.6 μg/L Cu; 196–351 μg/L Mn; 12.3–47.67 μg/L Ni; 5.2–15.5 μg/L Pb; 44–74 μg/L Zn; 0.01–0.08 μg/L Hg. The nutrient concentrations vary in the intervals: 0.04–0.45 mg/L N-NH4; 0.01–0.06 mg/L N-NO2; 0.07–1.9 mg/L N-NO3; 1.0–3.2 mg/L N total; 0.01–0.05 mg/L P-PO4; 0.02–0.27 mg/L P total, and 0.8–17.3 μg/L chlorophyll a. The concentrations of CECs from various classes (sulfamethoxazole, trimethoprim, ciprofloxacin, flumequine, amoxicillin, cefuroxime, dicloxacillin, carbamazepine, pravastatin, erythromycin, piroxicam, ketoprofen, diclofenac, naproxen, enilconazole (imazalil), clotrimazole, drospirenone, 17α-ethinylestradiol, and bisphenol A) were compared with values reported for European rivers and the Danube River water in various river sectors. The highest detection frequencies were registered for bisphenol A (100%), sulfamethoxazole (96%), carbamazepine and diclofenac (87%), trimethoprim (78%), pravastatin (46%), and imazalil (34%). Bisphenol A exhibited the largest concentrations (342 ng/L), followed by diclofenac (132 ng/L), carbamazepine (38 ng/L), and sulfamethoxazole (36 ng/L). For most of the contaminants, Black Sea coastal water showed lower concentrations than the Danube water and good ecological status for surface water. Correlations between CECs and total coliforms suggest insufficient treated wastewater effluents as a common contamination source and possible use of CECs as indirect fecal pollution indicator in aquatic systems. This is the first study carried out in the connected system Danube River–Danube Delta–Black Sea for a large palette of toxicants classes and microbial pollutants, which will serve as a baseline for future monitoring of water quality in the region. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

