Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections
Abstract
:1. Introduction
2. Results
2.1. The Combination of Miconazole with Domiphen Bromide Is Active against (Resistant) Gram-Positive Pathogens
2.2. Ketoconazole and Fluconazole Combined with Domiphen Bromide Show Activity against Sensitive and Multidrug-Resistant Staphylococci
2.3. Miconazole with Benzalkonium Chloride Has Synergistic Activity against Sensitive S. aureus and Additive Activity against Drug-Resistant S. epidermidis
2.4. Miconazole and Domiphen Bromide in Combination Therapy Are Evolutionarily Robust during Experimental Evolution
3. Discussion
4. Materials and Methods
4.1. Used Chemicals and Bacterial Strains
4.2. Checkerboard Assays
4.3. Experimental Evolution of Monotherapy vs. Combination Therapy
4.4. Spot Assay
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QAC | Quaternary ammonium compound |
DMSO | Dimethyl sulfoxide |
MRSA | Methicillin-resistant S. aureus |
UZ Leuven | University Hospital Leuven |
EUCAST | European Committee for Antibiotic Susceptibility Testing |
ONCs | Overnight cultures |
LB | Lysogeny broth |
BHI | Brain heart infusion broth |
TSB | Tryptic soy broth |
MIC | Minimal inhibitory concentration |
FIC (I) | Fractional inhibitory concentration (index) |
ZOI | Zone of inhibition |
ROUT | Robust regression and outlier removal |
ROS | Reactive oxygen species |
References
- Lindholm, C.; Searle, R. Wound Management for the 21st Century: Combining Effectiveness and Efficiency. Int. Wound J. 2016, 13, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Rahim, K.; Saleha, S.; Zhu, X.; Huo, L.; Basit, A.; Franco, O.L. Bacterial Contribution in Chronicity of Wounds. Microb. Ecol. 2017, 73, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Puca, V.; Marulli, R.Z.; Grande, R.; Vitale, I.; Niro, A.; Molinaro, G.; Prezioso, S.; Muraro, R.; Di Giovanni, P. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study. Antibiotics 2021, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Upreti, N.; Rayamajhee, B.; Sherchan, S.P.; Choudhari, M.K.; Banjara, M.R. Prevalence of Methicillin Resistant Staphylococcus Aureus, Multidrug Resistant and Extended Spectrum β-Lactamase Producing Gram Negative Bacilli Causing Wound Infections at a Tertiary Care Hospital of Nepal. Antimicrob. Resist. Infect. Control. 2018, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef]
- Bertesteanu, S.; Triaridis, S.; Stankovic, M.; Lazar, V.; Chifiriuc, M.C.; Vlad, M.; Grigore, R. Polymicrobial Wound Infections: Pathophysiology and Current Therapeutic Approaches. Int. J. Pharm. 2014, 463, 119–126. [Google Scholar] [CrossRef]
- Bessa, L.J.; Fazii, P.; Di Giulio, M.; Cellini, L. Bacterial Isolates from Infected Wounds and Their Antibiotic Susceptibility Pattern: Some Remarks about Wound Infection. Int. Wound J. 2015, 12, 47–52. [Google Scholar] [CrossRef]
- Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment Strategies for Infected Wounds. Molecules 2018, 23, 2392. [Google Scholar] [CrossRef]
