Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = CSSL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1912 KB  
Article
Privacy-Aware Continual Self-Supervised Learning on Multi-Window Chest Computed Tomography for Domain-Shift Robustness
by Ren Tasai, Guang Li, Ren Togo, Takahiro Ogawa, Kenji Hirata, Minghui Tang, Takaaki Yoshimura, Hiroyuki Sugimori, Noriko Nishioka, Yukie Shimizu, Kohsuke Kudo and Miki Haseyama
Bioengineering 2026, 13(1), 32; https://doi.org/10.3390/bioengineering13010032 - 27 Dec 2025
Viewed by 459
Abstract
We propose a novel continual self-supervised learning (CSSL) framework for simultaneously learning diverse features from multi-window-obtained chest computed tomography (CT) images and ensuring data privacy. Achieving a robust and highly generalizable model in medical image diagnosis is challenging, mainly because of issues, such [...] Read more.
We propose a novel continual self-supervised learning (CSSL) framework for simultaneously learning diverse features from multi-window-obtained chest computed tomography (CT) images and ensuring data privacy. Achieving a robust and highly generalizable model in medical image diagnosis is challenging, mainly because of issues, such as the scarcity of large-scale, accurately annotated datasets and domain shifts inherent to dynamic healthcare environments. Specifically, in chest CT, these domain shifts often arise from differences in window settings, which are optimized for distinct clinical purposes. Previous CSSL frameworks often mitigated domain shift by reusing past data, a typically impractical approach owing to privacy constraints. Our approach addresses these challenges by effectively capturing the relationship between previously learned knowledge and new information across different training stages through continual pretraining on unlabeled images. Specifically, by incorporating a latent replay-based mechanism into CSSL, our method mitigates catastrophic forgetting due to domain shifts during continual pretraining while ensuring data privacy. Additionally, we introduce a feature distillation technique that integrates Wasserstein distance-based knowledge distillation and batch-knowledge ensemble, enhancing the ability of the model to learn meaningful, domain-shift-robust representations. Finally, we validate our approach using chest CT images obtained across two different window settings, demonstrating superior performance compared with other approaches. Full article
(This article belongs to the Special Issue Modern Medical Imaging in Disease Diagnosis Applications)
Show Figures

