Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Carlsberg ridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14749 KiB  
Article
Microbial Seafloor Weathering of Hydrothermal Sulfides: Insights from an 18-Month In Situ Incubation at the Wocan-1 Hydrothermal Field
by Chuanqi Dong, Xiqiu Han, Yejian Wang, Jiqiang Liu and Mingcong Wei
Biology 2025, 14(4), 389; https://doi.org/10.3390/biology14040389 - 9 Apr 2025
Cited by 1 | Viewed by 616
Abstract
The weathering of seafloor hydrothermal sulfides is facilitated by microbial activities, yet the specific mechanisms of different sulfide types are not well understood. Previous studies have primarily been carried out under laboratory conditions, making it difficult to accurately replicate the complex in situ [...] Read more.
The weathering of seafloor hydrothermal sulfides is facilitated by microbial activities, yet the specific mechanisms of different sulfide types are not well understood. Previous studies have primarily been carried out under laboratory conditions, making it difficult to accurately replicate the complex in situ conditions of deep-sea hydrothermal fields. Herein, we deployed two well-characterized pyrite (Py)-dominated and chalcopyrite (Ccp)-dominated sulfide slices, which were placed 300 m from an active venting site in the Wocan-1 hydrothermal field (Carlsberg Ridge, Northwest Indian Ocean) for an 18-month in situ incubation experiment. Microscopic observations and organic matter analyses were conducted on the recovered sulfide slices to investigate the microbial weathering features of different sulfide types. Our results demonstrated that the weathering of the Py-dominated sulfide sample was primarily mediated by extracellular polymeric substances (EPSs) through indirect interactions, whereas the Ccp-dominated sulfide sample exhibited both direct microbial dissolution, resulting in the formation of distinct dissolution pits, and indirect EPS-mediated interactions. Four distinct phases of microbe–sulfide interactions were identified: approach, adsorption, stable attachment, and extensive colonization. Furthermore, the weathering products and biomineralization structures differed significantly between the two sulfide types, reflecting their different microbial colonization processes. Our study confirms that microorganisms are crucial in seafloor sulfide weathering. These findings advance our understanding of microbial-driven processes in sulfide mineral transformations and their role in marine ecosystems. Our findings are also valuable for future research on biogeochemical cycles and for developing bioremediation strategies for deep-sea mining. Full article
Show Figures

Figure 1

13 pages, 3689 KiB  
Article
The Structure and Near-Bottom Magnetic Anomaly Characteristics of the Daxi Vent Field on the Carlsberg Ridge, Northwestern Indian Ocean
by Puchen Zhao, Zhaocai Wu, Xiqiu Han, Yejian Wang, Jialing Zhang and Qiang Wang
J. Mar. Sci. Eng. 2025, 13(3), 488; https://doi.org/10.3390/jmse13030488 - 1 Mar 2025
Cited by 1 | Viewed by 804
Abstract
Seafloor hydrothermal vent areas are potential sources of polymetallic sulfide deposits and exhibit distinct mineralization structures under different tectonic settings. The Daxi Vent Field (DVF), located on the Carlsberg Ridge in the northwestern Indian Ocean, represents a basalt-hosted hydrothermal system. To investigate the [...] Read more.
Seafloor hydrothermal vent areas are potential sources of polymetallic sulfide deposits and exhibit distinct mineralization structures under different tectonic settings. The Daxi Vent Field (DVF), located on the Carlsberg Ridge in the northwestern Indian Ocean, represents a basalt-hosted hydrothermal system. To investigate the alteration zone structure of the DVF, high-resolution near-bottom bathymetric and magnetic data were collected during the Chinese DY57 expedition in 2019. Based on the results of magnetic anomaly data processing, including reduction to a level surface and Euler deconvolution, the location and depth of the magnetic sources were identified. In addition, two 2.5D magnetic forward models crossing the active and inactive vent fields were constructed. The results indicate that the range of the alteration zone in the active vent at the DVF extends up to 120 m in width and 80 m in depth, while the hydrothermal deposit at the extinct vent on the northeastern side extends up to 220 m along the ridge axis with a thickness of 30 m. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

