Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = CYP 450

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 436 KB  
Review
Orphan Cytochromes P450 as Possible Pharmacological Targets or Biomarkers in Breast Cancer
by Barbara Licznerska, Hanna Szaefer and Wanda Baer-Dubowska
Curr. Issues Mol. Biol. 2025, 47(9), 682; https://doi.org/10.3390/cimb47090682 - 25 Aug 2025
Viewed by 513
Abstract
Although significant advances in the treatment of breast cancer have been made over the last few decades, searching for more effective prophylaxis and therapy for this type of cancer is still topical. Orphan cytochromes (CYPs) P450 are enzymes whose functions and substrates are [...] Read more.
Although significant advances in the treatment of breast cancer have been made over the last few decades, searching for more effective prophylaxis and therapy for this type of cancer is still topical. Orphan cytochromes (CYPs) P450 are enzymes whose functions and substrates are not fully known. The overexpression of some orphan CYPs in breast cancer tissue warrants attention as a possible breast cancer prophylaxis/treatment target or biomarker. Of particular interest is CYP4Z1, which seems to be specific for breast cancer, including triple-negative breast cancer (TNBC). The currently available data indicate that inhibition of CYP4Z1 breast-specific expression may reduce the growth, progression, angiogenesis, and invasiveness of breast cancer. Although less specific, the other orphan CYPs, such as CYP2W1, CYP2S1, CYP2U1, and CYP4X1, exhibit significantly higher expression in breast tumors compared to normal tissues. The available data indicate that these CYP isoforms catalyze the hydroxylation of fatty acids. Their products, such as epoxyeicosatrienoic acids (EETs) or hydroxyeicosatetraenoic acids (HETEs), are considered critical modulators of cancer progression. Therefore, inhibition of the expression and activity of these orphan CYPs might be more useful in cancer treatment than in prophylaxis. This review summarizes current knowledge of orphan CYPs in breast tissue and their possible application in drug targeting or prognosis assessment. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

12 pages, 697 KB  
Article
Dietary Gluten-Free Regimen Does Not Affect the Suppression of the Inflammatory Response in the Arachidonic Acid Cascade in Hashimoto’s Disease
by Małgorzata Szczuko, Lidia Kwiatkowska, Urszula Szczuko, Leon Rudak, Karina Ryterska, Anhelli Syrenicz, Jakub Pobłocki and Arleta Drozd
Int. J. Mol. Sci. 2025, 26(13), 6507; https://doi.org/10.3390/ijms26136507 - 6 Jul 2025
Viewed by 1479
Abstract
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). [...] Read more.
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). Eicosanoids are formed via the cyclooxygenase (COX), lipoxygenase (LOX), and monooxygenase (CYP450) pathways with arachidonic acid (ARA), resulting in the production of epoxyeicosatrienoic acids (EETs) or hydroxyeicosatetraenoic acids (HETEs). These eicosanoids can act in an autocrine or paracrine manner on target cells. This study aimed to examine whether a gluten-free diet (GFD) can modulate the enzymatic pathways of the pro-inflammatory ARA cascade. The study material consisted of serum samples from Caucasian female patients with HD aged 18–55 years. Participants were enrolled in the study based on the presence of an ultrasound characteristic of HD, and elevated serum levels of anti-thyroid peroxidase antibodies and anti-thyroglobulin antibodies. Patients with confirmed celiac disease did not participate in the study. A total of 78 samples were analyzed, with 39 collected after 3 months of following a GFD. Eicosanoids (thromboxane B2, prostaglandin E2, leukotriene B4, and 16R-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (16-RS HETE)) were extracted using high-performance liquid chromatography. The contribution of leukotriene (LTB) was analyzed in the LOX pathway, prostaglandins (PGE2) and thromboxane (TXB2) were selected for the involvement of the COX pathway, and 16RS HETE was used for the CYP450 pathway. All parameters were analyzed before and after a 3-month dietary intervention that included a gluten-free diet. In the obtained results, only one mediator, leukotriene B4, was significant (p < 0.05). The mean level on the initial visit was 0.202 ± 0.11 (SD), while it was 0.421 ± 0.27 (SD) on the subsequent visit, indicating a significant increase in its level after implementing a GFD. Although there was a trend in the CYP 450 pathway of decreased 16-RS HETE, the presented correlations show that thromboxane B4 and 16RS-HETE were positively correlated with the body mass and body fat mass of the examined patients. There was a trend in the CYP 450 pathway of decreased 16-RS HETE after GFD. Thromboxane B4 and 16RS-HETE levels before GFD were positively correlated with the body mass and body fat mass of the examined patients. A gluten-free diet in HD does not suppress the synthetic pathways of LOX, COX, or cytochrome P450 (CYP450). The level of adipose tissue has a greater impact on the inflammatory processes in HD than a gluten-free diet. This study does not confirm the suppressive effect of a gluten-free diet on the pro-inflammatory arachidonic acid cascade in any of the three analyzed mediator synthesis LOX, COX, CYP450 pathways. Full article
Show Figures