10 pages, 247 KiB  
Article
The Efficacy of a Combination of Selected Azole Antifungals and Plant Essential Oil Components Against Malassezia pachydermatis
by Eva Čonková, Shiri Karasenti, Peter Váczi, Zuzana Malinovská and Miriam Bačkorová
J. Fungi 2025, 11(4), 272; https://doi.org/10.3390/jof11040272 - 1 Apr 2025
Viewed by 842
Abstract
Infections caused by Malassezia (M.) pachydermatis in dogs are mostly treated with azole antifungals. Excessive use of these drugs is usually associated with an increased incidence of resistant isolates, which can be prevented by combining commonly used antifungals with natural bioactive [...] Read more.
Infections caused by Malassezia (M.) pachydermatis in dogs are mostly treated with azole antifungals. Excessive use of these drugs is usually associated with an increased incidence of resistant isolates, which can be prevented by combining commonly used antifungals with natural bioactive compounds. The present study aimed at testing the effectiveness of a combination of selected azole derivatives showing low antifungal activity against M. pachydermatis isolates, with plant essential oil components displaying the highest efficacy. Among the four azole antifungals tested (itraconazole, posaconazole, clotrimazole, and miconazole), clotrimazole (a mean MIC of 7.62 μg/mL at 72 h and 7.24 μg/mL at 96 h) and miconazole (a mean MIC of 1.71 μg/mL at 72 h and 2.33 μg/mL at 96 h) exhibited the lowest antifungal efficacy. Out of the four plant essential oil components tested (eugenol, terpinene-4-ol, geraniol, and limonene), eugenol (an average MIC of 378.57 μg/mL at 72 h and 1180 μg/mL at 92 h) showed the highest antifungal activity. The checkerboard method was used to assess the interaction of these agents. The fractional inhibitory concentration index (FICI) values for the combination of clotrimazole with eugenol reached 1.43 at 72 h and 0.70 at 96 h and for the combination of miconazole with eugenol, 1.30 at 72 h and 0.45 at 96 h. A higher effect of the combinations was recorded at 96 h, when the combination of clotrimazole with eugenol showed an additive effect in 66.67% of the isolates, and the combination of miconazole and eugenol brought a synergistic effect in 57.14% of the isolates. The obtained results indicate that eugenol is a suitable agent for enhancing the efficacy of poor azoles against M. pachydermatis. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
34 pages, 7076 KiB  
Article
Optimization of LCD-Based 3D Printing for the Development of Clotrimazole-Coated Microneedle Systems
by Oliwia Kordyl, Zuzanna Styrna, Monika Wojtyłko, Jolanta Dlugaszewska, Dorota Kaminska, Marek Murias, Dariusz T. Mlynarczyk, Barbara Jadach, Agnieszka Skotnicka, Bozena Michniak-Kohn and Tomasz Osmałek
Materials 2025, 18(7), 1580; https://doi.org/10.3390/ma18071580 - 31 Mar 2025
Viewed by 1332
Abstract
Fungal infections pose a significant global health problem, affecting 20–25% of the population and contributing to over 3.75 million deaths annually. Clotrimazole (CLO) is a widely used topical antifungal drug, but its efficacy is limited by poor penetration through the stratum corneum. [...] Read more.
Fungal infections pose a significant global health problem, affecting 20–25% of the population and contributing to over 3.75 million deaths annually. Clotrimazole (CLO) is a widely used topical antifungal drug, but its efficacy is limited by poor penetration through the stratum corneum. Microneedle (MN) systems, composed of micron-scale structures arranged on a patch, offer a promising strategy to overcome the outermost skin barrier and enhance drug penetration into deeper layers. However, optimizing MN design, particularly in terms of size, shape, and fabrication technology, is essential for efficient drug delivery. This study aimed to develop CLO-coated MN systems using an Liquid Crystal Display (LCD)-based 3D printing technique and a thin-film dip-coating method. A comprehensive optimization of printing parameters, including anti-aliasing, layer thickness, curing time, and printing angle, was conducted to ensure the desired mechanical properties. The optimized MNs were coated with either suspension or ethanol-based CLO-hydrogels, with ethanol hydrogel demonstrating superior characteristics. Additionally, the study investigated how microneedle geometry and coating formulation influenced drug release. Antifungal activity against reference and clinical origin Candida albicans strains varied significantly depending on the coating formulation. Finally, the acute toxicity test confirmed no significant toxic effects on Aliivibrio fischeri, indicating the potential biocompatibility and safety of the developed MN-based drug delivery system. Full article
(This article belongs to the Special Issue Design and Application of Additive Manufacturing: 3rd Edition)
Show Figures

Graphical abstract

18 pages, 1058 KiB  
Article
Knowledge of Vulvovaginal Candidiasis Characteristics, Signs, Symptoms, and Appropriate Treatment Among Portuguese Pharmacy Professionals
by Tiago Oliveira, Ângelo Jesus, João P. Martins, Patrícia Correia and Fernando Moreira
Healthcare 2025, 13(4), 402; https://doi.org/10.3390/healthcare13040402 - 13 Feb 2025
Viewed by 1340
Abstract
Background/Objectives: Vulvovaginal candidiasis (VVC) is a common cause of vaginitis. Over-the-counter drugs are usually dispensed by pharmacy professionals to treat this condition without prior medical consultation. This study aimed at assessing the knowledge of Portuguese pharmacy professionals regarding VVC. Methods: An online questionnaire [...] Read more.
Background/Objectives: Vulvovaginal candidiasis (VVC) is a common cause of vaginitis. Over-the-counter drugs are usually dispensed by pharmacy professionals to treat this condition without prior medical consultation. This study aimed at assessing the knowledge of Portuguese pharmacy professionals regarding VVC. Methods: An online questionnaire including questions about the symptoms and treatment of VVC was distributed between March and April of 2024. Results: A total of 376 professionals participated in this study. There was a significantly lower proportion of men (p = 0.007) and pharmacy technicians (p = 0.005) who correctly identified the main causative agent of VVC when compared to women and pharmacists. Only 30% of women correctly identified the number of VVC episodes in the same year they classified as complicated, but this was significantly higher (p = 0.038) than the proportion of men who identified complicated VVC (20%). Topical clotrimazole preparations were the more frequently identified medicines for the treatment of uncomplicated VVC, and fluconazole-containing medicines were the preferred choice for the treatment of complicated VVC. Conclusions: This study highlights the need to improve education and training for pharmacy professionals. By addressing these knowledge gaps, pharmacists and pharmacy technicians can provide more accurate and effective advice to patients. Full article
Show Figures