- Salleh, N.A.; Binte, M.; Tanaka, Y.; Sutarlie, L.; Su, X. Detecting Bacterial Infections in Wounds: A Review of Biosensors and Wearable Sensors in Comparison with Conventional Laboratory Methods. Analyst 2022, 147, 1756–1776. [Google Scholar] [CrossRef]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound Microbiology and Associated Approaches to Wound Management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef]
- Malone, M.; Schultz, G. Challenges in the Diagnosis and Management of Wound Infection. Br. J. Dermatol. 2022, 187, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Rashid Mahmood, A.; Mansour Hussein, N. Study of Antibiotic Resistant Genes in Pseudomonas Aeroginosa Isolated from Burns and Wounds. Arch. Razi Inst. 2022, 77, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Dehbanipour, R.; Ghalavand, Z. Acinetobacter Baumannii: Pathogenesis, Virulence Factors, Novel Therapeutic Options and Mechanisms of Resistance to Antimicrobial Agents with Emphasis on Tigecycline. J. Clin. Pharm. Ther. 2022, 47, 1875–1884. [Google Scholar] [CrossRef]
- Hassan, M.A.; Abd El-Aziz, S.; Elbadry, H.M.; El-Aassar, S.A.; Tamer, T.M. Prevalence, Antimicrobial Resistance Profile, and Characterization of Multi-Drug Resistant Bacteria from Various Infected Wounds in North Egypt. Saudi J. Biol. Sci. 2022, 29, 2978–2988. [Google Scholar] [CrossRef]
- Cefalu, J.E.; Barrier, K.M.; Davis, A.H. Wound Infections in Critical Care. Crit. Care Nurs. Clin. N. Am. 2017, 29, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Alsterholm, M.; Karami, N.; Faergemann, J. Antimicrobial Activity of Topical Skin Pharmaceuticals ? An In Vitro Study. Acta Derm.-Venereol. 2010, 90, 239–245. [Google Scholar] [CrossRef]
- Haidari, H.; Melguizo-Rodríguez, L.; Cowin, A.J.; Kopecki, Z. Therapeutic Potential of Antimicrobial Peptides for Treatment of Wound Infection. Am. J. Physiol.-Cell Physiol. 2023, 324, C29–C38. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Z.; Tian, P.; Han, Q.; Zhang, J.; Zhang, A.-M.; Song, Y. Wound Healing Mechanism of Antimicrobial Peptide Cathelicidin-DM. Front. Bioeng. Biotechnol. 2022, 10, 977159. [Google Scholar] [CrossRef]
- Vasile, B.S.; Birca, A.C.; Musat, M.C.; Holban, A.M. Wound Dressings Coated with Silver Nanoparticles and Essential Oils for The Management of Wound Infections. Materials 2020, 13, 1682. [Google Scholar] [CrossRef] [PubMed]
- Brożyna, M.; Dudek, B.; Kozłowska, W.; Malec, K.; Paleczny, J.; Detyna, J.; Fabianowska-Majewska, K.; Junka, A. The Chronic Wound Milieu Changes Essential Oils’ Antibiofilm Activity—An in Vitro and Larval Model Study. Sci. Rep. 2024, 14, 2218. [Google Scholar] [CrossRef]
- McLoone, P.; Tabys, D.; Fyfe, L. Honey Combination Therapies for Skin and Wound Infections: A Systematic Review of the Literature. Clin. Cosmet. Investig. Dermatol. 2020, 13, 875–888. [Google Scholar] [CrossRef]
- Skadiņš, I.; Labsvārds, K.D.; Grava, A.; Amirian, J.; Tomsone, L.E.; Ruško, J.; Viksna, A.; Bandere, D.; Brangule, A. Antimicrobial and Antibiofilm Properties of Latvian Honey against Causative Agents of Wound Infections. Antibiotics 2023, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Miró-Canturri, A.; Ayerbe-Algaba, R.; Smani, Y. Drug Repurposing for the Treatment of Bacterial and Fungal Infections. Front. Microbiol. 2019, 10, 41. [Google Scholar] [CrossRef]