Figure 1

12 pages, 5657 KB  
Article
Myo-Inositol and D-Chiro-Inositol Reduce DHT-Stimulated Changes in the Steroidogenic Activity of Adult Granulosa Cell Tumors
by Anna Maria Wojciechowska, Paulina Zając, Justyna Gogola-Mruk, Magdalena Karolina Kowalik and Anna Ptak
Int. J. Mol. Sci. 2024, 25(20), 10974; https://doi.org/10.3390/ijms252010974 - 12 Oct 2024
Cited by 1 | Viewed by 2886
Abstract
Considering the properties of myo-inositol (MI) and D-chiro-inositol (DCI), which are well known in polycystic ovary syndrome therapy, and the limitations of adult granulosa cell tumor (AGCT) treatment, especially for androgen-secreting tumors, we studied the role of MI and DCI in the androgen-rich [...] Read more.
Considering the properties of myo-inositol (MI) and D-chiro-inositol (DCI), which are well known in polycystic ovary syndrome therapy, and the limitations of adult granulosa cell tumor (AGCT) treatment, especially for androgen-secreting tumors, we studied the role of MI and DCI in the androgen-rich environment of AGCTs. For this purpose, we analyzed the mRNA expression of steroidogenic genes and the secretion of progesterone (P4) and 17β-estradiol (E2) in an unstimulated and/or dihydrotestosterone (DHT)-stimulated environment under MI and DCI influence. Thus, we used the HGrC1 and KGN cell lines as in vitro models of healthy and cancerous granulosa cells. We found that DHT, the most potent androgen, increased E2 secretion and steroidogenic acute regulatory protein (StAR) and cytochrome P450 side-chain cleavage gene (CYP11A1) mRNA expression without affecting 450 aromatase (CYP19A1) in AGCTs. However, after the MI and DCI treatment of KGN cells, both compounds strongly reduced StAR and CYP11A1 expression. Interestingly, in DHT-stimulated KGN cells, only DCI alone and its cotreatment with MI reduced both CYP11A1 mRNA and E2 secretion. These findings suggest that CYP11A1 is responsible for the antiestrogenic effect of DCI in the androgen-rich environment of AGCTs. Therefore, MI and DCI could be used as effective agents in the adjuvant treatment of AGCT, but further detailed studies are needed. Full article
Show Figures

