Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = Chinese space station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3615 KiB  
Article
Performance Calibration of the Wavefront Sensor’s EMCCD Detector for the Cool Planets Imaging Coronagraph Aboard CSST
by Jiangpei Dou, Bingli Niu, Gang Zhao, Xi Zhang, Gang Wang, Baoning Yuan, Di Wang and Xingguang Qian
J. Imaging 2025, 11(6), 203; https://doi.org/10.3390/jimaging11060203 - 18 Jun 2025
Viewed by 412
Abstract
The wavefront sensor (WFS), equipped with an electron-multiplying charge-coupled device (EMCCD) detector, is a critical component of the Cool Planets Imaging Coronagraph (CPI-C) on the Chinese Space Station Telescope (CSST). Precise calibration of the WFS’s EMCCD detector is essential to meet the stringent [...] Read more.
The wavefront sensor (WFS), equipped with an electron-multiplying charge-coupled device (EMCCD) detector, is a critical component of the Cool Planets Imaging Coronagraph (CPI-C) on the Chinese Space Station Telescope (CSST). Precise calibration of the WFS’s EMCCD detector is essential to meet the stringent requirements for high-contrast exoplanet imaging. This study comprehensively characterizes key performance parameters of the detector to ensure its suitability for astronomical observations. Through a multi-stage screening protocol, we identified an EMCCD chip exhibiting high resolution and low noise. The electron-multiplying gain (EM Gain) of the EMCCD was analyzed to determine its impact on signal amplification and noise characteristics, identifying the optimal operational range. Additionally, noise properties such as readout noise were investigated. Experimental results demonstrate that the optimized detector meets CPI-C’s initial application requirements, achieving high resolution and low noise. This study provides theoretical and experimental foundations for the use of EMCCD-based WFS in adaptive optics and astronomical observations, ensuring their reliability for advanced space-based imaging applications. Full article
Show Figures

Figure 1

24 pages, 8778 KiB  
Article
Predictive Models for Single-Droplet Ignition in Static High-Temperature Air in Different Gravity Environments
by Xiaoyang Lan, Huilong Zheng, Yu Fang, Xianzhang Peng, Xiaofang Yang and Xiaowu Zhang
Appl. Sci. 2025, 15(12), 6558; https://doi.org/10.3390/app15126558 - 11 Jun 2025
Viewed by 521
Abstract
To address the design and optimization of the ignition system for the microgravity single-droplet combustion experiment module within the Combustion Science Experimental System (CSES) aboard the Chinese Space Station (CSS), it is essential to first determine the ignition temperatures required for typical liquid [...] Read more.
To address the design and optimization of the ignition system for the microgravity single-droplet combustion experiment module within the Combustion Science Experimental System (CSES) aboard the Chinese Space Station (CSS), it is essential to first determine the ignition temperatures required for typical liquid fuel droplets. In this study, ignition experiments were conducted on droplets of three representative hydrocarbon fuels—ethanol, n-heptane, and n-dodecane—in static air at high temperatures ranging from 760 K to 1100 K. The experimental results show that the initial droplet diameter is inversely correlated with the ambient temperature at which ignition occurs. Subsequently, based on Frank-Kamenetskii’s analytical method and combined with experimental data, a semi-empirical predictive model for droplet ignition temperatures in a normal-gravity environment was derived. Building upon this, and considering the characteristics of the microgravity environment, an appropriate empirical formula was applied to refine the model, resulting in a predictive model for droplet ignition temperatures in the microgravity environment. Furthermore, by comparing the experimental data and the observed phenomena from existing microgravity experiments, this semi-empirical predictive model used in the microgravity environment effectively reflects the trend of droplet ignition temperature variations. Full article
Show Figures