- Farha, M.A.; Brown, E.D. Drug Repurposing for Antimicrobial Discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef]
- Teixeira, M.M.; Carvalho, D.T.; Sousa, E.; Pinto, E. New Antifungal Agents with Azole Moieties. Pharmaceuticals 2022, 15, 1427. [Google Scholar] [CrossRef]
- Siwach, A.; Verma, P.K. Synthesis and Therapeutic Potential of Imidazole Containing Compounds. BMC Chem. 2021, 15, 12. [Google Scholar] [CrossRef]
- Matin, M.M.; Matin, P.; Rahman, M.R.; Ben Hadda, T.; Almalki, F.A.; Mahmud, S.; Ghoneim, M.M.; Alruwaily, M.; Alshehri, S. Triazoles and Their Derivatives: Chemistry, Synthesis, and Therapeutic Applications. Front. Mol. Biosci. 2022, 9, 864286. [Google Scholar] [CrossRef]
- Tits, J.; Cools, F.; De Cremer, K.; De Brucker, K.; Berman, J.; Verbruggen, K.; Gevaert, B.; Cos, P.; Cammue, B.P.A.; Thevissen, K. Combination of Miconazole and Domiphen Bromide Is Fungicidal against Biofilms of Resistant Candida spp. Antimicrob. Agents Chemother. 2020, 64, e01296-20. [Google Scholar] [CrossRef]
- Nenoff, P.; Koch, D.; Krüger, C.; Drechsel, C.; Mayser, P. New Insights on the Antibacterial Efficacy of Miconazole in Vitro. Mycoses 2017, 60, 552–557. [Google Scholar] [CrossRef]
- El-Ganiny, A.M.; Gad, A.I.; El-Sayed, M.A.; Shaldam, M.A.; Abbas, H.A. The Promising Anti-Virulence Activity of Candesartan, Domperidone, and Miconazole on Staphylococcusaureus. Braz. J. Microbiol. 2021, 53, 1–18. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, M.; Wu, Q.; Li, C.; Zhou, T.; Ni, Y. Sensitivities to Biocides and Distribution of Biocide Resistance Genes in Quaternary Ammonium Compound Tolerant Staphylococcus Aureus Isolated in a Teaching Hospital. Scand. J. Infect. Dis. 2009, 41, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M. Quaternary Ammonium Disinfectants and Antiseptics: Tolerance, Resistance and Potential Impact on Antibiotic Resistance. Antimicrob. Resist. Infect. Control. 2023, 12, 32. [Google Scholar] [CrossRef]
- Babaei, M.R.; Sulong, A.; Hamat, R.A.; Nordin, S.A.; Neela, V.K. Extremely High Prevalence of Antiseptic Resistant Quaternary Ammonium Compound E Gene among Clinical Isolates of Multiple Drug Resistant Acinetobacter Baumannii in Malaysia. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 11. [Google Scholar] [CrossRef]
- Kampf, G. Challenging Biocide Tolerance with Antiseptic Stewardship. J. Hosp. Infect. 2018, 100, e37–e39. [Google Scholar] [CrossRef]
- Collignon, P.; Turnidge, J. Fusidic Acid in Vitro Activity. Int. J. Antimicrob. Agents 1999, 12, S45–S58. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 14.0. 2024. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 25 February 2024).
- Oluwole, D.O.; Coleman, L.; Buchanan, W.; Chen, T.; La Ragione, R.M.; Liu, L.X. Antibiotics-Free Compounds for Chronic Wound Healing. Pharmaceutics 2022, 14, 1021. [Google Scholar] [CrossRef]
- Eisner, R.; Lippmann, N.; Josten, C.; Rodloff, A.C.; Behrendt, D. Development of the Bacterial Spectrum and Antimicrobial Resistance in Surgical Site Infections of Trauma Patients. Surg. Infect. 2020, 21, 684–693. [Google Scholar] [CrossRef]