Figure 1

12 pages, 243 KB  
Review
Innovative Approaches to Optimize Clinical Transporter Drug–Drug Interaction Studies
by Sabina Paglialunga, Natacha Benrimoh and Aernout van Haarst
Pharmaceutics 2024, 16(8), 992; https://doi.org/10.3390/pharmaceutics16080992 - 26 Jul 2024
Cited by 4 | Viewed by 2136
Abstract
Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug–drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter [...] Read more.
Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug–drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter DDIs is recommended if an investigational product is intestinally absorbed, undergoes renal or hepatic elimination, or is suspected to either be a transporter substrate or perpetrator. However, many of the transporter substrates and inhibitors administered during a DDI study also affect cytochrome P450 (CYP) activity, which can complicate data interpretation. To overcome these challenges, the assessment of endogenous biomarkers can help elucidate the mechanism of complex DDIs when multiple transporters or CYPs may be involved. This perspective article will highlight how creative study designs are currently being utilized to address complex transporter DDIs and the role of physiology-based -pharmacokinetic (PBPK) models can play. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
14 pages, 1686 KB  
Article
In Vitro Investigations into the Potential Drug Interactions of Pseudoginsenoside DQ Mediated by Cytochrome P450 and Human Drug Transporters
by Zhuo Li, Cuizhu Wang, Jinping Liu, Pingya Li and Hao Feng
Molecules 2024, 29(11), 2482; https://doi.org/10.3390/molecules29112482 - 24 May 2024
Cited by 1 | Viewed by 1691
Abstract
Pseudoginsenoside DQ (PDQ), an ocotillol-type ginsenoside, is synthesized with protopanaxadiol through oxidative cyclization. PDQ exhibits good anti-arrhythmia activity. However, the inhibitory effect of PDQ on the cytochrome 450 (CYP450) enzymes and major drug transporters is still unclear. Inhibition of CYP450 and drug transporters [...] Read more.
Pseudoginsenoside DQ (PDQ), an ocotillol-type ginsenoside, is synthesized with protopanaxadiol through oxidative cyclization. PDQ exhibits good anti-arrhythmia activity. However, the inhibitory effect of PDQ on the cytochrome 450 (CYP450) enzymes and major drug transporters is still unclear. Inhibition of CYP450 and drug transporters may affect the efficacy of the drugs being used together with PDQ. These potential drug–drug interactions (DDIs) are essential for the clinical usage of drugs. In this study, we investigated the inhibitory effect of PDQ on seven CYP450 enzymes and seven drug transporters with in vitro models. PDQ has a significant inhibitory effect on CYP2C19 and P-glycoprotein (P-gp) with a half-inhibitory concentration (IC50) of 0.698 and 0.41 μM, respectively. The inhibition of CYP3A4 and breast cancer-resistant protein (BCRP) is less potent, with IC50 equal to 2.02–6.79 and 1.08 μM, respectively. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 1483 KB  
Article
In Vitro Hepatotoxicity of Routinely Used Opioids and Sedative Drugs
by Katharina Haller, Sandra Doß and Martin Sauer
Curr. Issues Mol. Biol. 2024, 46(4), 3022-3038; https://doi.org/10.3390/cimb46040189 - 30 Mar 2024
Cited by 6 | Viewed by 3229
Abstract
A hepatocyte cell line was used to determine the hepatotoxicity of sedatives and opioids, as the hepatotoxicity of these drugs has not yet been well characterized. This might pose a threat, especially to critically ill patients, as they often receive high cumulative doses [...] Read more.
A hepatocyte cell line was used to determine the hepatotoxicity of sedatives and opioids, as the hepatotoxicity of these drugs has not yet been well characterized. This might pose a threat, especially to critically ill patients, as they often receive high cumulative doses for daily analgosedation and often already have impaired liver function due to an underlying disease or complications during treatment. A well-established biosensor based on HepG2/C3A cells was used for the determination of the hepatotoxicity of commonly used sedatives and opioids in the intensive care setting (midazolam, propofol, s-ketamin, thiopental, fentanyl, remifentanil, and sufentanil). The incubation time was 2 × 3 days with clinically relevant (Cmax) and higher concentrations (C5× and C10×) of each drug in cell culture medium or human plasma. Afterward, we measured the cell count, vitality, lactate dehydrogenase (LDH), mitochondrial dehydrogenase activity, cytochrome P 450 1A2 (CYP1A2), and albumin synthesis. All tested substances reduced the viability of hepatocyte cells, but sufentanil and remifentanil showed more pronounced effects. The cell count was diminished by sufentanil in both the medium and plasma and by remifentanil only in plasma. Sufentanil and remifentanil also led to higher values of LDH in the cell culture supernatant. A reduction of mitochondrial dehydrogenase activity was seen with the use of midazolam and s-ketamine. Microalbumin synthesis was reduced in plasma after its incubation with higher concentrations of sufentanil and remifentanil. Remifentanil and s-ketamine reduced CYP1A2 activity, while propofol and thiopental increased it. Our findings suggest that none of the tested sedatives and opioids have pronounced hepatotoxicity. Sufentanil, remifentanil, and s-ketamine showed moderate hepatotoxic effects in vitro. These drugs should be given with caution to patients vulnerable to hepatotoxic drugs, e.g., patients with pre-existing liver disease or liver impairment as part of their underlying disease (e.g., hypoxic hepatitis or cholestatic liver dysfunction in sepsis). Further studies are indicated for this topic, which may use more complex cell culture models and global pharmacovigilance reports, addressing the limitation of the used cell model: HepG2/C3A cells have a lower metabolic capacity due to their low levels of CYP enzymes compared to primary hepatocytes. However, while the test model is suitable for parental substances, it is not for toxicity testing of metabolites. Full article
Show Figures