Figure 1

21 pages, 1432 KiB  
Article
Scheduling Optimization of Electric Rubber-Tired Vehicles in Underground Coal Mines Based on Constraint Programming
by Maoquan Wan, Hao Li, Hao Wang and Jie Hou
Sensors 2025, 25(11), 3435; https://doi.org/10.3390/s25113435 - 29 May 2025
Cited by 1 | Viewed by 606
Abstract
Underground coal mines face increasing challenges in the scheduling of Electric Rubber-Tired Vehicles (ERTVs) due to confined spaces, dynamic production demands, and the need to coordinate multiple constraints such as complex roadway topologies, strict time windows, and limited charging resources in the context [...] Read more.
Underground coal mines face increasing challenges in the scheduling of Electric Rubber-Tired Vehicles (ERTVs) due to confined spaces, dynamic production demands, and the need to coordinate multiple constraints such as complex roadway topologies, strict time windows, and limited charging resources in the context of clean energy transitions. This study presents a Constraint Programming (CP)-based optimization framework that integrates Virtual Charging Station Mapping (VCSM) and sensor fusion positioning to decouple spatiotemporal charging conflicts and applies a dynamic topology adjustment algorithm to enhance computational efficiency. A novel RFID–vision fusion positioning system, leveraging multi-source data to mitigate signal interference in underground environments, provides real-time, reliable spatiotemporal coordinates for the scheduling model. The proposed multi-objective model systematically incorporates hard time windows, load limits, battery endurance, and roadway regulations. Case studies conducted using real-world data from a large-scale Chinese coal mine demonstrate that the method achieves a 17.6% reduction in total transportation mileage, decreases charging events by 60%, and reduces vehicle usage by approximately 33%, all while completely eliminating time window violations. Furthermore, the computational efficiency is improved by 54.4% compared to Mixed-Integer Linear Programming (MILP). By balancing economic and operational objectives, this approach provides a robust and scalable solution for sustainable ERTV scheduling in confined underground environments, with broader applicability to industrial logistics and clean mining practices. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensor for Mining)
Show Figures

Figure 1

15 pages, 3516 KiB  
Technical Note
Accuracy Evaluation of Multi-Technique Combination Nonlinear Terrestrial Reference Frame and EOP Based on Singular Spectrum Analysis
by Qiuxia Li, Xiaoya Wang and Yabo Li
Remote Sens. 2025, 17(5), 821; https://doi.org/10.3390/rs17050821 - 26 Feb 2025
Viewed by 528
Abstract
With the application and promotion of space geodesy, the popularization of remote sensing technology, and the development of artificial intelligence, a more accurate and stable Terrestrial Reference Frame (TRF) has become more urgent. For example, sea level change detection, crustal deformation monitoring, and [...] Read more.
With the application and promotion of space geodesy, the popularization of remote sensing technology, and the development of artificial intelligence, a more accurate and stable Terrestrial Reference Frame (TRF) has become more urgent. For example, sea level change detection, crustal deformation monitoring, and driverless cars, among others, require the accuracy of the terrestrial reference frame to be better than 1 mm in positioning and 0.1 mm/a in velocity, respectively. However, the current frequently used ITRF2014 and ITRF2020 do not satisfy such requirements. Therefore, this paper analyzes the coordinate residual time series data of linear TRFs and finds there are still some unlabeled jumps and time-dependent periodic signals, especially in the GNSS coordinate residuals, which can lead to incorrect station epoch coordinates and velocities, further affecting the accuracy and stability of the TRF. The unlabeled jumps could be detected by the sequential t-test analysis of regime shifts (STARS) combined with the generalized extreme Studentized deviate (GESD) algorithms introduced in our earlier paper. These nonlinear time-dependent periodic signals could be modeled better by singular spectrum analysis (SSA) with respect to least squares fitting; the fitting period is no longer composed of semi-annual and annual items, as with ITRF2014. The periods of continuous coordinate residual time series data longer than 5 years are obtained by FFT. The results show that there are no period signals for individual SLR/VLBI sites, and there are still other period terms, such as 34 weeks, 20.8 weeks and 17.3 weeks, in addition to semi-annual and annual items for some GNSS sites. Moreover, after SSA corrections, the re-calculated TRF and the corresponding EOP could be obtained, based on data from the Chinese Earth Rotation and Reference System Service (CERS) TRF and the Earth Orientation Parameter (EOPs) multi-technique determination software package (CERS TRF&EOP V2.0) developed by the Shanghai Astronomical Observatory (SHAO). Their accuracy could be evaluated with respect to the ITRF2014 and the IERS 14 C04, respectively. The results show that the accuracy and stability of the newly established a nonlinear TRF and EOP based on SSA have been greatly improved and better than a linear TRF and EOP. SSA is better than least squares fitting, especially for those coordinate residual time series with varying amplitude and phase. For GPS, comparing with the ITRF2014, the station coordinate accuracy of 10.8% is better than 1 mm, and the station velocity accuracy of 4.4% is better than 0.1 mm/year. There are 3.1% VLBI stations, for which coordinate accuracy is better than 1 mm and velocity accuracy is better than 0.1 mm/year. However, there are no stations with coordinates and velocities better than 1 mm and 0.1 mm/year for the SLR and DORIS. The WRMS values of polar motion x, polar motion y, LOD, and UT1-UTC are reduced by 2.4%, 3.2%, 2.7%, and 0.96%, respectively. The EOP’s accuracy in SOL-B, in addition to LOD, is better than that of the JPL. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Figure 1