Figure 1

13 pages, 8818 KiB  
Article
Antifungal Testing of Vaginal Candida Isolates in Pregnant Women: A Retrospective, Single-Center Study in Adana, Türkiye
by Mete Sucu, Nevzat Ünal, Ayşe Sultan Karakoyun, İrem Şahin, Oğuzhan Bingöl, Fatih Hüner, Fatma İşlek Uzay, İlker Ünal, Dilek Yeşim Metin and Macit Ilkit
J. Fungi 2025, 11(2), 92; https://doi.org/10.3390/jof11020092 - 24 Jan 2025
Viewed by 1011
Abstract
Clinical and mycological data are essential for the optimal management of patients with Candida vaginitis (CV), particularly in cases of (i) azole-resistant C. albicans vaginitis, (ii) recurrent CV, and (iii) CV in pregnant women. The present retrospective single-center study investigated the antifungal [...] Read more.
Clinical and mycological data are essential for the optimal management of patients with Candida vaginitis (CV), particularly in cases of (i) azole-resistant C. albicans vaginitis, (ii) recurrent CV, and (iii) CV in pregnant women. The present retrospective single-center study investigated the antifungal activity of six commonly used antifungals against randomly selected vaginal isolates recovered from 68 pregnant women in Adana, Türkiye, including C. albicans, petite C. glabrata, non-petite C. glabrata, and C. krusei, using the disk diffusion method at pH 4 and 7. Furthermore, the antifungal activities of fluconazole and itraconazole were also assessed using the broth microdilution method. For all isolates, the mean inhibition zone diameters were narrower for itraconazole and ketoconazole and larger for miconazole at pH 4 than pH 7 (p < 0.05). For nystatin, zone diameters were wider in C. albicans and petite C. glabrata at pH 4 (p < 0.001 and p < 0.001). Remarkably, clotrimazole was more active at pH 4 than at pH 7, except against non-petite C. glabrata isolates. Based on the broth microdilution results, the resistance rate was higher at pH 4 than at pH 7 in all isolates. Candida glabrata petite isolates exhibited MIC values 2 to 5 times higher than those of the non-petite isolates for both fluconazole and itraconazole. This study highlights the potent activity of topical antifungals (miconazole, nystatin, and clotrimazole) for the treatment of CV in pregnant women and highlights the need to identify petite and non-petite mutants of vaginal C. glabrata isolates to obtain more reliable data and for antifungal susceptibility testing prior to decision-making. The results of the two antifungal susceptibility methods were compared for C. albicans and C. glabrata isolates, and the reliability of the disk diffusion test was discussed. Full article
Show Figures