Figure 1

25 pages, 5163 KB  
Article
Azadirachtin Attenuates Carcinogen Benzo(a) Pyrene-Induced DNA Damage, Cell Cycle Arrest, Apoptosis, Inflammatory, Metabolic, and Oxidative Stress in HepG2 Cells
by Annie John and Haider Raza
Antioxidants 2023, 12(11), 2001; https://doi.org/10.3390/antiox12112001 - 14 Nov 2023
Cited by 5 | Viewed by 2160
Abstract
Azadirachtin (AZD), a limonoid from the versatile, tropical neem tree (Azadirachta indica), is well known for its many medicinal, and pharmacological effects. Its effects as an anti-oxidant, anti-inflammatory, and anti-cancer agent are well known. However, not many studies have explored the effects of [...] Read more.
Azadirachtin (AZD), a limonoid from the versatile, tropical neem tree (Azadirachta indica), is well known for its many medicinal, and pharmacological effects. Its effects as an anti-oxidant, anti-inflammatory, and anti-cancer agent are well known. However, not many studies have explored the effects of AZD on toxicities induced by benzo(a)pyrene (B(a)P), a toxic component of cigarette smoke known to cause DNA damage and cell cycle arrest, leading to different kinds of cancer. In the present study, using HepG2 cells, we investigated the protective effects of Azadirachtin (AZD) against B(a)P-induced oxidative/nitrosative and metabolic stress and mitochondrial dysfunction. Treatment with 25 µM B(a)P for 24 h demonstrated an increased production of reactive oxygen species (ROS), followed by increased lipid peroxidation and DNA damage presumably, due to the increased metabolic activation of B(a)P by CYP 450 1A1/1A2 enzymes. We also observed intrinsic and extrinsic apoptosis, alterations in glutathione-dependent redox homeostasis, cell cycle arrest, and inflammation after B(a)P treatment. Cells treated with 25 µM AZD for 24 h showed decreased oxidative stress and apoptosis, partial protection from DNA damage, and an improvement in mitochondrial functions and bioenergetics. The improvement in antioxidant status, anti-inflammatory potential, and alterations in cell cycle regulatory markers qualify AZD as a potential therapeutic in combination with anti-cancer drugs. Full article
(This article belongs to the Special Issue Antioxidant and Anti-inflammatory Compounds from Natural Products)
Show Figures