16 pages, 11058 KiB  
Communication
Research on a New Multifunctional Cell Sample Automatic Culture Device for Use in the Chinese Space Station
by Kui Shi, Hongtao Yang, Wei Zhang, Weining Chen, Aqi Yan and Jianwei Peng
Aerospace 2025, 12(2), 90; https://doi.org/10.3390/aerospace12020090 - 26 Jan 2025
Cited by 1 | Viewed by 938
Abstract
In order to meet the needs of scientific research in space medicine and biology, a new multifunctional automated cell sample culture device for a Chinese space station has been designed. The temperature and carbon dioxide concentration are adjustable, making it convenient for cell [...] Read more.
In order to meet the needs of scientific research in space medicine and biology, a new multifunctional automated cell sample culture device for a Chinese space station has been designed. The temperature and carbon dioxide concentration are adjustable, making it convenient for cell culture in microgravity environments of the space station. A centrifuge is used to simulate the microgravity environment, allowing for synchronous gravity and microgravity comparison during cell culture. An automated focusing visible light microscope has been designed, capable of real-time photography of cultured cells, which can receive ground commands to complete automatic focusing and image transmission. The thermal design of the cell sample culture device uses an air heating method, and the rationality of the thermal control measures has been verified through thermal simulation analysis. The designed cell sample preparation device can monitor and display the cell growth environment parameters and device performance parameters in real time on orbit. It can also control the internal temperature within the temperature range required for cell culture. Thus, it can meet the urgent needs of various cell cultures, experiments, and scientific research on a Chinese space station. Full article
(This article belongs to the Special Issue Space Sampling and Exploration Robotics)
Show Figures

Figure 1

20 pages, 7301 KiB  
Article
Multi-Stage Design Method for Complex Gas Supply and Exhaust System of Space Station
by Dongcai Guo, Qinglin Zhu, Lu Zhang, Jule Zhang, Dong Guo, Fufu Wang, Anping Wang, Ying Xu, Qiang Sheng and Ke Wang
Aerospace 2024, 11(12), 1035; https://doi.org/10.3390/aerospace11121035 - 18 Dec 2024
Viewed by 881
Abstract
The supply and exhaust system of the experimental rack on the Chinese space station is a complex integrated system. In this paper, a multi-stage simulation, testing, and verification method is designed for a multi-team, multi-location, and multi-stage integrated gas system. This method is [...] Read more.
The supply and exhaust system of the experimental rack on the Chinese space station is a complex integrated system. In this paper, a multi-stage simulation, testing, and verification method is designed for a multi-team, multi-location, and multi-stage integrated gas system. This method is designed to solve the problem of missing input parameters between the gas supply system and the exhaust system. Preliminary tests and strategy verifications were carried out through theoretical simulation and semi-physical simulation, and good calculation results were obtained for the single-rack product. The external systems were tested using a simulation system, and a calculation method was designed to obtain relatively accurate parameters. In the early stage, the performance of the product was predicted using the parameter library of Flomaster and semi-physical simulation methods, but the error was large. In the middle and late stages of development, as some products became realistic, multi-stage testing was carried out using a vacuum simulator, simulated flow resistance, and other methods, achieving a performance prediction with an error of 12% before ground testing. The final ground test and on-orbit test showed that the design and calculation method of this paper is effective. The multi-stage design method proposed in this paper was successfully applied to the integrated gas system of the Chinese space station, which can provide a reference for the design of fluid components in long-term system engineering. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