15 pages, 3416 KiB  
Article
Type, Genesis, and Provenance Implications of Amphiboles in Sediments in the Northwest Indian Ocean over 42,000 Years
by Feng Wang, Yunhai Li, Bingfu Jin, Mengyao Wang, Dongyi Li, Zhikun Lai, Jian Chen, Pengfei Shen, Liang Wang and Mingjiang Cai
J. Mar. Sci. Eng. 2024, 12(11), 1993; https://doi.org/10.3390/jmse12111993 - 5 Nov 2024
Viewed by 825
Abstract
Five layers of detrital amphiboles in the CJ08-008 sediment core from the northwest Indian Ocean have been found. To analyze their genetic types and provenance, an electron probe microanalysis of 300 amphibole grains from the core was conducted to calculate the numerical and [...] Read more.
Five layers of detrital amphiboles in the CJ08-008 sediment core from the northwest Indian Ocean have been found. To analyze their genetic types and provenance, an electron probe microanalysis of 300 amphibole grains from the core was conducted to calculate the numerical and characteristic values of cations in the crystal structure. The results showed that amphiboles with high Si, Ca, and Mg contents and low Na and K contents exhibit a low degree of weathering and that amphiboles mainly comprise tschermakite (46.43~70.69%), followed by magnesiohornblende, in the calcic amphibole subgroup. The types of sources for these amphiboles are mainly different types of metamorphic and magmatic rock. A large proportion of the detrital amphiboles (>60%) are derived from metamorphic rocks, followed by intermediate acid-intrusive rocks. The genetic analysis of amphiboles showed that most of the medium acid-intrusive amphiboles belong to the crust–mantle type, followed by the mantle type. Most of the amphiboles of metamorphic origin are of the low-pressure type. The amphiboles in the CJ08-008 sediment core exhibit characteristics different from those brought by monsoons from surrounding land masses. The variations in the amphiboles indicate different sources, which may have different origins; these origins could include the Carlsberg Ridge, the Owen Fault Zone, or older submarine sediment sequences eroded by turbidity currents. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

16 pages, 24700 KiB  
Article
Teleseismic Indication of Magmatic and Tectonic Activities at Slow- and Ultraslow-Spreading Ridges
by Kaixuan Yan, Jie Chen and Tao Zhang
J. Mar. Sci. Eng. 2024, 12(4), 605; https://doi.org/10.3390/jmse12040605 - 30 Mar 2024
Cited by 1 | Viewed by 1400
Abstract
Magmatic and tectonic processes in the formation of oceanic lithosphere at slow–ultraslow-spreading mid-ocean ridges (MORs) are more complicated relative to faster-spreading ridges, as their melt flux is overall low, with highly spatial and temporal variations. Here, we use the teleseismic catalog of magnitudes [...] Read more.
Magmatic and tectonic processes in the formation of oceanic lithosphere at slow–ultraslow-spreading mid-ocean ridges (MORs) are more complicated relative to faster-spreading ridges, as their melt flux is overall low, with highly spatial and temporal variations. Here, we use the teleseismic catalog of magnitudes over 4 between 1995 and 2020 from the International Seismological Center to investigate the characteristics of magmatic and tectonic activities at the ultraslow-spreading Southwest Indian Ridge and Arctic Gakkel Ridge and the slow-spreading North Mid-Atlantic Ridge and Carlsberg Ridge (total length of 14,300 km). Using the single-link cluster analysis technique, we identify 78 seismic swarms (≥8 events), 877 sequences (2–7 events), and 3543 single events. Seismic swarms often occur near the volcanic center of second-order segments, presumably relating to relatively robust magmatism. By comparing the patterns of seismicity between ultraslow- and slow-spreading ridges, and between melt-rich and melt-poor regions of the Southwest Indian Ridge with distinct seafloor morphologies, we demonstrate that a lower spreading rate and a lower melt supply correspond to a higher seismicity rate and a higher potential of large volcano-induced seismic swarms, probably due to a thicker and colder lithosphere with a higher degree of along-axis melt focusing there. Full article
Show Figures