Figure 1

12 pages, 303 KB  
Article
Influence of CYP2B6 Genotype on Methadone Dosage in Patients from the Methadone Maintenance Treatment (MMT) Program in Pereira, Colombia
by Carlos Isaza, Oscar Mauricio Castaño-Ramírez, Juan Pablo Vélez, Julieta Henao, Leonardo Beltrán-Angarita and Juan Carlos Sepúlveda-Arias
Life 2023, 13(4), 1038; https://doi.org/10.3390/life13041038 - 18 Apr 2023
Cited by 4 | Viewed by 2568
Abstract
Methadone treatment reduces the use of heroin and withdrawal symptoms; however, methadone is an expensive medication with a narrow safety margin. We compared the retention rates, persistence of heroin use, and quality of life of a group of patients undergoing conventional Methadone Maintenance [...] Read more.
Methadone treatment reduces the use of heroin and withdrawal symptoms; however, methadone is an expensive medication with a narrow safety margin. We compared the retention rates, persistence of heroin use, and quality of life of a group of patients undergoing conventional Methadone Maintenance Treatment (MMT) with a group for whom the CYP2B6 516G>T polymorphism was used in addition to the MMT to calculate the required methadone dose. Over 12 weeks, the retention rate, heroin usage, and quality of life of patients under conventional treatment (n = 34) were compared with those of patients for whom we used genetic markers to calculate methadone dosage (n = 38). At the end of the study, 26.4% of patients abandoned the program, and neither demographic nor clinical variables were associated with treatment adherence. Of the remaining patients, 16% of the control group and 8% of patients in the pharmacogenetic group reported heroin use, while both groups showed a 64% reduction in the use of cocaine/crack (no significant differences between the groups were found). Starting in the second week, the methadone dosage was lower among the patients for whom methadone was prescribed based on genotype. Although there were six individuals in the control group and three in the pharmacogenetic group with QTc intervals > 450 ms (a threshold that is considered dangerous), we did not find a relationship between the QTc interval and methadone dosage. There were no differences in the perception of quality of life between the two groups. The results of this pilot study suggest that concerning methadone therapy, the CYP2B6 genotype contributes to reduced effective doses and treatment costs. Full article
(This article belongs to the Section Medical Research)
10 pages, 908 KB  
Article
Enhancing the Toxicity of Cypermethrin and Spinosad against Spodoptera littoralis (Lepidoptera: Noctuidae) by Inhibition of Detoxification Enzymes
by Marwa H. El-Sayed, Mohamed M. A. Ibrahim, Ahmed E. A. Elsobki and Ahmed A. A. Aioub
Toxics 2023, 11(3), 215; https://doi.org/10.3390/toxics11030215 - 24 Feb 2023
Cited by 25 | Viewed by 3208
Abstract
The extensive use of wide-ranging insecticides in agricultural activities may develop resistance in insects. The dipping technique was utilized for examining changes in detoxifying enzyme levels in Spodoptera littoralis L. induced by cypermethrin (CYP) and spinosad (SPD) with and without a combination of [...] Read more.
The extensive use of wide-ranging insecticides in agricultural activities may develop resistance in insects. The dipping technique was utilized for examining changes in detoxifying enzyme levels in Spodoptera littoralis L. induced by cypermethrin (CYP) and spinosad (SPD) with and without a combination of three enzyme inhibitors: triphenyl phosphate (TPP), diethyl maleate (DEM), and piperonyl butoxide (PBO), at 70 μg/mL. PBO, DEM, and TPP showed 50% mortality against larvae at 236.2, 324.5, and 245.8 μg/mL, respectively. The LC50 value of CYP on S. littoralis larvae reduced from 2.86 μg/mL to 1.58, 2.26, and 1.96 μg/mL, while the LC50 value of SPD declined from 3.27 μg/mL to 2.34, 2.56, and 2.53, with the addition of PBO, DEM, and TPP, respectively, 24 h after treatment. Moreover, the activity of carboxylesterase (CarE), glutathione S-transferase (GST), and cytochrome P450 monooxygenase (Cyp 450) was significantly inhibited (p < 0.05) by TPP, DEM, PBO plus CYP, and SPD in S. littoralis larvae in comparison with tested insecticides alone. These findings suggested that three enzyme inhibitors play a major role in increasing the toxicity of CYP and SPD in S. littoralis and will provide insight into how to overcome insecticide resistance in insects. Full article
(This article belongs to the Special Issue Detoxification Mechanisms in Insects)
Show Figures

Figure 1

12 pages, 1599 KB  
Article
Arsenic: A Perspective on Its Effect on Pioglitazone Bioavailability
by María Cruz del Rocío Terrones-Gurrola, Patricia Ponce-Peña, José Manuel Salas-Pacheco, Abelardo Camacho-Luis, Amaury de Jesús Pozos-Guillén, Guillermo Nieto-Delgado, Olga Dania López-Guzmán and Angel Antonio Vértiz-Hernández
Int. J. Environ. Res. Public Health 2023, 20(3), 1901; https://doi.org/10.3390/ijerph20031901 - 20 Jan 2023
Cited by 4 | Viewed by 2353
Abstract
Arsenic (As) is a common contaminant in drinking water in northeastern Mexico, which reduces the expression of cytochrome P450 (CYP 450). This enzyme group metabolizes numerous drugs, such as oral antidiabetic drugs such as pioglitazone (61% CYP 3A4, 49% CYP 2C8). When CYP [...] Read more.
Arsenic (As) is a common contaminant in drinking water in northeastern Mexico, which reduces the expression of cytochrome P450 (CYP 450). This enzyme group metabolizes numerous drugs, such as oral antidiabetic drugs such as pioglitazone (61% CYP 3A4, 49% CYP 2C8). When CYP 450’s function is inadequate, it has decreased therapeutic activity in type 2 diabetes mellitus (T2DM). This study aimed to establish the effect of As on pioglitazone metabolism in patients with T2DM. Methodology: Urine, water, and plasma samples from a healthy population (n = 11) and a population with T2DM (n = 20) were obtained. Samples were analyzed by fluorescence spectroscopy/hydride generation (As) and HPLC (pioglitazone). Additionally, CYP 3A4 and CYP 2C8 were studied by density functional theory (DFT). Results: The healthy and T2DM groups were exposed via drinking water to >0.010 ppm, Ka values with a factor of 4.7 higher, Cl 1.42 lower, and ABCt 1.26 times higher concerning the healthy group. In silico analysis (DFT) of CYP 3A4 and CYP 2C8 isoforms showed the substitution of the iron atom by As in the active sites of the enzymes. Conclusions: The results indicate that the substitution of Fe for As modifies the enzymatic function of CYP 3A4 and CYP 2C8 isoforms, altering the metabolic process of CYP 2D6 and CYP 3A4 in patients with T2DM. Consequently, the variation in metabolism alters the bioavailability of pioglitazone and the expected final effect. Full article
(This article belongs to the Special Issue Living in a Chemical World: Environmental Exposures and Health)
Show Figures