24 pages, 3810 KiB  
Article
Study on the Feasibility and Performance Evaluation of High-Orbit Spacecraft Orbit Determination Based on GNSS/SLR/VLBI
by Zhengcheng Wu, Shaojie Ni, Wei Xiao, Zongnan Li and Huicui Liu
Remote Sens. 2024, 16(22), 4214; https://doi.org/10.3390/rs16224214 - 12 Nov 2024
Cited by 2 | Viewed by 1655
Abstract
Deep space exploration utilizing high-orbit vehicles is a vital approach for extending beyond near-Earth space, with orbit information serving as the foundation for all functional capabilities. The performance of orbit determination is primarily influenced by observation types, errors, geometrical structures, and physical perturbations. [...] Read more.
Deep space exploration utilizing high-orbit vehicles is a vital approach for extending beyond near-Earth space, with orbit information serving as the foundation for all functional capabilities. The performance of orbit determination is primarily influenced by observation types, errors, geometrical structures, and physical perturbations. Currently, research on orbit determination for high-orbit spacecraft predominantly focuses on single observation methods, error characteristics, multi-source fusion techniques, and algorithms. However, these approaches often suffer from low observation accuracy and increased costs. This paper advocates for the comprehensive utilization of existing multi-source observation methods, such as GNSS (Global Navigation Satellite System), SLR (Satellite Laser Ranging), and VLBI (Very Long Baseline Interferometry), in research. The decoupled Kalman filter reveals a positive correlation between measurement positioning accuracy and orbit determination accuracy, and it derives a simple orbit performance evaluation model that considers the influence of observation value types and geometric configurations, without the need to introduce complex dynamic models. Simulations are then employed to verify and analyze antenna gain, observation values, and performance evaluation. The results indicate the following: (1) Under simulated conditions, the optimal strategy involves employing the SLR/VLBI dual system during periods when VLBI orbit determination is feasible, yielding an average Weighted Position Dilution of Precision (WPDOP) of 26.79. (2) For periods when VLBI orbit determination is not feasible, the optimal approach is to utilize the GNSS/SLR/VLBI triple system, resulting in an average WPDOP of 16.32. (3) The orbit determination performance of the triple system is not significantly impacted by the use of global SLR stations compared to using only Chinese SLR stations. However, the global network enables continuous, round-the-clock orbit determination capabilities. Full article
(This article belongs to the Special Issue GNSS Positioning and Navigation in Remote Sensing Applications)
Show Figures

Figure 1

13 pages, 3724 KiB  
Article
Compact Laser-Induced Fluorescence Detector with Adjustable Laser Focal Spot for Multiple Purposes
by Zihe Xu, Xi Chen and Fangwu Liu
Sensors 2024, 24(19), 6224; https://doi.org/10.3390/s24196224 - 26 Sep 2024
Viewed by 1611
Abstract
In many research fields, the demand for miniaturized laser-induced fluorescence (LIF) detection systems has been increasing. This work has developed a compact LIF detector, employing a laser diode as the excitation source and a photodiode as the photodetector with an adjustable laser focal [...] Read more.
In many research fields, the demand for miniaturized laser-induced fluorescence (LIF) detection systems has been increasing. This work has developed a compact LIF detector, employing a laser diode as the excitation source and a photodiode as the photodetector with an adjustable laser focal spot, to meet the diverse requirements of various observation targets, such as capillaries, PCR tubes, and microfluidic chips. It features the functionalities of background fluorescence correction, the adaptive adjustment of the dynamic range, and constant power control for the laser. The influence of the excitation power on the detection limit was studied through experiments, and the configuration results for LED/LD as light sources and 487/450 nm wavelengths were compared and optimized. A fully integrated, compact, modular epifluorescence LIF detector was subsequently constructed, measuring 40 × 22 × 38 mm3 in total size, with a cost of USD 320, and achieving a detection limit of 0.4 nM for fluorescein sodium. Finally, the detector was integrated into a nucleic acid detection system with a microfluidic chip on the Chinese Space Station (CSS) and was also tested with PCR tubes and capillaries, proving its broad practicality and adaptability to various analytical systems. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