Figure 1

15 pages, 3308 KiB  
Article
Numerical Simulation Study of Seafloor Hydrothermal Circulation Based on HydrothermalFoam: A Case Study of the Wocan-1 Hydrothermal Field, Carlsberg Ridge, Indian Ocean
by Haoyang Zeng, Peng Hu, Zhiguo He, Jinrong Yao and Zhiying Yang
J. Mar. Sci. Eng. 2024, 12(1), 46; https://doi.org/10.3390/jmse12010046 - 24 Dec 2023
Cited by 2 | Viewed by 2170
Abstract
Deep-sea hydrothermal circulation plays a pivotal role in the material and energy exchange in deep-sea environments, exerting significant influence on the evolution of seawater chemistry and global climate dynamics. Based on existing data and assumptions, this study presents a numerical model tailored for [...] Read more.
Deep-sea hydrothermal circulation plays a pivotal role in the material and energy exchange in deep-sea environments, exerting significant influence on the evolution of seawater chemistry and global climate dynamics. Based on existing data and assumptions, this study presents a numerical model tailored for the hydrothermal circulation in the Wocan-1 Hydrothermal Field, Carlsberg Ridge, Indian Ocean. The model successfully simulates the hydrothermal circulation patterns within the oceanic crust, providing detailed insights into temperature distribution, flow field structures, and elemental concentration gradients. Through data analysis of the simulation results, we inferred the depth and temperature of potential heat sources within the Wocan-1 hydrothermal field. The maximum temperature of the heat source Tmax = 823K (550 °C) and the depth of the heat source h = 1 km are possible results. To deepen understanding of the heat source’s impact on fluid temperatures, a sensitivity analysis was conducted. The findings show a positive correlation between both the heat source’s temperature and its depth with the fluid temperature at vent outlets. Regarding elemental transport, this paper offers a preliminary exploration of the kinetic processes in hydrothermal circulation and presents an empirical relationship linking elemental concentrations at the bottom to those at the vent: Cvent = 0.26 Cboundary. This study enhances current numerical models for hydrothermal vents, offering valuable insights for future work and utilization in the Wocan-1 hydrothermal field, and potentially in any other hydrothermal field. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

13 pages, 5712 KiB  
Article
Numerical Simulation-Based Analysis of Seafloor Hydrothermal Plumes: A Case Study of the Wocan-1 Hydrothermal Field, Carlsberg Ridge, Northwest Indian Ocean
by Kanghao Wang, Xiqiu Han, Yejian Wang, Yiyang Cai, Zhongyan Qiu and Xiaoquan Zheng
J. Mar. Sci. Eng. 2023, 11(5), 1070; https://doi.org/10.3390/jmse11051070 - 18 May 2023
Cited by 4 | Viewed by 2266
Abstract
Understanding the dynamics of deep-sea hydrothermal plumes and the depositional pattern of hydrothermal particles is essential for tracking the submarine hydrothermal venting site, prospecting polymetallic sulfide resources, as well as deciphering biogeochemistry cycling of marine elements. In this paper, a numerical model of [...] Read more.
Understanding the dynamics of deep-sea hydrothermal plumes and the depositional pattern of hydrothermal particles is essential for tracking the submarine hydrothermal venting site, prospecting polymetallic sulfide resources, as well as deciphering biogeochemistry cycling of marine elements. In this paper, a numerical model of the deep-sea hydrothermal plume is established based on the topography and long-term current monitoring data of the Wocan-1 hydrothermal field (WHF-1), Carlsberg Ridge, Northwest Indian Ocean. The model allows for a reconstruction of the hydrothermal plume in terms of its structure, velocity field, and temperature field. The relationships between the maximum height of the rising plume and the background current velocity, and between the height of the neutral-buoyancy layer and the background current velocity are established, respectively. The transport patterns of the hydrothermal particles and their controlling factors are revealed. Using hydrothermal particles with a density of ~5000 kg/m3 (i.e., pyrite grains) as an example, it is found that pyrite larger than 1 mm can only be found near the venting site. Those in the size 0.3–0.5 mm can only be found within 137–240 m from the venting site, while those smaller than 0.2 mm can be transported over long distances of more than 1 km. Using the vertical temperature profiling data of WHF-1 obtained during the Jiaolong submersible diving cruise in March 2017, we reconstruct the past current velocity of 10 cm/s, similar to the current data retrieved from the observational mooring system. Our model and the findings contribute to a better understanding of the hydrothermal system of WHF-1, and provide useful information for tracing the hydrothermal vents, prospecting the submarine polymetallic sulfide resources, designing the long-term observation networks, and relevant studies on element cycling and energy budget. Full article
(This article belongs to the Special Issue Recent Advances in Geological Oceanography II)
Show Figures