Figure 1

19 pages, 7700 KB  
Article
Identification of the Regulatory Network Governing Cold Tolerance During Soybean Germination Through the Transcriptomic Characterization of a Chromosome Segment Substitution Line
by Chang Dong, Qiuyu Wang, Chun Tang, Luanxiao Cui, Chenyijun Guo, Xue Han, Candong Li, Wenjing Pan, Quanzhong Dong, Shuli Zhang, Qingshan Chen, Chang Xu and Zhaoming Qi
Agronomy 2026, 16(1), 45; https://doi.org/10.3390/agronomy16010045 - 23 Dec 2025
Viewed by 378
Abstract
Seed vitality is a key factor for successful germination of seeds and successful root establishment of crops. However, a cold environment can severely hinder the germination of soybean seeds, resulting in a significant decrease in yield. In this study, the cold tolerance of [...] Read more.
Seed vitality is a key factor for successful germination of seeds and successful root establishment of crops. However, a cold environment can severely hinder the germination of soybean seeds, resulting in a significant decrease in yield. In this study, the cold tolerance of 205 chromosome segment substitution lines (CSSL) during the germination process was evaluated. CSSL_R22 exhibited higher seed vitality under low-temperature conditions. Five quantitative trait loci (QTL) related to cold tolerance during the germination stage were detected. By combining the QTL analysis results with transcriptome data, we determined that GmKAN1 (Glyma.20G108600) is an important regulatory factor for cold tolerance during seed germination. Preliminary studies have shown that GmKAN1, as a transcriptional repressor of GmARF2 and GmARF8, can regulate auxin synthesis to enhance the tolerance of seeds to cold stress. These results provide valuable insights into the regulatory network related to cold tolerance during soybean seed germination. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 4383 KB  
Article
Fine Mapping of qSPJ_1 and Candidate Gene Identification for Soybean Seed Protein Content
by Jiayuan Chen, Jianguo Xie, Guang Li, Mingzhe Shen, Yuhong Zheng, Fanfan Meng, Xuhong Fan, Xingmiao Sun, Yunfeng Zhang, Mingliang Wang, Zhenyu Yang, Xin Xiong, Qiao Wang, Shuming Wang and Hongwei Jiang
Plants 2025, 14(22), 3525; https://doi.org/10.3390/plants14223525 - 19 Nov 2025
Viewed by 648
Abstract
Soybean (Glycine max L. Merr.) is rich in proteins, fats, and other nutrients, and the genetic improvement of soybean protein content has long been a key research focus in breeding programs. Based on the chromosome segment substitution line (CSSL) population, this study [...] Read more.
Soybean (Glycine max L. Merr.) is rich in proteins, fats, and other nutrients, and the genetic improvement of soybean protein content has long been a key research focus in breeding programs. Based on the chromosome segment substitution line (CSSL) population, this study screened target lines within this population using genotypic and phenotypic information to establish an initial mapping population for soybean seed protein content. Through single-marker analysis, a quantitative trait locus (QTL) interval was mapped to the region between 26,705,080 bp and 33,180,908 bp on chromosome 16, designated as qSPJ_1. A secondary segregating population was constructed based on the initial mapping results for fine mapping, which narrowed the interval to 0.076 Mb. A total of 9 candidate genes were identified within this interval. By comparing amino acid and promoter sequences between the two parents, performing quantitative real-time PCR (qRT-PCR) analysis, and conducting haplotype analysis, Glyma.16G165100 was preliminarily predicted as a candidate gene affecting soybean seed protein content. The single nucleotide polymorphism (SNP) variation sites in its promoter region were significantly associated with the variation in protein content in the resource population. This study provides important theoretical guidance for dissecting the genetic mechanism of soybean seed protein content and advancing its breeding improvement. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 2566 KB  
Article
Zinc Finger Protein 30 Is a Novel Candidate Gene for Kernel Row Number in Maize
by Yanwei Xiu, Zhaofeng Li, Bin Hou, Yue Zhu, Jiakuan Yan, Feng Teng, Samat Xamxinur, Zhaohong Liu, Naeem Huzaifa, Tudi Anmureguli, Haitao Jia and Zhenyuan Pan
Plants 2025, 14(21), 3361; https://doi.org/10.3390/plants14213361 - 3 Nov 2025
Viewed by 635
Abstract
Kernel row number (KRN) is a pivotal determinant for yield in maize breeding programs. However, the genetic basis underlying KRN remains largely elusive. To identify candidate genes regulating KRN, a population of 318 BC4F4 chromosomal segment substitution lines (CSSLs) was [...] Read more.
Kernel row number (KRN) is a pivotal determinant for yield in maize breeding programs. However, the genetic basis underlying KRN remains largely elusive. To identify candidate genes regulating KRN, a population of 318 BC4F4 chromosomal segment substitution lines (CSSLs) was developed via backcrossing, with Baimaya (BMY) as the donor parent and B73 as the recurrent parent. Furthermore, a high-density genetic linkage map containing 2859 high-quality single-nucleotide polymorphism (SNP) markers was constructed for quantitative trait locus (QTL) mapping of KRN. Notably, 19 QTLs controlling KRN were detected across three environments and in the Best Linear Unbiased Prediction (BLUP) values; among these, a major-effect QTL (qKRN4.09-1) was consistently identified across all three environments and BLUP. Then, the integration of linkage mapping and transcriptome analysis of 5 mm immature ears from near-isogenic lines (NILs) uncovered a candidate gene, Zm00001eb205550. This gene exhibited significant downregulation in qKRN4.09-1BMY, and two missense variants were detected between qKRN4.09-1BMY and qKRN4.09-1B73. Zm00001eb205550 exhibited preferential expression in developing ears. Moreover, the pyramiding of favorable alleles from the five stable QTLs significantly increased KRN in maize. These findings advance our genetic understanding of maize ear development and provide valuable genetic targets for improving KRN in maize breeding. Full article
(This article belongs to the Special Issue Crop Germplasm Resources, Genomics, and Molecular Breeding)
Show Figures