21 pages, 4374 KiB  
Article
Study of Morphology of Gas–Liquid Interfaces in Tank with Central Column in CSS under Different Gravity Conditions
by Zhewen Chen, Li Duan, Shangtong Chen, Ce Li, Chao Yang, Liang Hu, Pu Zhang, Di Wu, Yuhao Zhang, Huan Pang, Yifan Zhao and Qi Kang
Symmetry 2024, 16(7), 878; https://doi.org/10.3390/sym16070878 - 10 Jul 2024
Viewed by 1457
Abstract
Most space shuttle fuel tanks use a center column to hold the Propellant Management Device (PMD). This paper analyzes the gas–liquid interface state in the tanks with a central column during microgravity experiments conducted in the Chinese Space Station. It launches an extended [...] Read more.
Most space shuttle fuel tanks use a center column to hold the Propellant Management Device (PMD). This paper analyzes the gas–liquid interface state in the tanks with a central column during microgravity experiments conducted in the Chinese Space Station. It launches an extended study to investigate the gas–liquid interface state under different gravity conditions. Using the perturbation method and boundary layer theory, we numerically calculated the morphology of the gas–liquid interface under varying gravity conditions based on the Young–Laplace equation. The results were then compared to those obtained from existing commercial software and were found to be consistent. Based on this, the study develops two types of calculation procedures. The first procedure generates the corresponding shape of the liquid surface by inputting the height of the liquid surface endpoints and the gravity level. The second procedure is based on the targeting method and generates the corresponding liquid surface by inputting the volume of the liquid in the storage tank and the gravity level. The procedures were used to analyze the variation of gas–liquid interface properties under different gravity conditions. This study offers theoretical support for liquid management in aerospace engineering fuel tanks. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

30 pages, 8117 KiB  
Article
A Framework for Rapidly Predicting the Dynamics of Flexible Solar Arrays in the China Space Station with a Verification Based on On-Orbit Measurement Data
by Song Wu, Han Yan, Yuzhen Zhao, Yanhao Chen and Guoan Tang
Aerospace 2024, 11(5), 411; https://doi.org/10.3390/aerospace11050411 - 20 May 2024
Cited by 3 | Viewed by 1631
Abstract
The Chinese space station is a complex structure with large flexible appendages. Obtaining the on-orbit response characteristics of such a structure under different working conditions is a traditional and classic challenge in the field of dynamics. To address the on-orbit dynamics of the [...] Read more.
The Chinese space station is a complex structure with large flexible appendages. Obtaining the on-orbit response characteristics of such a structure under different working conditions is a traditional and classic challenge in the field of dynamics. To address the on-orbit dynamics of the China Space Station, the basic equations for dynamic reduction, assembly and data recovery of linear and nonlinear substructures are derived based on the reduction and recovery theory, and a fast coupling analysis framework for flexible systems with nonlinear attachments is formed. This coupling analysis framework is adopted to quickly acquire the dynamic response of the China Space Station during in-orbit operation, thereby guiding the design. Taking SZ-15 radial docking to the Chinese Space Station as the object, the substructure of six nonlinear flexible arrays is reduced, the full flexible dynamic equation of the space station is assembled, and the response of each part of the flexible wing during the docking process is analyzed and recovered. By designing a reasonable and reliable flexible wing test scheme in-orbit, the acceleration at the root and top of the flexible wing during the docking of SZ-15 is obtained. The measured data in-orbit show that the acceleration analysis results of the typical parts of the flexible wing have a good agreement, which verifies the correctness of the fast coupling analysis framework of the flexible system. Hence, the dynamic coupling characteristics analysis of the main structure of the space station and the flexible wing based on this method can better guide the rationality of the design of the dynamic characteristics of the Chinese Space Station. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

10 pages, 1543 KiB  
Article
Design and Performance of a Low-Energy Gamma-Ray Trigger System for HERD
by Luis Fariña, Keerthana Lathika, Giulio Lucchetta, Monong Yu, Joan Boix, Laia Cardiel-Sas, Oscar Blanch, Manel Martinez and Javier Rico
Instruments 2024, 8(2), 31; https://doi.org/10.3390/instruments8020031 - 4 May 2024
Viewed by 1973
Abstract
The High Energy cosmic-Radiation Detection (HERD) facility has been proposed as one of the main experiments on board the Chinese space station. HERD is scheduled to be installed around 2027 and to operate for at least 10 years. Its main scientific goals are [...] Read more.
The High Energy cosmic-Radiation Detection (HERD) facility has been proposed as one of the main experiments on board the Chinese space station. HERD is scheduled to be installed around 2027 and to operate for at least 10 years. Its main scientific goals are the study of the cosmic ray spectrum and composition up to the PeV energy range, indirect dark matter detection, and all-sky gamma-ray observation above 100 MeV. HERD features a novel design in order to optimize its acceptance per weight, with a central 3D imaging calorimeter surrounded on top and on its four lateral sides by complementary subdetectors. A dedicated trigger, dubbed the ultra-low-energy gamma-ray (ULEG) trigger, is required to enable the detection of gamma rays down to ~100 MeV. The ULEG trigger design is based upon the search for energy deposition patterns on the tracker and the anticoincidence shield, compatible with the conversion of a gamma ray within the tracker volume and resulting in enough tracker hits to allow for a good-quality gamma-ray direction reconstruction. We describe the current status of the design of the ULEG trigger system. We also characterize its performance in detecting gamma rays as inferred from Monte Carlo studies. Full article
Show Figures