Figure 1

22 pages, 2265 KB  
Review
SNPs in 3′UTR miRNA Target Sequences Associated with Individual Drug Susceptibility
by Elena Rykova, Nikita Ershov, Igor Damarov and Tatiana Merkulova
Int. J. Mol. Sci. 2022, 23(22), 13725; https://doi.org/10.3390/ijms232213725 - 8 Nov 2022
Cited by 33 | Viewed by 6000
Abstract
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3′untranslated regions (3′UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3′UTRs of genes often contain single nucleotide polymorphisms [...] Read more.
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3′untranslated regions (3′UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3′UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3′UTRs. Numerous data show the role of SNPs in 3′UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 1373 KB  
Article
LiMAx Prior to Radioembolization for Hepatocellular Carcinoma as an Additional Tool for Patient Selection in Patients with Liver Cirrhosis
by Catherine Leyh, Niklas Heucke, Clemens Schotten, Matthias Büchter, Lars P. Bechmann, Marc Wichert, Alexander Dechêne, Ken Herrmann, Dominik Heider, Svenja Sydor, Peter Lemmer, Johannes M. Ludwig, Josef Pospiech, Jens Theysohn, Robert Damm, Christine March, Maciej Powerski, Maciej Pech, Mustafa Özcürümez, Jochen Weigt, Verena Keitel, Christian M. Lange, Hartmut Schmidt, Ali Canbay, Jan Best, Guido Gerken and Paul P. Mankaadd Show full author list remove Hide full author list
Cancers 2022, 14(19), 4584; https://doi.org/10.3390/cancers14194584 - 21 Sep 2022
Cited by 1 | Viewed by 2452
Abstract
Background and Aims: Radioembolization (RE) has recently demonstrated a non-inferior survival outcome compared to systemic therapy for advanced hepatocellular carcinoma (HCC). Therefore, current guidelines recommend RE for patients with advanced HCC and preserved liver function who are unsuitable for transarterial chemoembolization (TACE) or [...] Read more.
Background and Aims: Radioembolization (RE) has recently demonstrated a non-inferior survival outcome compared to systemic therapy for advanced hepatocellular carcinoma (HCC). Therefore, current guidelines recommend RE for patients with advanced HCC and preserved liver function who are unsuitable for transarterial chemoembolization (TACE) or systemic therapy. However, despite the excellent safety profile of RE, post-therapeutic hepatic decompensation remains a serious complication that is difficult to predicted by standard laboratory liver function parameters or imaging modalities. LiMAx® is a non-invasive test for liver function assessment, measuring the maximum metabolic capacity for 13C-Methacetin by the liver-specific enzyme CYP 450 1A2. Our study investigates the potential of LiMAx® for predicting post-interventional decompensation of liver function. Patients and methods: In total, 50 patients with HCC with or without liver cirrhosis and not amenable to TACE or systemic treatments were included in the study. For patients prospectively enrolled in our study, LiMAx® was carried out one day before RE (baseline) and 28 and 90 days after RE. Established liver function parameters were assessed at baseline, day 28, and day 90 after RE. The relationship between baseline LiMAx® and pre-and post-interventional liver function parameters, as well as the ability of LiMAx® to predict hepatic decompensation, were analyzed. Results: We observed a strong association between baseline LiMAx® and bilirubin, albumin, ALBI grade, and MELD score. Patients presenting with Child–Pugh score B 28 days after RE or with a deterioration in Child–Pugh score by at least one point had a significantly lower baseline LiMAx® compared to those with Child–Pugh score A or with stable Child–Pugh score. The ability of LiMAx® to predict hepatic decompensation after RE was determined using ROC curve analysis and was compared to MELD score and ALBI grade. LiMAx® achieved a substantial AUC of 0.8117, comparable to MELD score and ALBI grade. Conclusion: Patients with lower LiMAx® values at baseline have a significantly increased risk for hepatic decompensation after RE, despite being categorized as Child–Pugh A. Therefore, LiMAx® can be used as an additional tool to identify patients at high risk of post-interventional hepatic failure. Full article
(This article belongs to the Special Issue New Insights of Management of Hepatocellular Carcinoma)
Show Figures