Figure 1

16 pages, 5250 KB  
Article
Identification of Key Waterlogging-Tolerance Genes in Cultivated and Wild Soybeans via Integrated QTL–Transcriptome Analysis
by Yiran Sun, Lin Chen, Yuxin Jin, Shukun Wang, Shengnan Ma, Lin Yu, Chunshuang Tang, Yuying Ye, Mingxuan Li, Wenhui Zhou, Enshuang Chen, Xinru Kong, Jinbo Fu, Jinhui Wang, Qingshan Chen and Mingliang Yang
Agronomy 2025, 15(8), 1916; https://doi.org/10.3390/agronomy15081916 - 8 Aug 2025
Viewed by 1157
Abstract
Soybean (Glycine max), as an important crop for both oil and grains, is a major source of high-quality plant proteins for humans. Among various natural disasters affecting soybean production, waterlogging is one of the key factors leading to yield reduction. It [...] Read more.
Soybean (Glycine max), as an important crop for both oil and grains, is a major source of high-quality plant proteins for humans. Among various natural disasters affecting soybean production, waterlogging is one of the key factors leading to yield reduction. It can cause root rot and seedling death, and in severe cases, even total crop failure. Given the significant differences in responses to waterlogging stress among different soybean varieties, traditional single-trait indicators are insufficient to comprehensively evaluate flood tolerance. In this study, relative seedling length (RSL) was used as a comprehensive evaluation index for flood tolerance. Using a chromosome segment substitution line (CSSL) population derived from SN14 and ZYD00006, we successfully identified seven quantitative trait loci (QTLs) associated with seed waterlogging tolerance. By integrating RNA-Seq transcriptome sequencing and phenotypic data, the functions of candidate genes were systematically verified. Phenotypic analysis indicated that Suinong14 had significantly better flood tolerance than ZYD00006. Further research revealed that the Glyma.05G160800 gene showed a significantly up-regulated expression pattern in Suinong14; qPCR analysis revealed that this gene exhibits higher expression levels in submergence-tolerant varieties. Haplotype analysis demonstrated a significant correlation between different haplotypes and phenotypic traits. The QTLs identified in this study can provide a theoretical basis for future molecular-assisted breeding of flood-tolerant varieties. Additionally, the functional study of Glyma.05G161800 in regulating seed flood tolerance can offer new insights into the molecular mechanism of seed flood tolerance. These findings could accelerate the development of submergence-tolerant rice varieties, enhancing crop productivity and stability in flood-prone regions. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

22 pages, 4603 KB  
Article
Root Transcriptome Analysis Identifies Salt-Tolerance Genes in Sweet Corn Chromosome Segment Substitution Lines (CSSLs)
by Zili Zhang, Xuxuan Duan, Pengfei Liu, Qingchun Chen, Wei Sun, Xiaorong Wan, Yixiong Zheng, Jianting Lin, Feng Jiang and Faqiang Feng
Plants 2025, 14(11), 1687; https://doi.org/10.3390/plants14111687 - 31 May 2025
Viewed by 1295
Abstract
Salt stress severely constrains global crop productivity. However, most sweet corn cultivars exhibit weak tolerance to salt stress. In this study, two sweet corn CSSLs, salt-tolerant line D55 and salt-sensitive line D96, were selected as materials. We conducted comparative phenotyping and physiological profiling [...] Read more.
Salt stress severely constrains global crop productivity. However, most sweet corn cultivars exhibit weak tolerance to salt stress. In this study, two sweet corn CSSLs, salt-tolerant line D55 and salt-sensitive line D96, were selected as materials. We conducted comparative phenotyping and physiological profiling of seedlings under salinity treatment, and transcriptome analysis was carried out by sampling root tissues at 0 h, 4 h, 12 h, and 72 h post-treatment. The results indicated that D55 exhibited enhanced seedling height, root length, fresh weight, relative chlorophyll content, and antioxidant enzyme activities, while showing reduced malondialdehyde accumulation in comparison to D96. Pairwise comparisons across time points (0 h, 4 h, 12 h, 72 h) identified 6317 and 6828 differentially expressed genes (DEGs) in D55 and D96. A total of 49 shared DEGs across four time points were identified in D55 and D96, which were enriched in 12 significant Gene Ontology (GO) terms. Only eight DEGs were shared between genotypes across all comparisons. Transcriptomic analysis revealed 1281, 1946, and 1717 DEGs in genotypes D55 and D96 at 4 h, 12 h, and 72 h post-salt treatment, respectively. Genes associated with reactive oxygen species (ROS) homeostasis, phenylpropanoid metabolism, cutin, suberin and wax biosynthesis, and benzoxazinoid synthesis exhibit enhanced sensitivity in the salt-tolerant genotype D55. This leads to an enhanced ROS scavenging capacity and the establishment of a multi-layered defense mechanism. Additionally, brassinosteroid (BR), gibberellin (GA), and abscisic acid (ABA) and auxin-related genes exhibited different responses to salt stress in sweet corn. A hypothetical model, which established a multi-layered salt adaptation strategy, by integrating ROS detoxification, osmotic balance, and phytohormone signaling, was put forward. By integrating transcriptome and differential chromosomal fragment data, our findings identify 14 candidate genes for salt tolerance, providing potential ideal target genes in breeding to improve salt tolerance in sweet corn. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