Figure 1

17 pages, 33704 KiB  
Article
Research on the Contrast Enhancement Algorithm for X-ray Images of BiFeO3 Material Experiment
by Xinze Li, Qiang Yu, Xiuhong Pan and Zehua Yu
Appl. Sci. 2024, 14(9), 3546; https://doi.org/10.3390/app14093546 - 23 Apr 2024
Cited by 1 | Viewed by 1618
Abstract
High-Temperature Materials Science Experiment Cabinet on the Chinese Space Station is mainly used to carry out experimental research related to high-temperature materials science in microgravity. It is equipped with an X-ray transmission imaging module, which is applied to realize transmission imaging of material [...] Read more.
High-Temperature Materials Science Experiment Cabinet on the Chinese Space Station is mainly used to carry out experimental research related to high-temperature materials science in microgravity. It is equipped with an X-ray transmission imaging module, which is applied to realize transmission imaging of material samples under microgravity. However, the X-ray light source is far away from the experimental samples, and the images obtained by the module are blurred, so it is impossible to accurately observe the morphological changes during the melting and solidification processes of high-temperature materials. To address this issue, this paper proposed a contrast enhancement algorithm specifically designed for X-ray images obtained during the experiments of high-temperature materials. The algorithm is based on gradient three-interval equalization, and it is combined with a Gaussian function to expand the gradient histogram. Meanwhile, the local gray level information within each gradient interval is corrected by designing an improved adaptive contrast enhancement algorithm. By comparing with Adaptive Histogram Equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithms, EnlightenGAN, and Wavelet algorithms, the Contrast Enhancement based contrast-changed Image Quality measure (CEIQ) and Measure of Enhancement (EME) are improved by an average of 56.97%, 10.58%, and Measure of Entropy (MOE) are improved by an average of 7.74 times. The experimental results show that the algorithm makes the image details clearer on the basis of image contrast enhancement. The solid-liquid interface in the image can be clearly observed after contrast enhancement. The algorithm provides strong support for the study of interface dynamics during the experiment process of high-temperature materials. Full article
Show Figures

Figure 1

10 pages, 4817 KiB  
Article
Double Photodiode Readout System for the Calorimeter of the HERD Experiment: Challenges and New Horizons in Technology for the Direct Detection of High-Energy Cosmic Rays
by Pietro Betti, Oscar Adriani, Matias Antonelli, Yonglin Bai, Xiaohong Bai, Tianwei Bao, Eugenio Berti, Lorenzo Bonechi, Massimo Bongi, Valter Bonvicini, Sergio Bottai, Weiwei Cao, Jorge Casaus, Zhen Chen, Xingzhu Cui, Raffaello D’Alessandro, Sebastiano Detti, Carlos Diaz, Yongwei Dong, Noemi Finetti, Valerio Formato, Miguel Angel Velasco Frutos, Jiarui Gao, Francesca Giovacchini, Xiaozhen Liang, Ran Li, Xin Liu, Linwei Lyu, Gustavo Martinez, Nicola Mori, Jesus Marin Munoz, Lorenzo Pacini, Paolo Papini, Cecilia Pizzolotto, Zheng Quan, Junjun Qin, Dalian Shi, Oleksandr Starodubtsev, Zhicheng Tang, Alessio Tiberio, Valerio Vagelli, Elena Vannuccini, Bo Wang, Junjing Wang, Le Wang, Ruijie Wang, Gianluigi Zampa, Nicola Zampa, Zhigang Wang, Ming Xu, Li Zhang and Jinkun Zhengadd Show full author list remove Hide full author list
Instruments 2024, 8(1), 5; https://doi.org/10.3390/instruments8010005 - 22 Jan 2024
Cited by 4 | Viewed by 2475
Abstract
The HERD experiment is a future experiment for the direct detection of high-energy cosmic rays and is to be installed on the Chinese space station in 2027. The main objectives of HERD are the first direct measurement of the knee of the cosmic [...] Read more.
The HERD experiment is a future experiment for the direct detection of high-energy cosmic rays and is to be installed on the Chinese space station in 2027. The main objectives of HERD are the first direct measurement of the knee of the cosmic ray spectrum, the extension of electron+positron flux measurement up to tens of TeV, gamma ray astronomy, and the search for indirect signals of dark matter. The main component of the HERD detector is an innovative calorimeter composed of about 7500 LYSO scintillating crystals assembled in a spherical shape. Two independent readout systems of the LYSO scintillation light will be installed on each crystal: the wavelength-shifting fibers system developed by IHEP and the double photodiode readout system developed by INFN and CIEMAT. In order to measure protons in the cosmic ray knee region, we must be able to measure energy release of about 250 TeV in a single crystal. In addition, in order to calibrate the system, we need to measure typical releases of minimum ionizing particles that are about 30 MeV. Thus, the readout systems should have a dynamic range of about 107. In this article, we analyze the development and the performance of the double photodiode readout system. In particular, we show the performance of a prototype readout by the double photodiode system for electromagnetic showers as measured during a beam test carried out at the CERN SPS in October 2021 with high-energy electron beams. Full article
Show Figures