Figure 1

13 pages, 603 KB  
Review
Computer-Aided (In Silico) Modeling of Cytochrome P450-Mediated Food–Drug Interactions (FDI)
by Yelena Guttman and Zohar Kerem
Int. J. Mol. Sci. 2022, 23(15), 8498; https://doi.org/10.3390/ijms23158498 - 31 Jul 2022
Cited by 17 | Viewed by 3963
Abstract
Modifications of the activity of Cytochrome 450 (CYP) enzymes by compounds in food might impair medical treatments. These CYP-mediated food–drug interactions (FDI) play a major role in drug clearance in the intestine and liver. Inter-individual variation in both CYP expression and structure is [...] Read more.
Modifications of the activity of Cytochrome 450 (CYP) enzymes by compounds in food might impair medical treatments. These CYP-mediated food–drug interactions (FDI) play a major role in drug clearance in the intestine and liver. Inter-individual variation in both CYP expression and structure is an important determinant of FDI. Traditional targeted approaches have highlighted a limited number of dietary inhibitors and single-nucleotide variations (SNVs), each determining personal CYP activity and inhibition. These approaches are costly in time, money and labor. Here, we review computational tools and databases that are already available and are relevant to predicting CYP-mediated FDIs. Computer-aided approaches such as protein–ligand interaction modeling and the virtual screening of big data narrow down hundreds of thousands of items in databanks to a few putative targets, to which the research resources could be further directed. Structure-based methods are used to explore the structural nature of the interaction between compounds and CYP enzymes. However, while collections of chemical, biochemical and genetic data are available today and call for the implementation of big-data approaches, ligand-based machine-learning approaches for virtual screening are still scarcely used for FDI studies. This review of CYP-mediated FDIs promises to attract scientists and the general public. Full article
(This article belongs to the Special Issue Cytochrome P450 (CYP))
Show Figures