- Hajikhani, B.; Goudarzi, M.; Kakavandi, S.; Amini, S.; Zamani, S.; van Belkum, A.; Goudarzi, H.; Dadashi, M. The Global Prevalence of Fusidic Acid Resistance in Clinical Isolates of Staphylococcus Aureus: A Systematic Review and Meta-Analysis. Antimicrob. Resist. Infect. Control. 2021, 10, 75. [Google Scholar] [CrossRef]
- Williamson, D.A.; Carter, G.P.; Howden, B.P. Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin. Microbiol. Rev. 2017, 30, 827–860. [Google Scholar] [CrossRef]
- Buffet-Bataillon, S.; Tattevin, P.; Maillard, J.-Y.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Efflux Pump Induction by Quaternary Ammonium Compounds and Fluoroquinolone Resistance in Bacteria. Future Microbiol. 2016, 11, 81–92. [Google Scholar] [CrossRef]
- Cooper, R.; Kirketerp-Møller, K. Non-Antibiotic Antimicrobial Interventions and Antimicrobial Stewardship in Wound Care. J. Wound Care 2018, 27, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Daeschlein, G. Antimicrobial and Antiseptic Strategies in Wound Management. Int. Wound J. 2013, 10, 9–14. [Google Scholar] [CrossRef]
- Piérard, G.E.; Hermanns-Lê, T.; Delvenne, P.; Piérard-Franchimont, C. Miconazole, a Pharmacological Barrier to Skin Fungal Infections. Expert. Opin. Pharmacother. 2012, 13, 1187–1194. [Google Scholar] [CrossRef]
- Gomes, T.F.; Calado, R.; Matos, A.L.; Gonçalo, M. Contact Allergy to Antifungals: Results of a 12-Year Retrospective Study. Contact Dermat. 2022, 86, 539–543. [Google Scholar] [CrossRef]
- Hsieh, A.; Sorg, O.; Piletta, P. Allergic Contact Dermatitis to Benzoxonium Chloride Contained in an Antiseptic Solution. Contact Dermat. 2022, 87, 363–365. [Google Scholar] [CrossRef]
- De Cremer, K.; De Brucker, K.; Staes, I.; Peeters, A.; Van den Driessche, F.; Coenye, T.; Cammue, B.P.A.; Thevissen, K. Stimulation of Superoxide Production Increases Fungicidal Action of Miconazole against Candida Albicans Biofilms. Sci. Rep. 2016, 6, 27463. [Google Scholar] [CrossRef] [PubMed]
- Tits, J.; Berman, J.; Cammue, B.P.A.; Thevissen, K. Combining Miconazole and Domiphen Bromide Results in Excess of Reactive Oxygen Species and Killing of Biofilm Cells. Front. Cell Dev. Biol. 2021, 8, 617214. [Google Scholar] [CrossRef]
- Calahorra, M.; Lozano, C.; Sánchez, N.S.; Peña, A. Ketoconazole and Miconazole Alter Potassium Homeostasis in Saccharomyces Cerevisiae. Biochim. Et Biophys. Acta (BBA) Biomembr. 2011, 1808, 433–445. [Google Scholar] [CrossRef]
- Lamb, D.C.; Hargrove, T.Y.; Zhao, B.; Wawrzak, Z.; Goldstone, J.V.; Nes, W.D.; Kelly, S.L.; Waterman, M.R.; Stegeman, J.J.; Lepesheva, G.I. Concerning P450 Evolution: Structural Analyses Support Bacterial Origin of Sterol 14α-Demethylases. Mol. Biol. Evol. 2021, 38, 952–967. [Google Scholar] [CrossRef]
- Boyen, F.; Verstappen, K.M.H.W.; De Bock, M.; Duim, B.; Weese, J.S.; Schwarz, S.; Haesebrouck, F.; Wagenaar, J.A. In Vitro Antimicrobial Activity of Miconazole and Polymyxin B against Canine Meticillin-Resistant Staphylococcus Aureus and Meticillin-Resistant Staphylococcus Pseudintermedius Isolates. Vet. Dermatol. 2012, 23, 381-e70. [Google Scholar] [CrossRef]