Figure 1

15 pages, 4051 KiB  
Article
Enhanced Tolerance to Antifungals as a General Feature of Rho Mutants in Yeast Species: Implications to Positive Selection of Respiratory Deficiency
by Zachary Johnson, Farhan Nadim and Mikhajlo K. Zubko
Microorganisms 2025, 13(1), 99; https://doi.org/10.3390/microorganisms13010099 - 7 Jan 2025
Viewed by 1492
Abstract
Although the mitochondrial genome is an attribute of all eukaryotes, some yeast species (called petite-positive) can replicate without mitochondrial DNA (mtDNA). Strains without mtDNA (known as rho mutants or petite mutants) are respiration-deficient and require fermentable carbon sources (such as glucose) for [...] Read more.
Although the mitochondrial genome is an attribute of all eukaryotes, some yeast species (called petite-positive) can replicate without mitochondrial DNA (mtDNA). Strains without mtDNA (known as rho mutants or petite mutants) are respiration-deficient and require fermentable carbon sources (such as glucose) for their metabolism. However, they are compromised in many aspects of fitness and competitiveness. Nevertheless, a few research groups have reported that some petite mutants of Candida glabrata and Saccharomyces cerevisiae manifested higher levels of tolerance to the antifungal fluconazole than their wild-type (WT) counterparts. In this study, we show that elevated tolerance to two or three out of four tested antifungals is a generic feature of at least five petite-positive species of yeasts including C. glabrata (higher tolerance of petites to clotrimazole and miconazole), S. bayanus (tolerance to clotrimazole, fluconazole, and miconazole), S. cerevisiae (tolerance to clotrimazole and fluconazole), S. paradoxus (tolerance to clotrimazole, fluconazole, and miconazole), and S. pastorianus (tolerance to clotrimazole and fluconazole). Comparing the levels of tolerance to the antifungals in WT and petite mutants was based on measuring the diameters of the zones of inhibition (ZOIs) using disc diffusion assays. The mode of inhibition in the majority of WT strains by all antifungals was fungicidal; most of the rho mutants manifested fungistatic inhibition. We observed partial (not complete) inhibition in WT, with four different types of ZOI patterns that were species- and antifungal-specific. The partial inhibition was characterised by the presence of antifungal-tolerant colonies within ZOI areas. The inability of these colonies selected from ZOIs to grow on glycerol, as a single source of carbon, proved that they were rho mutants spontaneously generated in the WT populations. The results on the elevated tolerance of petite strains to antifungals are discussed in terms of the prospective positive selection of respiratory-deficient mutants and the various implications of such selection. Full article
(This article belongs to the Special Issue Bacteria and Fungi Probiotics: 2nd Edition)
Show Figures

Figure 1

14 pages, 6190 KiB  
Article
Formulation of Emulgels Containing Clotrimazole for the Treatment of Vaginal Candidiasis
by Zsófia Vilimi, Márton Király, Ádám Tibor Barna, Zsófia Edit Pápay, Lívia Budai, Krisztina Ludányi, Nikolett Kállai-Szabó and István Antal
Gels 2024, 10(11), 730; https://doi.org/10.3390/gels10110730 - 12 Nov 2024
Cited by 3 | Viewed by 2294
Abstract
Vaginal candidiasis poses significant health concerns that affect approximately 75% of women globally and often leads to discomfort and a decrease in quality of life. Traditional treatments, despite their effectiveness, may cause discomfort and adverse effects, such as vaginal discharge, bleeding, and dryness, [...] Read more.
Vaginal candidiasis poses significant health concerns that affect approximately 75% of women globally and often leads to discomfort and a decrease in quality of life. Traditional treatments, despite their effectiveness, may cause discomfort and adverse effects, such as vaginal discharge, bleeding, and dryness, promoting the exploration of alternative formulations. In this study, we aimed to develop a novel therapeutic approach for the treatment of vaginal candidiasis utilizing oleic acid containing emulgels made from thermoresponsive poloxamer-based hydrogels. These emulgels were designed to provide a sustained release of clotrimazole, an antifungal agent. Incorporating oleic acid enhanced the drug’s solubility and contributed to vaginal health. The formulations were characterized by their rheological properties, in vitro release, mucoadhesion, and spreadability. We conducted rheological measurements on the hydrogels that served as the base for the emulgels, as well as on the emulgels themselves. The emulgels exhibited continuous rheological behavior with changing temperatures, making them suitable for storage at room temperature. With an increasing HPMC content, we achieved enhanced mucoadhesion, which is beneficial for formulations used in body cavities. Moreover, in vitro release studies revealed sustained drug release profiles, which can be adjusted by varying the ratios of poloxamers and HPMC. These findings suggest that the developed emulgels offer a promising therapeutic option for vaginal candidiasis, addressing both the symptoms and the treatment of discomfort. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Application)
Show Figures