Figure 1

29 pages, 3940 KB  
Article
The Role of Myrrh Metabolites in Cancer, Inflammation, and Wound Healing: Prospects for a Multi-Targeted Drug Therapy
by Rasha Saad Suliman, Sahar Saleh Alghamdi, Rizwan Ali, Dimah Aljatli, Norah Abdulaziz Aljammaz, Sarah Huwaizi, Rania Suliman, Khawla Mohammed Kahtani, Ghadeer M. Albadrani, Tlili Barhoumi, Abdulelah Altolayyan and Ishrat Rahman
Pharmaceuticals 2022, 15(8), 944; https://doi.org/10.3390/ph15080944 - 29 Jul 2022
Cited by 34 | Viewed by 10291
Abstract
Background: Myrrh extract is a well-known medicinal plant with significant therapeutic benefits attributed to the activity of its diverse metabolites. It has promising activity against cancer and inflammatory diseases, and could serve as a potential therapeutic alternative since most therapeutic agents have severe [...] Read more.
Background: Myrrh extract is a well-known medicinal plant with significant therapeutic benefits attributed to the activity of its diverse metabolites. It has promising activity against cancer and inflammatory diseases, and could serve as a potential therapeutic alternative since most therapeutic agents have severe side effects that impair quality of life. Method: The current study identified the active metabolites from the myrrh resin methanolic extract. Then, the extracts were tested for in vitro anti-inflammatory and anti-cancer activity using cancer cell lines and Tamm-Horsfall Protein 1 (Thp-1)-like macrophage cell lines. Furthermore, using an in vivo rat model, the extracts’ anti-inflammatory and wound-healing activity was investigated. In addition, in silico predictions of the myrrh constituents highlighted the pharmacokinetic properties, molecular targets, and safety profile, including cytochrome P 450 (CYP) inhibition and organ toxicity. Results: Nine secondary metabolites were identified, and computational predictions suggested a good absorption profile, anticancer, anti-inflammatory, and wound-healing effects. The myrrh extract had moderate cytotoxic activity against both HL60 and K562 leukemia cell lines and the KAIMRC1 breast cancer cell line. Myrrh caused a dose-dependent effect on macrophages to increase the reactive oxygen species (ROS) levels, promote their polarization to classically activated macrophages (M1) and alternatively activated macrophages (M2) phenotypes, and consequently induce apoptosis, highlighting its ability to modulate macrophage function, which could potentially aid in several desired therapeutic processes, including the resolution of inflammation, and autophagy which is an important aspect to consider in cancer treatment. The topical application of myrrh improved wound healing, with no delayed inflammatory response, and promoted complete re-epithelization of the skin, similar to the positive control. In conclusion, we provide evidence for the methanolic extract of myrrh having cytotoxic activity against cancer cells and anti-inflammatory wound-healing properties, which may be attributed to its role in modulating macrophage function. Furthermore, we suggest the active constituents responsible for these properties, which warrants further studies focusing on the precise roles of the active metabolites. Full article
Show Figures

Graphical abstract

11 pages, 1073 KB  
Article
Epigenome-Wide Analysis of DNA Methylation in Parkinson’s Disease Cortex
by Oliver Kaut, Ina Schmitt, Fabian Stahl, Holger Fröhlich, Per Hoffmann, Frank J. Gonzalez and Ullrich Wüllner
Life 2022, 12(4), 502; https://doi.org/10.3390/life12040502 - 29 Mar 2022
Cited by 27 | Viewed by 4544
Abstract
Background: Epigenetic factors including DNA methylation contribute to specific patterns of gene expression. Gene–environment interactions can change the methylation status in the brain, and accumulation of these epigenetic changes over a lifespan may be co-responsible for a neurodegenerative disease like Parkinson’s disease, which [...] Read more.
Background: Epigenetic factors including DNA methylation contribute to specific patterns of gene expression. Gene–environment interactions can change the methylation status in the brain, and accumulation of these epigenetic changes over a lifespan may be co-responsible for a neurodegenerative disease like Parkinson’s disease, which that is characterised by a late onset in life. Aims: To determine epigenetic modifications in the brains of Parkinson’s disease patients. Patients and Methods: DNA methylation patterns were compared in the cortex tissue of 14 male PD patients and 10 male healthy individuals using the Illumina Methylation 450 K chip. Subsequently, DNA methylation of candidate genes was evaluated using bisulphite pyrosequencing, and DNA methylation of cytochrome P450 2E1 (CYP2E1) was characterized in DNA from blood mononuclear cells (259 PD patients and 182 healthy controls) and skin fibroblasts (10 PD patients and 5 healthy controls). Protein levels of CYP2E1 were analysed using Western blot in human cortex and knock-out mice brain samples. Results: We found 35 hypomethylated and 22 hypermethylated genes with a methylation M-value difference >0.5. Decreased methylation of cytochrome P450 2E1 (CYP2E1) was associated with increased protein levels in PD brains, but in peripheral tissues, i.e., in blood cells and skin fibroblasts, DNA methylation of CYP2E1 was unchanged. In CYP2E1 knock-out mice brain alpha-synuclein (SNCA) protein levels were down-regulated compared to wild-type mice, whereas treatment with trichloroethylene (TCE) up-regulated CYP2E1 protein in a dose-dependent manner in cultured cells. We further identified an interconnected group of genes associated with oxidative stress, such as Methionine sulfoxide reductase A (MSRA) and tumour protein 73 (TP73) in the brain, which again were not paralleled in other tissues and appeared to indicate brain-specific changes. Conclusions: Our study revealed surprisingly few dysmethylated genes in a brain region less affected in PD. We confirmed hypomethylation of CYP2E1. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

Back to TopTop