- Nobre, L.S.; Todorovic, S.; Tavares, A.F.N.; Oldfield, E.; Hildebrandt, P.; Teixeira, M.; Saraiva, L.M. Binding of Azole Antibiotics to Staphylococcus Aureus Flavohemoglobin Increases Intracellular Oxidative Stress. J. Bacteriol. 2010, 192, 1527–1533. [Google Scholar] [CrossRef]
- Jennings, M.C.; Minbiole, K.P.C.; Wuest, W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hu, P.; Liu, H.; Liu, S.; Liu, Y.; Chen, L.; Feng, L.; Chen, L.; Zhou, T. Combining with Domiphen Bromide Restores Colistin Efficacy against Colistin-Resistant Gram-Negative Bacteria in Vitro and in Vivo. Int. J. Antimicrob. Agents 2024, 63, 107066. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Baky, R.M.; Sandle, T.; John, J.; Abuo-Rahma, G.E.-D.A.; Hetta, H.F. A Novel Mechanism of Action of Ketoconazole: Inhibition of the NorA Efflux Pump System and Biofilm Formation in Multidrug-Resistant Staphylococcus Aureus. Infect. Drug Resist. 2019, 12, 1703–1718. [Google Scholar] [CrossRef]
- Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.J.; Schotzinger, R.J.; York, J.D.; Guengerich, F.P.; Lepesheva, G.I. Structural Analyses of Candida Albicans Sterol 14α-Demethylase Complexed with Azole Drugs Address the Molecular Basis of Azole-Mediated Inhibition of Fungal Sterol Biosynthesis. J. Biol. Chem. 2017, 292, 6728–6743. [Google Scholar] [CrossRef]
- Schäfer, A.-B.; Wenzel, M. A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides. Front. Cell. Infect. Microbiol. 2020, 10, 540898. [Google Scholar] [CrossRef]
- Venkatesh, M.P.; Pham, D.; Fein, M.; Kong, L.; Weisman, L.E. Neonatal Coinfection Model of Coagulase-Negative Staphylococcus (Staphylococcus Epidermidis) and Candida Albicans: Fluconazole Prophylaxis Enhances Survival and Growth. Antimicrob. Agents Chemother. 2007, 51, 1240–1245. [Google Scholar] [CrossRef]
- Golestannejad, Z.; Khozeimeh, F.; Dehghan, P.; Najafizade, N.; Faghihian, E.; Kheirkhah, M.; Sadeghalbanaei, L.; Jamshidi, M.; Chermahini, A.A. Comparison of the Antifungal Effect of Voriconazole and Fluconazole on Oral Candidiasis before and during Radiotherapy. Dent. Res. J. 2022, 19, 99. [Google Scholar]
- Moussaoui, M.; Misevičienė, L.; Anusevičius, Ž.; Marozienė, A.; Lederer, F.; Baciou, L.; Čėnas, N. Quinones and Nitroaromatic Compounds as Subversive Substrates of Staphylococcus Aureus Flavohemoglobin. Free. Radic. Biol. Med. 2018, 123, 107–115. [Google Scholar] [CrossRef]
- Helmick, R.A.; Fletcher, A.E.; Gardner, A.M.; Gessner, C.R.; Hvitved, A.N.; Gustin, M.C.; Gardner, P.R. Imidazole Antibiotics Inhibit the Nitric Oxide Dioxygenase Function of Microbial Flavohemoglobin. Antimicrob. Agents Chemother. 2005, 49, 1837–1843. [Google Scholar] [CrossRef]
- Mikulska, M.; Novelli, A.; Aversa, F.; Cesaro, S.; de Rosa, F.G.; Girmenia, C.; Micozzi, A.; Sanguinetti, M.; Viscoli, C. Voriconazole in Clinical Practice. J. Chemother. 2012, 24, 311–327. [Google Scholar] [CrossRef]
- Peyneau, M.; de Chaisemartin, L.; Gigant, N.; Chollet-Martin, S.; Kerdine-Römer, S. Quaternary Ammonium Compounds in Hypersensitivity Reactions. Front. Toxicol. 2022, 4, 973680. [Google Scholar] [CrossRef]