Graphical abstract

12 pages, 1919 KiB  
Article
Formulation and Evaluation of Clotrimazole Mucoadhesive Vaginal Globules
by Barbara Jadach and Michalina Otworowska
Gels 2024, 10(11), 716; https://doi.org/10.3390/gels10110716 - 6 Nov 2024
Cited by 1 | Viewed by 1860
Abstract
The aim of this study was to prepare vaginal suppositories with mucoadhesive properties to prolong the action of antifungal component clotrimazole (CLO). This was achieved by preparing vaginal pessaries on a hydrophilic gel base composed of gelatin and gelatin enriched with PEG 400 [...] Read more.
The aim of this study was to prepare vaginal suppositories with mucoadhesive properties to prolong the action of antifungal component clotrimazole (CLO). This was achieved by preparing vaginal pessaries on a hydrophilic gel base composed of gelatin and gelatin enriched with PEG 400 (in a 1:1 ratio), and then checking the properties of the obtained vaginal drugs. The prepared globules, containing 100 mg of CLO, were characterized in terms of mass and swelling index, organoleptic analysis was also prepared. In addition, a texture analysis and a study of the dissolution of clotrimazole were performed. On the basis of the obtained results, it was concluded that the modification of the composition of the gelatin–glycerin base by the addition of macrogol had a positive effect on the mucoadhesive properties of the globules. In addition, due to the presence of PEG 400, the globules were stiffer. It was also observed that the presence of CLO reduces the value of the force needed for compression during the texture analysis study. Comparing the CLO release profiles of the prepared globules and commercially available clotrimazole tablets, the release profile for the globules was slower than for the tablets, which indicates the possibility of using mucoadhesive globules as a form of a drug that releases the medicinal substance more slowly at the site of administration. Full article
Show Figures

Graphical abstract

35 pages, 2178 KiB  
Review
Review of the Anti-Candida albicans Activity and Physical Properties of Soft Lining Materials Modified with Polyene Antibiotics, Azole Drugs, and Chlorohexidine Salts
by Izabela Barszczewska-Rybarek, Patrycja Kula and Grzegorz Chladek
Materials 2024, 17(21), 5383; https://doi.org/10.3390/ma17215383 - 4 Nov 2024
Cited by 2 | Viewed by 1676
Abstract
This review examined the current state of knowledge on the modifications of commercial soft lining materials (SLMs) with a variety of antifungal compounds: (i) polyene antibiotics, including nystatin and amphotericin B, (ii) azole drugs, including fluconazole, itraconazole, clotrimazole, ketoconazole, and miconazole, and (iii) [...] Read more.
This review examined the current state of knowledge on the modifications of commercial soft lining materials (SLMs) with a variety of antifungal compounds: (i) polyene antibiotics, including nystatin and amphotericin B, (ii) azole drugs, including fluconazole, itraconazole, clotrimazole, ketoconazole, and miconazole, and (iii) antiseptics, including chlorhexidine salts to give them anti-Candida albicans properties. The effect of such modifications on the SLMs’ physical properties, such as drug release, water sorption, surface properties, bond strength, tensile strength, and hardness, was also analyzed. In effect, this study provided a unique compilation of research results obtained for numerous properties of SLM modified with antifungal compounds that differ in their chemical structure and mechanism of antifungal action. These results might also be useful for prosthetic dentistry, where SLMs are used to prevent and treat candidiasis, the most common disease among denture wearers. Full article
(This article belongs to the Special Issue Novel Antimicrobial Polymers: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

17 pages, 679 KiB  
Article
Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections
by Lauren Van de Vliet, Thijs Vackier, Karin Thevissen, David Decoster and Hans P. Steenackers
Antibiotics 2024, 13(10), 949; https://doi.org/10.3390/antibiotics13100949 - 10 Oct 2024
Cited by 2 | Viewed by 1768
Abstract
Background/Objectives: The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research [...] Read more.
Background/Objectives: The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet. Methods: In this study, the focus was on finding active synergistic combinations of imidazoles and quaternary ammonium compounds against (multidrug-resistant) bacterial pathogens through checkerboard assays. Experimental evolution in liquid culture was used to evaluate the possible emergence of resistance against the most active synergistic combination. Results: Several promising synergistic combinations were identified against an array of Gram-positive pathogens: miconazole/domiphen bromide, ketoconazole/domiphen bromide, clotrimazole/domiphen bromide, fluconazole/domiphen bromide and miconazole/benzalkonium chloride. Especially, miconazole with domiphen bromide exhibits potential, as it has activity at a low concentration against a broad range of pathogens and shows an absence of strong resistance development over 11 cycles of evolution. Conclusions: This study provides valuable insight into the possible combinations of imidazoles and quaternary ammonium compounds that could be repurposed for (topical) wound treatment. Miconazole with domiphen bromide shows the highest application potential as a possible future wound therapy. However, further research is needed into the mode of action of these compounds and their efficacy and toxicity in vivo. Full article
Show Figures

