Seasonal M2 Internal Tides in the Arabian Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. General Characteristics and Energy Flux
3.1.1. Surface Displacement Due to Internal Tides
3.1.2. Energy Density and Flux
3.2. Seasonality of Internal Tides
3.2.1. Surface Displacement
3.2.2. Energy Flux
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wunsch, C. Internal tides in the ocean. Rev. Geophys. 1975, 13, 167–182. [Google Scholar] [CrossRef]
- Egbert, G.D.; Ray, R.D. Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- St. Laurent, L.; Garrett, C. The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 2002, 32, 2882–2899. [Google Scholar] [CrossRef] [Green Version]
- Carter, G.; Merrifield, M.; Becker, J.; Katsumata, K.; Gregg, M.; Luther, D.; Levine, M.; Boyd, T.J.; Firing, Y. Energetics of M2 Barotropic-to-Baroclinic Tidal Conversion at the Hawaiian Islands. J. Phys. Oceanogr. 2008, 38, 2205–2223. [Google Scholar] [CrossRef]
- Dushaw, B.D.; Howe, B.M.; Cornuelle, B.D.; Worcester, P.F.; Luther, D.S. Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr. 1995, 25, 631–647. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.D.; Mitchum, G.T. Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett. 1996, 23, 2101–2104. [Google Scholar] [CrossRef]
- Munk, W.; Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1977–2010. [Google Scholar] [CrossRef]
- McManus, J.F.; Francois, R.; Gherardi, J.M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Smith, C.M.; Vroom, P.S.; Beach, K.L.; Miller, S. Nutrient and growth dynamics of Halimeda tuna on Conch Reef, Florida Keys: Possible influence of internal tides on nutrient status and physiology. Limnol. Oceanogr. 2004, 49, 1923–1936. [Google Scholar] [CrossRef] [Green Version]
- Rainville, L.; Pinkel, R. Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr. 2006, 36, 1220–1236. [Google Scholar] [CrossRef]
- Zilberman, N.; Merrifield, M.; Carter, G.; Luther, D.; Levine, M.; Boyd, T.J. Incoherent nature of M2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr. 2011, 41, 2021–2036. [Google Scholar] [CrossRef] [Green Version]
- Zaron, E.D.; Egbert, G.D. Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr. 2014, 44, 538–557. [Google Scholar] [CrossRef]
- Chavanne, C.; Flament, P.; Luther, D.; Gurgel, K. The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: Interactions with mesoscale currents. J. Phys. Oceanogr. 2010, 40, 1180–1200. [Google Scholar] [CrossRef]
- Müller, M.; Cherniawsky, J.; Foreman, M.; von Storch, J.S. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Jeon, C.; Park, J.H.; Varlamov, S.M.; Yoon, J.H.; Kim, Y.H.; Seo, S.; Park, Y.G.; Min, H.S.; Lee, J.H.; Kim, C.H. Seasonal variation of semidiurnal internal tides in the East/Japan Sea. J. Geophys. Res. Ocean. 2014, 119, 2843–2859. [Google Scholar] [CrossRef]
- Köhler, J.; Walter, M.; Mertens, C.; Stiehler, J.; Li, Z.; Zhao, Z.; von Storch, J.S.; Rhein, M. Energy flux observations in an internal tide beam in the eastern North Atlantic. J. Geophys. Res. Ocean. 2019, 124, 5747–5764. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z. Using CryoSat-2 altimeter data to evaluate M2 internal tides observed from multisatellite altimetry. J. Geophys. Res. Ocean. 2016, 121, 5164–5180. [Google Scholar] [CrossRef]
- Zhao, Z.; Alford, M.H.; Girton, J.; Johnston, T.S.; Carter, G. Internal tides around the Hawaiian Ridge estimated from multisatellite altimetry. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.D.; Zaron, E.D. Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Alford, M.H.; Simmons, H.L.; Brazhnikov, D.; Pinkel, R. Satellite investigation of the M2 internal tide in the Tasman Sea. J. Phys. Oceanogr. 2018, 48, 687–703. [Google Scholar] [CrossRef]
- Ray, R.D.; Cartwright, D.E. Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett. 2001, 28, 1259–1262. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhou, L.; Zhang, X.; Liang, X.; Zheng, Q.; Zhao, W. Estimates of M2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Zhao, Z.; Alford, M.H. New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr. 2009, 39, 1669–1684. [Google Scholar] [CrossRef]
- Zhao, Z.; Alford, M.H.; Girton, J.B.; Rainville, L.; Simmons, H.L. Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr. 2016, 46, 1657–1684. [Google Scholar] [CrossRef]
- Beal, L.M.; Hormann, V.; Lumpkin, R.; Foltz, G.R. The response of the surface circulation of the Arabian Sea to monsoonal forcing. J. Phys. Oceanogr. 2013, 43, 2008–2022. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Jones, B.H.; Brink, K.H.; Fischer, A.S. The upper-ocean response to monsoonal forcing in the Arabian Sea: Seasonal and spatial variability. Deep Sea Res. Part II Top. Stud. Oceanogr. 2000, 47, 1177–1226. [Google Scholar] [CrossRef]
- Schott, F.A.; McCreary, J.P., Jr. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Zhan, P.; Guo, D.; Hoteit, I. Eddy-Induced Transport and Kinetic Energy Budget in the Arabian Sea. Geophys. Res. Lett. 2020, 47, e2020GL090490. [Google Scholar] [CrossRef]