Figure 1

12 pages, 2225 KiB  
Article
Near-Bottom Magnetic Anomaly Features and Detachment Fault Morphology in Tianxiu Vent Field, Carlsberg Ridge, Northwest Indian Ocean
by Shuang Du, Zhaocai Wu, Xiqiu Han, Yejian Wang, Honglin Li and Jialing Zhang
J. Mar. Sci. Eng. 2023, 11(5), 918; https://doi.org/10.3390/jmse11050918 - 25 Apr 2023
Cited by 8 | Viewed by 2169
Abstract
As a product of hydrothermal mineralization at spreading centers, seafloor massive sulfides (SMS) have become a research hotspot in the field of prospecting and exploring deep-sea mineral resources owing to their enrichment of various strategic metals. Since hydrothermal circulation changes the magnetic properties [...] Read more.
As a product of hydrothermal mineralization at spreading centers, seafloor massive sulfides (SMS) have become a research hotspot in the field of prospecting and exploring deep-sea mineral resources owing to their enrichment of various strategic metals. Since hydrothermal circulation changes the magnetic properties of host rocks and can generate magnetic anomalies, near-bottom magnetic surveying is an effective method to determine magnetic anomaly features of the seafloor. This technology has been applied to the detection of SMS deposits, in addition to its use in understanding hydrothermal fluid flow conduits and associated hydrothermal alterations. The Tianxiu Vent Field (TVF) is a detachment-fault-controlled, ultramafic-associated hydrothermal system located on the Carlsberg Ridge, Northwest Indian Ocean. During China’s DY57th cruise in 2019, near-bottom magnetic data were collected by an autonomous underwater vehicle. In this paper, we use bathymetric and magnetic data, as well as rock sampling information, to analyze and discuss the magnetic anomaly features of the TVF region. Then, we apply 2.5D magnetic anomaly profile forward modeling to determine the shallow magnetic structure and the pattern of detachment faults in the subsurface. Our results show that TVF is characterized by a significant positive magnetic anomaly, where stronger magnetization exists in the area with active hydrothermal vent clusters. The detachment fault has a dip of less than 30° at shallow depths, which steepens to a dip of ~70° at depths of around 300 m. Full article
Show Figures

Figure 1

18 pages, 4646 KiB  
Article
Diversity of Mixotrophic Neutrophilic Thiosulfate- and Iron-Oxidizing Bacteria from Deep-Sea Hydrothermal Vents
by Yang He, Xiang Zeng, Fei Xu and Zongze Shao
Microorganisms 2023, 11(1), 100; https://doi.org/10.3390/microorganisms11010100 - 30 Dec 2022
Cited by 9 | Viewed by 4304
Abstract
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the [...] Read more.
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the Carlsberg Ridge in the Indian Ocean, nine to the γ-proteobacteria (Halomonas (4), Pseudomonas (2), Marinobacter (2), and Rheinheimera (1)), seven to the α-proteobacteria (Thalassospira, Qipengyuania, Salipiger, Seohaeicola, Martelella, Citromicrobium, and Aurantimonas), and one to the Actinobacteria (Agromyces), as determined by their 16S rRNA and genome sequences. The physiological characterization of these isolates revealed wide versatility in electron donors (Fe(II) and Mn(II), or thiosulfate) and a variety of lifestyles as lithotrophic or heterotrophic, microaerobic, or anaerobic. As a representative strain, Pseudomonas sp. IOP_13 showed its autotrophic gowth from 105 cells/ml to 107 cells/ml;carbon dioxide fixation capacity with the δ13CVPDB in the biomass increased from −27.42‰ to 3460.06‰; the thiosulfate-oxidizing ability with produced SO42− increased from 60 mg/L to 287 mg/L; and the iron-oxidizing ability with Fe(II) decreased from 10 mM to 5.2 mM. In addition, iron-oxide crust formed outside the cells. Gene coding for energy metabolism involved in possible iron, manganese, and sulfur oxidation, and denitrification was identified by their genome analysis. This study sheds light on the function of the mixotrophic microbial community in the iron/manganese/sulfur cycles and the carbon fixation of the hydrothermal fields. Full article
(This article belongs to the Special Issue Diversity of Extremophiles in Hydrothermal Environments)
Show Figures