43 pages, 2191 KB  
Article
Carbon Dioxide Storage Site Location and Transport Assignment Optimization for Sustainable Maritime Transport
by Yanmeng Tao, Ying Yang, Yuquan Du and Shuaian Wang
J. Mar. Sci. Eng. 2025, 13(6), 1055; https://doi.org/10.3390/jmse13061055 - 27 May 2025
Cited by 1 | Viewed by 1132
Abstract
Maritime carbon dioxide (CO2) transport plays a pivotal role in facilitating carbon capture and storage (CCS) systems by connecting emission sources with appropriate storage sites. This process often incurs significant transportation costs, which must be carefully balanced against penalties for untransported [...] Read more.
Maritime carbon dioxide (CO2) transport plays a pivotal role in facilitating carbon capture and storage (CCS) systems by connecting emission sources with appropriate storage sites. This process often incurs significant transportation costs, which must be carefully balanced against penalties for untransported CO2 resulting from cost-driven decisions. This study addresses the CO2 storage site location and transport assignment (CSSL-TA) problem, aiming to minimize total tactical costs, including storage site construction, ship chartering, transportation, and penalties for direct CO2 emissions. We formulate the problem as a mixed-integer programming (MIP) model and demonstrate that the objective function exhibits submodularity, reflecting diminishing returns in facility investment and ship operations. A case study demonstrates the model’s effectiveness and practical value, revealing that optimal storage siting, strategic ship chartering, route allocation, and efficient transportation significantly reduce both transportation costs and emissions. To enhance practical applicability, a two-stage planning framework is proposed, where the first stage selects storage sites, and the second employs a genetic algorithm (GA) for transport assignment. The GA-based solution achieves a total cost only 2.4% higher than the exact MIP model while reducing computational time by 57.9%. This study provides a practical framework for maritime CO2 transport planning, contributing to cost-effective and sustainable CCS deployment. Full article
(This article belongs to the Special Issue Sustainable Maritime Transport and Port Intelligence)
Show Figures

Figure 1

17 pages, 5777 KB  
Article
Identification and Expression Analysis of CCCH Zinc Finger Family Genes in Oryza sativa
by Zhihan Wang, Shunyuan Li, Hongkai Wu, Linzhou Huang, Liangbo Fu, Chengfang Zhan, Xueli Lu, Long Yang, Liping Dai and Dali Zeng
Genes 2025, 16(4), 429; https://doi.org/10.3390/genes16040429 - 3 Apr 2025
Cited by 4 | Viewed by 1588
Abstract
Background: CCCH zinc finger proteins (OsC3Hs) are a class of transcriptional regulators that play important roles in plant development and stress responses. Although their functional significance has been widely studied in model species, comprehensive genome-wide characterization of CCCH proteins in rice (Oryza [...] Read more.
Background: CCCH zinc finger proteins (OsC3Hs) are a class of transcriptional regulators that play important roles in plant development and stress responses. Although their functional significance has been widely studied in model species, comprehensive genome-wide characterization of CCCH proteins in rice (Oryza sativa) remains limited. Methods: Using Arabidopsis CCCH proteins as references, we identified the CCCH gene family in rice and analyzed the physicochemical properties, subcellular localization, conserved structures, phylogeny, cis-regulatory elements, synteny analysis, spatiotemporal expression patterns, and expression patterns under drought, ABA, and MeJA treatments for the identified CCCH family members. Results: The results showed that the rice CCCH family comprises 73 members, which are unevenly distributed across the 12 chromosomes. Phylogenetic analysis classified them into 11 subfamilies. Subcellular localization indicated that most members are localized in the nucleus. The upstream regions of CCCH promoters contain a large number of cis-regulatory elements related to plant hormones and biotic stress responses. Most genes respond to drought, abscisic acid (ABA), and methyl jasmonate (MeJA) treatments. OsC3H36 was highly expressed under drought, ABA, and MeJA treatments. Haplotype analysis of this gene revealed two major allelic variants (H1 and H2), with H1 predominantly found in japonica rice and associated with increased grain width and 1000-grain weight. Functional validation using a chromosome segment substitution line (CSSL1) confirmed these findings. Conclusions: CCCH genes play important roles in rice growth, development, and stress responses. Additionally, we validated that OsC3H36 is associated with rice grain width and 1000-grain weight. Full article
(This article belongs to the Special Issue Genetics and Breeding of Rice)
Show Figures