- Gozzelino, G.; Tobar, D.E.R.; Chaitiemwong, N.; Hazeleger, W.; Beumer, R. Antibacterial Activity of Reactive Quaternary Ammonium Compounds in Solution and in Nonleachable Coatings. J. Food Prot. 2011, 74, 2107–2112. [Google Scholar] [CrossRef]
- Ioannou, C.J.; Hanlon, G.W.; Denyer, S.P. Action of Disinfectant Quaternary Ammonium Compounds against Staphylococcus Aureus. Antimicrob. Agents Chemother. 2007, 51, 296–306. [Google Scholar] [CrossRef]
- LaBreck, P.T.; Bochi-Layec, A.C.; Stanbro, J.; Dabbah-Krancher, G.; Simons, M.P.; Merrell, D.S. Systematic Analysis of Efflux Pump-Mediated Antiseptic Resistance in Staphylococcus Aureus Suggests a Need for Greater Antiseptic Stewardship. mSphere 2020, 5, 10-1128. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, Z.-C.; Zhu, L.; Wei, Y.-Y.; Feng, W.-Q.; Xu, L.; Liu, Y.; Lin, Z.-J.; Shuai, X.-Y.; Zhang, Z.-J.; et al. The Impact and Mechanism of Quaternary Ammonium Compounds on the Transmission of Antibiotic Resistance Genes. Environ. Sci. Pollut. Res. 2019, 26, 28352–28360. [Google Scholar] [CrossRef]
- Fothergill, A.W. Miconazole: A Historical Perspective. Expert. Rev. Anti-Infect. Ther. 2006, 4, 171–175. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Herbert, J.; Isham, N. Repeated Exposure of Candida Spp. to Miconazole Demonstrates No Development of Resistance. Mycoses 2011, 54, e175–e177. [Google Scholar] [CrossRef]
- Musaji, N. Antifungal Drug Resistance: Not All Azoles Are Equal. Expert. Rev. Anti-Infect. Ther. 2010, 8, 515–516. [Google Scholar] [CrossRef]
- Maillard, J.-Y. Impact of Benzalkonium Chloride, Benzethonium Chloride and Chloroxylenol on Bacterial Antimicrobial Resistance. J. Appl. Microbiol. 2022, 133, 3322–3346. [Google Scholar] [CrossRef]
- Howden, B.P.; Grayson, M.L. Dumb and Dumber—The Potential Waste of a Useful Antistaphylococcal Agent: Emerging Fusidic Acid Resistance in Staphylococcus Aureus. Clin. Infect. Dis. 2006, 42, 394–400. [Google Scholar] [CrossRef]
- Garcia Chavez, M.; Garcia, A.; Lee, H.Y.; Lau, G.W.; Parker, E.N.; Komnick, K.E.; Hergenrother, P.J. Synthesis of Fusidic Acid Derivatives Yields a Potent Antibiotic with an Improved Resistance Profile. ACS Infect. Dis. 2021, 7, 493–505. [Google Scholar] [CrossRef]
- Zhai, Y.; Pribis, J.P.; Dooling, S.W.; Garcia-Villada, L.; Minnick, P.J.; Xia, J.; Liu, J.; Mei, Q.; Fitzgerald, D.M.; Herman, C.; et al. Drugging Evolution of Antibiotic Resistance at a Regulatory Network Hub. Sci. Adv. 2023, 9, eadg0188. [Google Scholar] [CrossRef]
- Jahn, L.J.; Simon, D.; Jensen, M.; Bradshaw, C.; Ellabaan, M.M.H.; Sommer, M.O.A. Compatibility of Evolutionary Responses to Constituent Antibiotics Drive Resistance Evolution to Drug Pairs. Mol. Biol. Evol. 2021, 38, 2057–2069. [Google Scholar] [CrossRef]
- Rodriguez de Evgrafov, M.; Gumpert, H.; Munck, C.; Thomsen, T.T.; Sommer, M.O.A. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus Aureus. Mol. Biol. Evol. 2015, 32, 1175–1185. [Google Scholar] [CrossRef]
- Coates, A.R.M.; Hu, Y.; Holt, J.; Yeh, P. Antibiotic Combination Therapy against Resistant Bacterial Infections: Synergy, Rejuvenation and Resistance Reduction. Expert. Rev. Anti-Infect. Ther. 2020, 18, 5–15. [Google Scholar] [CrossRef]