Figure 1

16 pages, 10821 KiB  
Article
Synergistic Solutions: Exploring Clotrimazole’s Potential in Prostate and Bladder Cancer Cell Lines
by Mariana Pereira and Nuno Vale
Drugs Drug Candidates 2024, 3(3), 455-470; https://doi.org/10.3390/ddc3030027 - 28 Jun 2024
Viewed by 1817
Abstract
Clotrimazole (CLZ), traditionally an antifungal agent, unveils promising avenues in cancer therapy, particularly in addressing bladder and prostate cancers. In vitro assessments underscore its remarkable efficacy as a standalone treatment, significantly diminishing cancer cell viability. Mechanistically, CLZ operates through multifaceted pathways, including the [...] Read more.
Clotrimazole (CLZ), traditionally an antifungal agent, unveils promising avenues in cancer therapy, particularly in addressing bladder and prostate cancers. In vitro assessments underscore its remarkable efficacy as a standalone treatment, significantly diminishing cancer cell viability. Mechanistically, CLZ operates through multifaceted pathways, including the inhibition of Ca2+-dependent K+ channels, suppression of glycolysis-related enzymes, and modulation of the ERK-p65 signaling cascade, thus underscoring its potential as a versatile therapeutic agent. Our investigation sheds light on intriguing observations regarding the resilience of UM-UC-5 bladder cancer cells against high doses of paclitaxel (PTX), potentially attributed to heightened levels of the apoptosis-regulating protein Mcl-1. However, synergistic studies demonstrate that the combination of Doxorubicin (DOXO) and CLZ emerges as particularly potent, especially in prostate cancer contexts. This effectiveness could be associated with the inhibition of drug efflux mediated by multidrug resistance-associated protein 1 (MRP1), underscoring the importance of exploring combination therapies in cancer treatment paradigms. In essence, our findings shed light on the anticancer potential of CLZ, emphasizing the significance of tailored approaches considering specific cancer types and molecular pathways in drug repurposing endeavors. While further validation and clinical exploration are warranted, the insights gleaned from this study offer promising prospects for enhancing cancer therapy efficacy. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