Figure 1

14 pages, 3749 KB  
Article
Genetic Analysis of the Awn Length Gene in the Rice Chromosome Segment Substitution Line CSSL29
by Zhengjie Wang, Jun Yang, Tao Huang, Zhihao Chen, Mvuyeni Nyasulu, Qi Zhong, Haohua He and Jianmin Bian
Int. J. Mol. Sci. 2025, 26(4), 1436; https://doi.org/10.3390/ijms26041436 - 8 Feb 2025
Cited by 1 | Viewed by 1511
Abstract
Awn length is a significant agronomic trait in rice. To analyze the genetic mechanism of awn length in the chromosome segment substitution line 29 (CSSL29) derived from 9311 (recipient) into Nipponbare (NIP, donor), an F2 segregated population was constructed from 9311 (indica) [...] Read more.
Awn length is a significant agronomic trait in rice. To analyze the genetic mechanism of awn length in the chromosome segment substitution line 29 (CSSL29) derived from 9311 (recipient) into Nipponbare (NIP, donor), an F2 segregated population was constructed from 9311 (indica) and CSSL29. The population and candidate genes were analyzed using quantitative trait loci sequencing (QTL-seq), yeast two-hybrid assays, and 3 k and 10 k rice population databases. The results indicated that the awn length in the F2 segregating population followed a normal distribution, and the long-awn phenotype in CSSL29 was controlled by multiple genes. Through BSA sequencing data, a major QTL qAWN4 associated with rice awn length was identified on chromosome 4, containing the cloned gene An-2. Further investigation of the CSSL29 long-awn substitution segment revealed the presence of the awn length gene An-1, with both genes exhibiting an additive effect on the regulation of the long-awn phenotype. Yeast two-hybrid experiments confirmed no interaction between An-2 and An-1, suggesting that additive effect awn length regulation is not mediated through simple protein-to-protein binding. Population genetic analysis indicated that the An-2 allele was artificially selected during domestication but did not significantly differ between indica and japonica subspecies. These findings enhance our understanding of the genetic regulation of rice awn length and the domestication of long-awn rice, laying the groundwork for future research in this area. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 6834 KB  
Article
Development of Genome-Wide Unique Indel Markers for a Heat-Sensitive Genotype in Wheat (Triticum aestivum L.)
by Huijie Zhai, Kunpeng Xu, Meng Wang, Zhenchuang Wang, Ziyang Cai, Ao Li, Anxin He, Xiaoming Xie, Lingling Chai, Mingjiu Liu, Xingqi Ou and Zhongfu Ni
Agronomy 2025, 15(1), 169; https://doi.org/10.3390/agronomy15010169 - 11 Jan 2025
Cited by 1 | Viewed by 2001
Abstract
A chromosome segment substituted line (CSSL) represents an ideal resource for studying quantitative traits like thermotolerance. To develop wheat inter-varietal CSSLs with E6015-3S (a heat-sensitive genotype) being the recipient parent, genome-wide unique DNA markers are urgently needed for marker-assisted selection. In this study, [...] Read more.
A chromosome segment substituted line (CSSL) represents an ideal resource for studying quantitative traits like thermotolerance. To develop wheat inter-varietal CSSLs with E6015-3S (a heat-sensitive genotype) being the recipient parent, genome-wide unique DNA markers are urgently needed for marker-assisted selection. In this study, 11,016 primer pairs targeting 5036 indel sites were successfully designed for E6015-3S, with an average density of 0.36 indels per Mbp. These primer pairs are believed to be unique and polymorphic in the wheat genome; as gathered from the evidence, (i) 76.18 to 99.34% of the 11,016 primer pairs yielded a single hit during sequence alignment with 18 sequenced genomes, (ii) 83.59 to 90.98% of 1042 synthesized primer pairs amplified a single band in 16 wheat accessions, and (iii) 59.69 to 99.81% of the tested 1042 primer pairs were polymorphic between E6015-3S and 15 individual wheat accessions. These primer pairs are also anticipated with excellent resolvability on agarose or polyacrylamide gels, since most of them have indel sizes from 15 to 46 bp, amplicon sizes from 141 to 250 bp, and polymorphism ratios from 6.0 to 25.0%. Collectively, these primer pairs are ideal DNA markers for inter-varietal CSSL development and more broad applications, like germplasm classification, seed purity testing, genetic linkage mapping, and marker-assisted breeding in wheat, owing to their uniqueness, polymorphism, and easy-to-use characteristics. Full article
(This article belongs to the Collection Crop Breeding for Stress Tolerance)
Show Figures