- Wang, Y.; Raitsos, D.E.; Krokos, G.; Gittings, J.A.; Zhan, P.; Hoteit, I. Physical connectivity simulations reveal dynamic linkages between coral reefs in the southern Red Sea and the Indian Ocean. Sci. Rep. 2019, 9, 16598. [Google Scholar] [CrossRef]
- Murthy, P.; Sharma, G.; James, V.; Suseela, K. Internal wave characteristics in the eastern Arabian Sea during summer monsoon. Proc. Indian Acad. Sci. Earth Planet. Sci. 1992, 101, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Shenoi, S.; Shankar, D.; Michael, G.; Kurian, J.; Varma, K.; Kumar, M.R.; Almeida, A.; Unnikrishnan, A.; Fernandes, W.; Barreto, N.; et al. Hydrography and water masses in the southeastern Arabian Sea during March–June 2003. J. Earth Syst. Sci. 2005, 114, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Zaron, E.D. Baroclinic tidal sea level from exact-repeat mission altimetry. J. Phys. Oceanogr. 2019, 49, 193–210. [Google Scholar] [CrossRef]
- Kumar, P.H.; Lekshmi, S.; Jagadeesh, P.; Anilkumar, K.; Krishnakumar, G.; Rao, A. Internal tides in the coastal waters of NE Arabian Sea: Observations and simulations. Mar. Geod. 2010, 33, 232–244. [Google Scholar] [CrossRef]
- Subeesh, M.; Unnikrishnan, A.; Fernando, V.; Agarwadekar, Y.; Khalap, S.; Satelkar, N.; Shenoi, S. Observed tidal currents on the continental shelf off the west coast of India. Cont. Shelf Res. 2013, 69, 123–140. [Google Scholar] [CrossRef]
- Subeesh, M.; Unnikrishnan, A.; Francis, P. Generation, propagation and dissipation of internal tides on the continental shelf and slope off the west coast of India. Cont. Shelf Res. 2021, 214, 104321. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere-Ocean Dynamics; International Geophysics Series; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Pedlosky, J. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- Chiswell, S.M. Altimeter and current meter observations of internal tides: Do they agree? J. Phys. Oceanogr. 2006, 36, 1860–1872. [Google Scholar] [CrossRef]
- Da Silva, J.C.; Magalhães, J.M.; Gerkema, T.; Maas, L.R. Internal solitary waves in the Red Sea: An unfolding mystery. Oceanography 2012, 25, 96–107. [Google Scholar] [CrossRef]
- Guo, D.; Akylas, T.; Zhan, P.; Kartadikaria, A.; Hoteit, I. On the generation and evolution of internal solitary waves in the southern R ed S ea. J. Geophys. Res. Ocean. 2016, 121, 8566–8584. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Kartadikaria, A.; Zhan, P.; Xie, J.; Li, M.; Hoteit, I. Baroclinic tides simulation in the Red Sea: Comparison to observations and basic characteristics. J. Geophys. Res. Ocean. 2018, 123, 9389–9404. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Zhan, P.; Hoteit, I. Three-Dimensional Simulation of Shoaling Internal Solitary Waves and Their Influence on Particle Transport in the Southern Red Sea. J. Geophys. Res. Ocean. 2021, 126, e2020JC016335. [Google Scholar] [CrossRef]
- Garrett, C.; Kunze, E. Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 2007, 39, 57–87. [Google Scholar] [CrossRef]
- Laurent, L.S.; Stringer, S.; Garrett, C.; Perrault-Joncas, D. The generation of internal tides at abrupt topography. Deep Sea Res. Part I Oceanogr. Res. Pap. 2003, 50, 987–1003. [Google Scholar] [CrossRef]
- Guo, P.; Fang, W.; Liu, C.; Qiu, F. Seasonal characteristics of internal tides on the continental shelf in the northern South China Sea. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Lachkar, Z.; Lévy, M.; Smith, S. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity. Biogeosciences 2018, 15, 159–186. [Google Scholar] [CrossRef] [Green Version]
- Richet, O.; Muller, C.; Chomaz, J.M. Impact of a mean current on the internal tide energy dissipation at the critical latitude. J. Phys. Oceanogr. 2017, 47, 1457–1472. [Google Scholar] [CrossRef]
- Xing, J.; Davies, A.M. A three-dimensional model of internal tides on the Malin-Hebrides shelf and shelf edge. J. Geophys. Res. Ocean. 1998, 103, 27821–27847. [Google Scholar] [CrossRef]
- Lamb, K.G. Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J. Geophys. Res. Ocean. 1994, 99, 843–864. [Google Scholar] [CrossRef]
- Gerkema, T.; van Haren, H. Absence of internal tidal beams due to non-uniform stratification. J. Sea Res. 2012, 74, 2–7. [Google Scholar] [CrossRef]
- Kelly, S.M.; Nash, J.D.; Martini, K.I.; Alford, M.H.; Kunze, E. The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr. 2012, 42, 1217–1232. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Guo, D.; Zhan, P.; Hoteit, I. Seasonal M2 Internal Tides in the Arabian Sea. Remote Sens. 2021, 13, 2823. https://doi.org/10.3390/rs13142823
Ma J, Guo D, Zhan P, Hoteit I. Seasonal M2 Internal Tides in the Arabian Sea. Remote Sensing. 2021; 13(14):2823. https://doi.org/10.3390/rs13142823
Chicago/Turabian StyleMa, Jingyi, Daquan Guo, Peng Zhan, and Ibrahim Hoteit. 2021. "Seasonal M2 Internal Tides in the Arabian Sea" Remote Sensing 13, no. 14: 2823. https://doi.org/10.3390/rs13142823
APA StyleMa, J., Guo, D., Zhan, P., & Hoteit, I. (2021). Seasonal M2 Internal Tides in the Arabian Sea. Remote Sensing, 13(14), 2823. https://doi.org/10.3390/rs13142823