Figure 1

16 pages, 11099 KiB  
Technical Note
Seasonal M2 Internal Tides in the Arabian Sea
by Jingyi Ma, Daquan Guo, Peng Zhan and Ibrahim Hoteit
Remote Sens. 2021, 13(14), 2823; https://doi.org/10.3390/rs13142823 - 18 Jul 2021
Cited by 10 | Viewed by 3902
Abstract
Internal tides play a crucial role in ocean mixing. To explore the seasonal features of mode-1 M2 internal tides in the Arabian Sea, we analyzed their propagation and energy distribution using along-track sea-level anomaly data collected by satellite altimeters. We identified four [...] Read more.
Internal tides play a crucial role in ocean mixing. To explore the seasonal features of mode-1 M2 internal tides in the Arabian Sea, we analyzed their propagation and energy distribution using along-track sea-level anomaly data collected by satellite altimeters. We identified four primary source regions of internal tides: Abd al Kuri Island, the Carlsberg Ridge, the northeastern Arabian Sea, and the Maldive Islands. The baroclinic signals that originate from Abd al Kuri Island propagate meridionally, whereas those originating from the west coast of India propagate southwestward. The strength and energy flux of the internal tides in the Arabian Sea exhibit significant seasonal and spatial variability. The internal tides generated during winter are more energetic and can propagate further than those generated in summer. Doppler shifting and horizontal variations in stratification can explain the differences in the internal tides’ seasonal distributions. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

19 pages, 5887 KiB  
Article
Mineralogical and Geochemical Signatures of Metalliferous Sediments in Wocan-1 and Wocan-2 Hydrothermal Sites on the Carlsberg Ridge, Indian Ocean
by Samuel Olatunde Popoola, Xiqiu Han, Yejian Wang, Zhongyan Qiu, Ying Ye and Yiyang Cai
Minerals 2019, 9(1), 26; https://doi.org/10.3390/min9010026 - 4 Jan 2019
Cited by 20 | Viewed by 5921
Abstract
In this paper, we conduct a comparative study on the mineralogy and geochemistry of metalliferous sediment collected near the active hydrothermal site (Wocan-1) and inactive hydrothermal site (Wocan-2) from Wocan Hydrothermal Field, on the Carlsberg Ridge (CR), northwest Indian Ocean. We aim to [...] Read more.
In this paper, we conduct a comparative study on the mineralogy and geochemistry of metalliferous sediment collected near the active hydrothermal site (Wocan-1) and inactive hydrothermal site (Wocan-2) from Wocan Hydrothermal Field, on the Carlsberg Ridge (CR), northwest Indian Ocean. We aim to understand the spatial variations in the primary and post-depositional conditions and the intensity of hydrothermal circulations in the Wocan hydrothermal systems. Sediment samples were collected from six stations which includes TVG-07, TVG-08 (Wocan-1), TVG-05, TVG-10 (Wocan-2), TVG-12 and TVG-13 (ridge flanks). The mineralogical investigations show that sediment samples from Wocan-1 and Wocan-2 are composed of chalcopyrite, pyrite, sphalerite, barite, gypsum, amorphous silica, altered volcanic glass, Fe-oxides, and hydroxides. The ridge flank sediments are dominated by biogenic calcite and foraminifera assemblages. The bulk sediment samples of Wocan-1 have an elevated Fe/Mn ratio (up to ~1545), with lower U contents (<7.4 ppm) and U/Fe ratio (<~1.8 × 10−5). The sulfide separates (chalcopyrite, pyrite, and sphalerite) are enriched in Se, Co, As, Sb, and Pb. The calculated sphalerite precipitation temperature (Sph.PT) yields ~278 °C. The sulfur isotope (δ34S) analysis returned a light value of 3.0–3.6‰. The bulk sediment samples of Wocan-2 have a lower Fe/Mn ratio (<~523), with high U contents (up to 19.6 ppm) and U/Fe ratio (up to ~6.2 × 10−5). The sulfide separates are enriched in Zn, Cu, Tl, and Sn. The calculated Sph.PT is ~233 °C. The δ34S returned significant values of 4.1–4.3‰ and 6.4–8.7‰ in stations TVG-10 and TVG-05, respectively. The geochemical signatures (e.g., Fe/Mn and U/Fe ratio, mineral chemistry of sulfides separates, and S-isotopes and Sph.PT) suggest that sediment samples from Wocan-1 are located near intermediate–high temperature hydrothermal discharge environments. Additionally, relatively low δ34S values exhibit a lower proportion (less than 20%) of seawater-derived components. The geochemical signatures suggest that sediment samples from Wocan-2 has undergone moderate–extensive oxidation and secondary alterations by seawater in a low–intermediate temperature hydrothermal environments. Additionally, the significant δ34S values of station TVG-05 exhibit a higher estimated proportion (up to 41%) of seawater-derived components. Our results showed pervasive hydrothermal contributions into station TVG-08 relative to TVG-07, it further showed the increased process of seafloor weathering at TVG-05 relative to TVG-10. Full article
(This article belongs to the Special Issue Deep-Sea Minerals and Gas Hydrates)
Show Figures