Figure 1

13 pages, 3258 KB  
Article
Characterization of a Major Quantitative Trait Locus for the Whiteness of Rice Grain Using Chromosome Segment Substitution Lines
by Lulu Chen, Yujia Leng, Caiyun Zhang, Xixu Li, Zhihui Ye, Yan Lu, Lichun Huang, Qing Liu, Jiping Gao, Changquan Zhang and Qiaoquan Liu
Plants 2024, 13(24), 3588; https://doi.org/10.3390/plants13243588 - 23 Dec 2024
Cited by 1 | Viewed by 1261
Abstract
The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation [...] Read more.
The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation between the whiteness of polished rice, cooked rice, and rice flour, finding that the whiteness of rice flour significantly correlated with both polished and cooked rice. Thus, the whiteness of rice flour was chosen as the indicator of WRG in our QTL analysis. Using a set of chromosome segment substitution lines (CSSL) with japonica rice Koshihikari as the recipient and indica rice Nona Bokra as the donor, we analyzed QTLs for WRG across two growth environments and identified six WRG QTLs. Notably, qWRG9 on chromosome 9 displayed stable genetic effects in both environments. Through chromosomal segment overlapping mapping, qWRG9 was narrowed to a 1.2 Mb region. Additionally, a BC4F2 segregating population confirmed that low WRG was a dominant trait governed by the major QTL qWRG9, with a segregation ratio of low to high WRG approximating 3:1, consistent with Mendelian inheritance. Further grain quality analysis on the BC4F2 population revealed that rice grains carrying the Indica-type qWRG9 allele not only exhibited lower WRG but also had significantly higher protein content. These findings support the fine mapping of the candidate gene and provide an important QTL for improving rice grain quality through genetic improvement. Full article
(This article belongs to the Special Issue Crop Genetic Mechanisms and Breeding Improvement)
Show Figures