18 pages, 2208 KiB  
Article
Fighting Emerging Caspofungin-Resistant Candida Species: Mitigating Fks1-Mediated Resistance and Enhancing Caspofungin Efficacy by Chitosan
by Aya Tarek, Yasmine H. Tartor, Mohamed N. Hassan, Ioan Pet, Mirela Ahmadi and Adel Abdelkhalek
Antibiotics 2024, 13(7), 578; https://doi.org/10.3390/antibiotics13070578 - 22 Jun 2024
Cited by 3 | Viewed by 2176
Abstract
Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, Candida species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal [...] Read more.
Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, Candida species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal potential of chitosan to mitigate caspofungin resistance in caspofungin-resistant Candida albicans, C. krusei, and C. tropicalis isolates originating from human and animal sources using agar well diffusion, broth microdilution tests, and transmission electron microscope (TEM) analysis of treated Candida cells. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed to assess the expression of SAGA complex genes (GCN5 and ADA2) and the caspofungin resistance gene (FKS) in Candida species isolates after chitosan treatment. The highest resistance rate was observed to ketoconazole (80%) followed by clotrimazole (62.7%), fluconazole (60%), terbinafine (58%), itraconazole (57%), miconazole (54.2%), amphotericin B (51.4%), voriconazole (34.28%), and caspofungin (25.7%). Nine unique FKS mutations were detected, including S645P (n = 3 isolates), S645F, L644F, S645Y, L688M, E663G, and F641S (one isolate in each). The caspofungin minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values before chitosan treatment ranged from 2 to 8 µg/mL and 4 to 16 µg/mL, respectively. However, the MIC and MFC values were decreased after chitosan treatment (0.0625–1 µg/mL) and (0.125–2 µg/mL), respectively. Caspofungin MIC was significantly decreased (p = 0.0007) threefold following chitosan treatment compared with the MIC values before treatment. TEM analysis revealed that 0.5% chitosan disrupted the integrity of the cell surface, causing irregular morphologies and obvious aberrant changes in cell wall thickness in caspofungin-resistant and sensitive Candida isolates. The cell wall thickness of untreated isolates was 0.145 μm in caspofungin-resistant isolate and 0.125 μm in sensitive isolate, while it was significantly lower in chitosan-treated isolates, ranging from 0.05 to 0.08 μm when compared with the cell wall thickness of sensitive isolate (0.03 to 0.06 μm). Moreover, RT-qPCR demonstrated a significant (p < 0.05) decrease in the expression levels of histone acetyltransferase genes (GCN5 and ADA2) and FKS gene of caspofungin-resistant Candida species isolates treated with 0.5% chitosan when compared with before treatment (fold change values ranged from 0.001 to 0.0473 for GCN5, 1.028 to 4.856 for ADA2, and 2.713 to 12.38 for FKS gene). A comparison of the expression levels of cell wall-related genes (ADA2 and GCN5) between caspofungin-resistant and -sensitive isolates demonstrated a significant decrease following chitosan treatment (p < 0.001). The antifungal potential of chitosan enhances the efficacy of caspofungin against various caspofungin-resistant Candida species isolates and prevents the development of further antifungal resistance. The results of this study contribute to the progress in repurposing caspofungin and inform a development strategy to enhance its efficacy, appropriate antifungal activity against Candida species, and mitigate resistance. Consequently, chitosan could be used in combination with caspofungin for the treatment of candidiasis. Full article
Show Figures

Figure 1

22 pages, 3615 KiB  
Article
Bioprospecting, Synergistic Antifungal and Toxicological Aspects of the Hydroxychalcones and Their Association with Azole Derivates against Candida spp. for Treating Vulvovaginal Candidiasis
by Lígia de Souza Fernandes, Letícia Sayuri Ogasawara, Kaila Petronila Medina-Alarcón, Kelvin Sousa dos Santos, Samanta de Matos Silva, Letícia Ribeiro de Assis, Luís Octavio Regasini, Anselmo Gomes de Oliveira, Maria José Soares Mendes Giannini, Maria Virginia Scarpa and Ana Marisa Fusco Almeida
Pharmaceutics 2024, 16(7), 843; https://doi.org/10.3390/pharmaceutics16070843 - 21 Jun 2024
Viewed by 1426
Abstract
Vulvovaginal candidiasis (VVC) remains a prevalent fungal disease, characterized by challenges, such as increased fungal resistance, side effects of current treatments, and the rising prevalence of non-albicans Candida spp. naturally more resistant. This study aimed to propose a novel therapeutic approach by [...] Read more.
Vulvovaginal candidiasis (VVC) remains a prevalent fungal disease, characterized by challenges, such as increased fungal resistance, side effects of current treatments, and the rising prevalence of non-albicans Candida spp. naturally more resistant. This study aimed to propose a novel therapeutic approach by investigating the antifungal properties and toxicity of 2-hydroxychalcone (2-HC) and 3′-hydroxychalcone (3′-HC), both alone and in combination with fluconazole (FCZ) and clotrimazole (CTZ). A lipid carrier (LC) was also developed to deliver these molecules. The study evaluated in vitro anti-Candida activity against five Candida species and assessed cytotoxicity in the C33-A cell line. The safety and therapeutic efficacy of in vivo were tested using an alternative animal model, Galleria mellonella. The results showed antifungal activity of 2-HC and 3′-HC, ranging from 7.8 to 31.2 as fungistatic and 15.6 to 125.0 mg/L as fungicide effect, with cell viability above 80% from a concentration of 9.3 mg/L (2-HC). Synergistic and partially synergistic interactions of these chalcones with FCZ and CTZ demonstrated significant improvement in antifungal activity, with MIC values ranging from 0.06 to 62.5 mg/L. Some combinations reduced cytotoxicity, achieving 100% cell viability in many interactions. Additionally, two LCs with suitable properties for intravaginal application were developed. These formulations demonstrated promising therapeutic efficacy and low toxicity in Galleria mellonella assays. These results suggest the potential of this approach in developing new therapies for VVC. Full article
Show Figures