- Roemhild, R.; Schulenburg, H. Evolutionary Ecology Meets the Antibiotic Crisis: Can We Control Pathogen Adaptation through Sequential Therapy? Evol. Med. Public. Health 2019, 2019, 37–45. [Google Scholar] [CrossRef]
- Orhan, G.; Bayram, A.; Zer, Y.; Balci, I. Synergy Tests by E Test and Checkerboard Methods of Antimicrobial Combinations against Brucella Melitensis. J. Clin. Microbiol. 2005, 43, 140–143. [Google Scholar] [CrossRef]
- Noel, D.J.; Keevil, C.W.; Wilks, S.A. Synergism versus Additivity: Defining the Interactions between Common Disinfectants. mBio 2021, 12, 10-1128. [Google Scholar] [CrossRef]
- Meletiadis, J.; Pournaras, S.; Roilides, E.; Walsh, T.J. Defining Fractional Inhibitory Concentration Index Cutoffs for Additive Interactions Based on Self-Drug Additive Combinations, Monte Carlo Simulation Analysis, and In Vitro-In Vivo Correlation Data for Antifungal Drug Combinations against Aspergillus Fumigatus. Antimicrob. Agents Chemother. 2010, 54, 602–609. [Google Scholar] [CrossRef]
- Okoliegbe, I.N.; Hijazi, K.; Cooper, K.; Ironside, C.; Gould, I.M. Antimicrobial Synergy Testing: Comparing the Tobramycin and Ceftazidime Gradient Diffusion Methodology Used in Assessing Synergy in Cystic Fibrosis-Derived Multidrug-Resistant Pseudomonas Aeruginosa. Antibiotics 2021, 10, 967. [Google Scholar] [CrossRef]
- Rand, K.H.; Houck, H.J.; Brown, P.; Bennett, D. Reproducibility of the Microdilution Checkerboard Method for Antibiotic Synergy. Antimicrob. Agents Chemother. 1993, 37, 613–615. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, Antagonism, and What the Chequerboard Puts between Them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Motulsky, H.J.; Brown, R.E. Detecting Outliers When Fitting Data with Nonlinear Regression—A New Method Based on Robust Nonlinear Regression and the False Discovery Rate. BMC Bioinform. 2006, 7, 123. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Cheng, N.-C.; Cheng, C.-M. Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends Biotechnol. 2019, 37, 505–517. [Google Scholar] [CrossRef]
- Darvishi, S.; Tavakoli, S.; Kharaziha, M.; Girault, H.H.; Kaminski, C.F.; Mela, I. Advances in the Sensing and Treatment of Wound Biofilms. Angew. Chem. Int. Ed. 2022, 61, e202112218. [Google Scholar] [CrossRef]
- Cheng, Y.; De Bank, P.A.; Bolhuis, A. An in Vitro and Ex Vivo Wound Infection Model to Test Topical and Systemic Treatment with Antibiotics. J. Appl. Microbiol. 2022, 133, 2993–3006. [Google Scholar] [CrossRef]
- Kempf, M.; Kimble, R.M.; Cuttle, L. Cytotoxicity Testing of Burn Wound Dressings, Ointments and Creams: A Method Using Polycarbonate Cell Culture Inserts on a Cell Culture System. Burns 2011, 37, 994–1000. [Google Scholar] [CrossRef]
Strain | MIC Monotherapy | MIC Combination Therapy | FICI | |||
---|---|---|---|---|---|---|
µM | µg/mL | µM | µg/mL | |||
A. baumannii RD5SR3 | MICO | >960.0 | >399.4 | 1.6 | 0.7 | |
DOMI | 12.5 | 5.2 | 6.3 | 2.6 | 0.5 | |
P. aeruginosa PA14 | MICO | >980.0 | >407.8 | 5.5 | 2.3 | |
DOMI | 16.7 | 6.9 | 10.4 | 4.3 | 0.7 | |
S. aureus SH1000 | MICO | 46.9 | 19.5 | 10.5 | 4.4 | |
DOMI | 12.5 | 5.2 | 3.9 | 1.6 | 0.5 | |
S. epidermidis SE40 | MICO | 35.2 | 14.6 | 10.6 | 4.4 | |