Graphical abstract

17 pages, 8015 KiB  
Article
Geochemical Investigations of Fe-Si-Mn Oxyhydroxides Deposits in Wocan Hydrothermal Field on the Slow-Spreading Carlsberg Ridge, Indian Ocean: Constraints on Their Types and Origin
by Samuel Olatunde Popoola, Xiqiu Han, Yejian Wang, Zhongyan Qiu and Ying Ye
Minerals 2019, 9(1), 19; https://doi.org/10.3390/min9010019 - 28 Dec 2018
Cited by 19 | Viewed by 6987
Abstract
We have studied morphology, mineralogy and geochemical characteristics of Fe-oxyhydroxide deposits from metal-enriched sediments of the active (Wocan-1) and inactive (Wocan-2) hydrothermal sites (Carlsberg Ridge, Northwest Indian Ocean). Fe-oxyhydroxide deposits on the Wocan-1 site are reddish-brownish, amorphous and subangular. They occur in association [...] Read more.
We have studied morphology, mineralogy and geochemical characteristics of Fe-oxyhydroxide deposits from metal-enriched sediments of the active (Wocan-1) and inactive (Wocan-2) hydrothermal sites (Carlsberg Ridge, Northwest Indian Ocean). Fe-oxyhydroxide deposits on the Wocan-1 site are reddish-brownish, amorphous and subangular. They occur in association with sulfides (e.g., pyrite, chalcopyrite and sphalerite) and sulfate minerals (e.g., gypsum and barite). The geochemical composition shows enrichment in transition metals (Ʃ (Cu + Co + Zn + Ni) = ~1.19 wt. %) and low (<0.4 wt. %) values of Al/(Al + Fe + Mn) ratio. The Wocan-2 samples show poorly crystallized reddish brown and yellowish Fe-oxyhydroxide, with minor peaks of goethite and manganese oxide minerals. The mineral assemblage includes sulfide and sulfate phases. The geochemical compositions show two distinct types (type-1 and type-2). The type-1 Fe-oxyhydroxides are enriched in transition metals (up to ~1.23 wt. %), with low values of Fe/Ti vs. Al/(Al + Fe + Mn) ratio similar to the Wocan-1 Fe-oxyhydroxides. The type-2 Fe-oxyhydroxides are depleted in transition metals, with Al/(Al + Fe + Mn) ratio of 0.003–0.58 (mean value, 0.04). The ridge flank oxyhydroxides exhibit an extremely low (mean value ~ 0.01) Fe/Mn ratio and a depleted concentration of transition metals. Our results revealed that the Wocan-1 Fe-oxyhydroxides and type-1 Fe-oxyhydroxides of the Wocan-2 site are in the range of Fe-oxyhydroxides deposits that are precipitated by mass wasting and corrosion of pre-existing sulfides. The type-2 Fe-oxyhydroxides are precipitated from sulfide alteration by seawater in an oxygenated environment relative to type-1. The association of biogenic detritus with the oxyhydroxides of the ridge flanks and the low Fe/Mn ratio suggests hydrogenous/biogenic processes of formation and masked hydrothermal signatures with distance away from the Wocan hydrothermal field. Full article
Show Figures

Graphical abstract

Back to TopTop