Figure 1

14 pages, 9892 KB  
Article
QTL Mapping of Fiber- and Seed-Related Traits in Chromosome Segment Substitution Lines Derived from Gossypium hirsutum × Gossypium darwinii
by Wenwen Wang, Yan Li, Mingmei Le, Lixia Tian, Xujing Sun, Rui Liu, Xin Guo, Yan Wu, Yibing Li, Jiaoyun Zhao, Dajun Liu and Zhengsheng Zhang
Int. J. Mol. Sci. 2024, 25(17), 9639; https://doi.org/10.3390/ijms25179639 - 5 Sep 2024
Cited by 4 | Viewed by 1567
Abstract
A narrow genetic basis limits further the improvement of modern Gossypium hirsutum cultivar. The abundant genetic diversity of wild species provides available resources to solve this dilemma. In the present study, a chromosome segment substitution line (CSSL) population including 553 individuals was established [...] Read more.
A narrow genetic basis limits further the improvement of modern Gossypium hirsutum cultivar. The abundant genetic diversity of wild species provides available resources to solve this dilemma. In the present study, a chromosome segment substitution line (CSSL) population including 553 individuals was established using G. darwinii accession 5-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. After constructing a high-density genetic map with the BC1 population, the genotype and phenotype of the CSSL population were investigated. A total of 235 QTLs, including 104 QTLs for fiber-related traits and 132 QTLs for seed-related traits, were identified from four environments. Among these QTLs, twenty-seven QTLs were identified in two or more environments, and twenty-five QTL clusters consisted of 114 QTLs. Moreover, we identified three candidate genes for three stable QTLs, including GH_A01G1096 (ARF5) and GH_A10G0141 (PDF2) for lint percentage, and GH_D01G0047 (KCS4) for seed index or oil content. These results pave way for understanding the molecular regulatory mechanism of fiber and seed development and would provide valuable information for marker-assisted genetic improvement in cotton. Full article
(This article belongs to the Special Issue Functional and Structural Genomics Studies for Plant Breeding)
Show Figures

Figure 1

24 pages, 25513 KB  
Article
Co-Expression Network Analysis and Introgressive Gene Identification for Fiber Length and Strength Reveal Transcriptional Differences in 15 Cotton Chromosome Substitution Segment Lines and Their Upland and Sea Island Parents
by Pengtao Li, Yu Chen, Rui Yang, Zhihao Sun, Qun Ge, Xianghui Xiao, Shuhan Yang, Yanfang Li, Qiankun Liu, Aiming Zhang, Baoguang Xing, Bei Wu, Xue Du, Xiaoyan Liu, Baomeng Tang, Juwu Gong, Quanwei Lu, Yuzhen Shi, Youlu Yuan, Renhai Peng and Haihong Shangadd Show full author list remove Hide full author list
Plants 2024, 13(16), 2308; https://doi.org/10.3390/plants13162308 - 19 Aug 2024
Cited by 3 | Viewed by 1900
Abstract
Fiber length (FL) and strength (FS) are the core indicators for evaluating cotton fiber quality. The corresponding stages of fiber elongation and secondary wall thickening are of great significance in determining FL and FS formation, respectively. QTL mapping and high-throughput sequencing technology have [...] Read more.
Fiber length (FL) and strength (FS) are the core indicators for evaluating cotton fiber quality. The corresponding stages of fiber elongation and secondary wall thickening are of great significance in determining FL and FS formation, respectively. QTL mapping and high-throughput sequencing technology have been applied to dissect the molecular mechanism of fiber development. In this study, 15 cotton chromosome segment substitution lines (CSSLs) with significant differences in FL and FS, together with their recurrent parental Gossypium hirsutum line CCRI45 and donor parent G. barbadense line Hai1, were chosen to conduct RNA-seq on developing fiber samples at 10 days post anthesis (DPA) and 20 DPA. Differentially expressed genes (DEGs) were obtained via pairwise comparisons among all 24 samples (each one with three biological repeats). A total of 969 DEGs related to FL-high, 1285 DEGs to FS-high, and 997 DEGs to FQ-high were identified. The functional enrichment analyses of them indicated that the GO terms of cell wall structure and ROS, carbohydrate, and phenylpropanoid metabolism were significantly enriched, while the GO terms of glucose and polysaccharide biosynthesis, and brassinosteroid and glycosylphosphatidylinositol metabolism could make great contributions to FL and FS formation, respectively. Weighted gene co-expressed network analyses (WGCNA) were separately conducted for analyzing FL and FS traits, and their corresponding hub DEGs were screened in significantly correlated expression modules, such as EXPA8, XTH, and HMA in the fiber elongation and WRKY, TDT, and RAC-like 2 during secondary wall thickening. An integrated analysis of these hub DEGs with previous QTL identification results successfully identified a total of 33 candidate introgressive DEGs with non-synonymous mutations between the Gh and Gb species. A common DEG encoding receptor-like protein kinase 1 was reported to likely participate in fiber secondary cell thickening regulation by brassionsteroid signaling. Such valuable information was conducive to enlightening the developing mechanism of cotton fiber and also provided an abundant gene pool for further molecular breeding. Full article
(This article belongs to the Special Issue Molecular Insights into Cotton Fiber Gene Regulation)
Show Figures