DOMI | 6.3 | 2.6 | 1.2 | 0.5 | 0.5 | |
S. aureus MRSA | MICO | 306.3 | 127.4 | 25.1 | 10.4 | |
DOMI | 22.5 | 9.3 | 6.3 | 2.6 | 0.4 | |
S. epidermidis CL7 | MICO | 11.7 | 4.9 | 1.7 | 0.7 | |
DOMI | 3.1 | 1.3 | 1.0 | 0.4 | 0.5 | |
E. faecium LMG 8148 | MICO | 259.4 | 108.0 | 20.4 | 8.5 | |
DOMI | 17.5 | 7.3 | 8.8 | 3.6 | 0.7 | |
S. pyogenes ATCC 12358 | MICO | 5.9 | 2.4 | 1.0 | 0.4 | |
DOMI | 2.0 | 0.8 | 0.8 | 0.3 | 0.8 | |
S. dysgalactiae ATCC 10706 | MICO | 7.8 | 3.3 | 1.3 | 0.6 | |
DOMI | 2.7 | 1.1 | 0.8 | 0.3 | 0.5 | |
B. cereus ATCC 7004 | MICO | 7.8 | 3.3 | 2.4 | 1.0 | |
DOMI | 9.4 | 3.9 | 1.8 | 0.7 | 0.5 | |
L. monocytogenes ScottA | MICO | 3.9 | 1.6 | 0.8 | 0.3 | |
DOMI | 6.3 | 2.6 | 1.6 | 0.6 | 0.5 |
Strain | MIC Monotherapy | MIC Combination Therapy | FICI | |||
---|---|---|---|---|---|---|
µM | µg/mL | µM | µg/mL | |||
S. aureus SH1000 | CLOTRI | 49.0 | 16.9 | 7.9 | 2.7 | |
DOMI | 13.5 | 5.6 | 4.2 | 1.7 | 0.5 | |
KETO | >500.0 | >265.8 | 50.5 | 26.8 | ||
DOMI | 10.9 | 4.5 | 3.1 | 1.3 | 0.4 | |
VORI | >1000.0 | >349.3 | 1.7 | 0.6 | ||
DOMI | 8.3 | 3.5 | 8.3 | 3.5 | 1.0 | |
FLUCO | >1000.0 | >306.3 | 1.7 | 0.5 | ||
DOMI | 34.9 | 14.5 | 5.2 | 2.2 | 0.5 | |
S. epidermidis CL7 | CLOTRI | 52.1 | 18.0 | 15.6 | 5.4 | |
DOMI | 4.2 | 1.7 | 1.6 | 0.6 | 0.8 | |
KETO | >537.5 | >285.6 | 134.4 | 71.4 | ||
DOMI | 3.1 | 1.3 | 0.8 | 0.3 | 0.5 | |
VORI | >500.0 | >174.7 | 0.5 | 0.2 | ||
DOMI | 1.6 | 0.6 | 1.6 | 0.6 | 1.0 | |
FLUCO | >500.0 | >153.1 | 1.1 | 0.3 | ||
DOMI | 3.1 | 1.3 | 1.6 | 0.6 | 0.5 |
Strain | MIC Monotherapy | MIC Combination Therapy | FICI | |||
---|---|---|---|---|---|---|
µM | µg/mL | µM | µg/mL | |||
S. aureus SH1000 | MICO | 31.3 | 13.0 | 4.5 | 1.9 | |
BENZETH | 8.3 | 3.7 | 4.2 | 1.9 | 0.6 | |
MICO | 26.0 | 10.8 | 8.8 | 3.7 | ||
CETRI | 7.3 | 2.7 | 2.6 | 0.9 | 0.8 | |
MICO | 81.3 | 33.8 | 14.6 | 6.1 | ||
BENZALK | 18.8 | 5.8 | 3.4 | 1.1 | 0.4 | |
MICO | 20.8 | 8.7 | 4.6 | 1.9 | ||
OCT | 2.1 | 1.3 | 0.9 | 0.6 | 0.6 | |
S. epidermidis CL7 | MICO | 13.0 | 5.4 | 4.1 | 1.7 | |
BENZETH | 8.3 | 3.7 | 3.6 | 1.6 | 0.8 | |
MICO | 18.3 | 7.6 | 4.6 | 1.9 | ||
CETRI | 3.1 | 1.1 | 1.6 | 0.6 | 0.8 | |
MICO | 13.0 | 5.4 | 3.1 | 1.3 | ||
BENZALK | 16.7 | 5.2 | 7.3 | 2.3 | 0.6 | |
MICO | 15.6 | 6.5 | 4.1 | 1.7 | ||
OCT | 1.8 | 1.1 | 0.7 | 0.4 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van de Vliet, L.; Vackier, T.; Thevissen, K.; Decoster, D.; Steenackers, H.P. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics 2024, 13, 949. https://doi.org/10.3390/antibiotics13100949
Van de Vliet L, Vackier T, Thevissen K, Decoster D, Steenackers HP. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics. 2024; 13(10):949. https://doi.org/10.3390/antibiotics13100949
Chicago/Turabian StyleVan de Vliet, Lauren, Thijs Vackier, Karin Thevissen, David Decoster, and Hans P. Steenackers. 2024. "Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections" Antibiotics 13, no. 10: 949. https://doi.org/10.3390/antibiotics13100949
APA StyleVan de Vliet, L., Vackier, T., Thevissen, K., Decoster, D., & Steenackers, H. P. (2024). Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics, 13(10), 949. https://doi.org/10.3390/antibiotics13100949