Figure 1

17 pages, 5735 KiB  
Article
Coated Microneedle System for Delivery of Clotrimazole in Deep-Skin Mycoses
by Barbara Jadach, Agata Nowak, Jolanta Długaszewska, Oliwia Kordyl, Irena Budnik and Tomasz Osmałek
Gels 2024, 10(4), 264; https://doi.org/10.3390/gels10040264 - 15 Apr 2024
Cited by 8 | Viewed by 3441
Abstract
Mycoses of the skin are infectious diseases caused by fungal microorganisms that are generally treated with topical agents. However, such therapy is often ineffective and has to be supported by oral use of active substances, which, in turn, can cause many side effects. [...] Read more.
Mycoses of the skin are infectious diseases caused by fungal microorganisms that are generally treated with topical agents. However, such therapy is often ineffective and has to be supported by oral use of active substances, which, in turn, can cause many side effects. A good alternative for the treatment of deep-skin mycoses seems to be microneedles (MNs). The aim of this research was to fabricate and evaluate the properties of innovative MNs coated with a hydrogel as potential carriers for clotrimazole (CLO) in the treatment of deep fungal skin infections. A 3D printing technique using a photo-curable resin was employed to produce MNs, which were coated with hydrogels using a dip-coating method. Hydrogels were prepared with carbopol EZ-3 Polymer (Lubrizol) in addition to glycerol and triisopropanolamine. Clotrimazole was introduced into the gel as the solution in ethanol or was suspended. In the first step of the investigation, a texture analysis of hydrogels was prepared with a texture analyzer, and the drug release studies were conducted with the use of automatic Franz diffusion cells. Next, the release profiles of CLO for coated MNs were checked. The last part of the investigation was the evaluation of the antifungal activity of the prepared systems, and the inhibition of the growth of Candida albicans was checked with the diffusion and suspended-plate methods. The texture profile analysis (TPA) for the tested hydrogels showed that the addition of ethanol significantly affects the following studied parameters: hardness, adhesiveness and gumminess, causing a decrease in their values. On the other hand, for the gels with suspended CLO, better spreadability was seen compared to gels with dissolved CLO. The presence of the active substance did not significantly affect the values of the tested parameters. In the dissolution study, the results showed that higher amounts of CLO were released for MNs coated with a hydrogel containing dissolved CLO. Also, microbiological tests proved its efficacy against fungal cultures. Qualitative tests carried out using the diffusion method showed that circular zones of inhibition of fungal growth on the plate were obtained, confirming the hypothesis of effectiveness. The suspension-plate technique confirmed the inhibitory effect of applied CLO on the growth of Candida albicans. From the analysis of the data, the MNs coated with CLO dissolved in hydrogel showed better antifungal activity. All received results seem to be helpful in developing further studies for MNs as carriers of antifungal substances. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Graphical abstract

24 pages, 7945 KiB  
Article
Anti-Melanoma Effects of Miconazole: Investigating the Mitochondria Involvement
by Francesca Scatozza, Maria Miriam Giardina, Carola Valente, Virginia Vigiano Benedetti and Antonio Facchiano
Int. J. Mol. Sci. 2024, 25(7), 3589; https://doi.org/10.3390/ijms25073589 - 22 Mar 2024
Cited by 2 | Viewed by 2676
Abstract
Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and [...] Read more.
Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients’ survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments. Full article
(This article belongs to the Special Issue Advances in Melanoma and Skin Cancers)
Show Figures

Figure 1

Back to TopTop