Figure 1

12 pages, 1484 KB  
Article
Identification and Fine Mapping of Quantitative Trait Loci for Tiller Angle Using Chromosome Segment Substitution Lines in Rice (Oryza Sativa L.)
by Yujia Leng, Tao Tao, Shuai Lu, Ran Liu, Qingqing Yang, Mingqiu Zhang, Lianmin Hong, Qianqian Guo, Xinzhe Ren, Zhidi Yang, Xiuling Cai, Sukui Jin and Jiping Gao
Agriculture 2024, 14(7), 1002; https://doi.org/10.3390/agriculture14071002 - 26 Jun 2024
Viewed by 2097
Abstract
The tiller angle, which is an important agronomic trait, determines plant architecture and greatly influences the grain yield of rice. In this study, a population of chromosome segment substitution lines derived from a cross between a japonica variety with a compact plant architecture—Koshihikari—and [...] Read more.
The tiller angle, which is an important agronomic trait, determines plant architecture and greatly influences the grain yield of rice. In this study, a population of chromosome segment substitution lines derived from a cross between a japonica variety with a compact plant architecture—Koshihikari—and an indica variety with a spread-out plant architecture—Nona Bokra—was used to investigate the genetic basis of the tiller angle. Five quantitative trait loci (qTA1, qTA5, qTA9-1, qTA9-2, and qTA11) for the tiller angle were detected on chromosomes 1, 5, 9, 9, and 11 in two different environments. The phenotypic variation in these QTLs ranged from 3.78% to 8.22%. Two pairs of digenic epistatic QTLs were detected in Lingshui. The epistatic interaction explained 15.19% and 13.60% of the phenotypic variance, respectively. Among the five QTLs, qTA9-2 was detected in both environments. An F2 mapping population containing the qTA9-2 QTL was established. The location of qTA9-2 was narrowed down to a 187 kb region between InDel markers M9 and M10 on chromosome 9. Thirty open reading frames (ORFs), including TAC1, a gene known to regulate the tiller angle, were identified in this region. The gene sequencing results suggested that a base substitution from G to A at position 1557 in the 3′-untranslated region led to a difference in the expression of qTA9-2 in Koshihikari and Nona Bokra. These findings provide a potential gene resource for the improvement of rice plant architecture. Full article
(This article belongs to the Special Issue Innovations and Advances in Rice Molecular Breeding)
Show Figures

Figure 1

12 pages, 3380 KB  
Article
Identification and Characterization of HS4-Mediated Hybrid Seed Shattering in Rice
by Daiqi Wang, Wantong Xie, Hong Chen, Tifeng Yang, Ziqiang Liu, Ying Ruan and Chunlin Liu
Agronomy 2024, 14(6), 1218; https://doi.org/10.3390/agronomy14061218 - 5 Jun 2024
Viewed by 1514
Abstract
Seed shattering is an adaptive feature of seed dispersal in wild rice, and it is also an important agronomic trait affecting yield. Reduced seed shattering was a significant progress during rice domestication. However, the evolutionary pathway and molecular mechanism of hybrid seed shattering [...] Read more.
Seed shattering is an adaptive feature of seed dispersal in wild rice, and it is also an important agronomic trait affecting yield. Reduced seed shattering was a significant progress during rice domestication. However, the evolutionary pathway and molecular mechanism of hybrid seed shattering remain largely unknown. In order to gain a deeper understanding of the regulation of hybrid seed shattering, HS4, a locus conferring hybrid seed shattering between Oryza sativa and Oryza glaberrima, was identified and fine mapped to a 13.5-kb genomic region containing two putative genes during the development of chromosomal segment substitution lines (CSSLs). Expression analysis indicated that the hybrid seed shattering was not related to the expression of HS4. Preliminary research on the molecular mechanism of HS4-mediated hybrid seed shattering indicated that HS4HJX74 and HS4HP61 may form a multimer in heterozygotes, achieving the original function of a trihelix transcription factor through protein interaction. The identification and characterization of HS4 in this study not only provides new insights into the molecular mechanisms underlying hybrid seed shattering, but also provides a potential target for genome editing to reduce the difficulty of hybridization between the two species, facilitating hybrid breeding and increasing yield in rice. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

Back to TopTop