Figure 1

21 pages, 37544 KiB  
Article
A Generative Urban Space Design Method Based on Shape Grammar and Urban Induction Patterns
by Ling Yang, Jian Li, Hsiao-Tung Chang, Zhiqing Zhao, He Ma and Libin Zhou
Land 2023, 12(6), 1167; https://doi.org/10.3390/land12061167 - 1 Jun 2023
Cited by 10 | Viewed by 4353
Abstract
This paper focuses on how to solve the demand of how to quickly explore more urban space design and layout in terms of the conservation and reuse of historical blocks under computer-aided design technology. Referring to urban inductive patterns, the author establishes an [...] Read more.
This paper focuses on how to solve the demand of how to quickly explore more urban space design and layout in terms of the conservation and reuse of historical blocks under computer-aided design technology. Referring to urban inductive patterns, the author establishes an urban space design grammar of historical districts based on shape grammar and pattern language. It forms a complete generative urban space design method involving morphological analysis, rule-making, and scheme generation. Furthermore, taking the typical Russian-style historical block along the Chinese Eastern Railway—the historical district in front of Anda Station as an application example—this paper completed the generative urban space design process of block redevelopment and environmental reconstruction, which, using computer-aided technology, was under the premise of protecting the original historic block fabric. The final two group results of the experimental plot and the other plots of the historical district show that this method can quickly and accurately generate lots of urban space design schemes that meet the designers’ pre-thinking, and these schemes can be modified by real-time calculation and interactive operation. Full article
(This article belongs to the Special Issue New Technologies and Methods in Spatial Planning)
Show Figures

Figure 1

19 pages, 775 KiB  
Review
Probing Diversity of Type II Supernovae with the Chinese Space Station Telescope
by Han Lin, Jujia Zhang and Xinghan Zhang
Universe 2023, 9(5), 201; https://doi.org/10.3390/universe9050201 - 22 Apr 2023
Cited by 5 | Viewed by 1739
Abstract
Type II supernovae (SNe II), which show abundant hydrogen in their spectra, belong to a class of SNe with diverse observed properties. It is commonly accepted that SNe II are produced by core collapse and explosion of massive stars. However, the large photometric [...] Read more.
Type II supernovae (SNe II), which show abundant hydrogen in their spectra, belong to a class of SNe with diverse observed properties. It is commonly accepted that SNe II are produced by core collapse and explosion of massive stars. However, the large photometric and spectroscopic diversity of SNe II and the mechanisms responsible for this diversity are not thoroughly understood. In this review, we first briefly introduce the optical characteristics and possible progenitors of each subtype of SNe II. We then highlight the role of the Chinese Space Station Telescope in future SN studies. With a deep limiting magnitude, the main survey project could detect SN IIP-like objects as distant as z1.2 and obtain UV-optical follow-up for peculiar transients, especially those long-lived events. With a high resolution and a large field of view, the main survey camera is powerful in linking a nearby SN with its progenitor, while the integral field spectrograph is powerful in revealing the SN environment. All this information has the potential to help enrich our understanding of supernova physics. Full article
(This article belongs to the Special Issue Supernovae Observations and Researches)
Show Figures

Figure 1

Back to TopTop