Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = CREB-binding protein (CBP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2039 KiB  
Article
Punishment-Induced Suppression of Methamphetamine Self-Administration Is Accompanied by the Activation of the CPEB4/GLD2 Polyadenylation Complex of the Translational Machinery
by Atul P. Daiwile, Bruce Ladenheim, Subramaniam Jayanthi and Jean Lud Cadet
Int. J. Mol. Sci. 2025, 26(6), 2734; https://doi.org/10.3390/ijms26062734 - 18 Mar 2025
Viewed by 568
Abstract
Methamphetamine (METH) use disorder (MUD) is a public health catastrophe. Herein, we used a METH self-administration model to assess behavioral responses to the dopamine receptor D1 (DRD1) antagonist, SCH23390. Differential gene expression was measured in the dorsal striatum after a 30-day withdrawal from [...] Read more.
Methamphetamine (METH) use disorder (MUD) is a public health catastrophe. Herein, we used a METH self-administration model to assess behavioral responses to the dopamine receptor D1 (DRD1) antagonist, SCH23390. Differential gene expression was measured in the dorsal striatum after a 30-day withdrawal from METH. SCH23390 administration reduced METH taking in all animals. Shock Resistant (SR) rats showed greater incubation of METH seeking, which was correlated with increased Creb1, Cbp, and JunD mRNA expression. Cytoplasmic polyadenylation element binding protein 4 (Cpeb4) mRNA levels were increased in shock-sensitive (SS) rats. SS rats also showed increased protein levels for cleavage and polyadenylation specificity factor (CPSF) and germ line development 2 (GLD2) that are CPEB4-interacting proteins. Interestingly, GLD2-regulated GLUN2A mRNA and its protein showed increased expression in the shock-sensitive rats. Taken together, these observations identified CPEB4-regulated molecular mechanisms acting via NMDA GLUN2A receptors as potential targets for the treatment of METH use disorder. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 2564 KiB  
Article
CBP/P300 Inhibition Impairs CD4+ T Cell Activation: Implications for Autoimmune Disorders
by Lucas Wilhelmus Picavet, Anoushka A. K. Samat, Jorg Calis, Lotte Nijhuis, Rianne Scholman, Michal Mokry, David F. Tough, Rabinder K. Prinjha, Sebastiaan J. Vastert and Jorg van Loosdregt
Biomedicines 2024, 12(6), 1344; https://doi.org/10.3390/biomedicines12061344 - 18 Jun 2024
Cited by 4 | Viewed by 1814
Abstract
T cell activation is critical for an effective immune response against pathogens. However, dysregulation contributes to the pathogenesis of autoimmune diseases, including Juvenile Idiopathic Arthritis (JIA). The molecular mechanisms underlying T cell activation are still incompletely understood. T cell activation promotes the acetylation [...] Read more.
T cell activation is critical for an effective immune response against pathogens. However, dysregulation contributes to the pathogenesis of autoimmune diseases, including Juvenile Idiopathic Arthritis (JIA). The molecular mechanisms underlying T cell activation are still incompletely understood. T cell activation promotes the acetylation of histone 3 at Lysine 27 (H3K27ac) at enhancer and promoter regions of proinflammatory cytokines, thereby increasing the expression of these genes which is essential for T cell function. Co-activators E1A binding protein P300 (P300) and CREB binding protein (CBP), collectively known as P300/CBP, are essential to facilitate H3K27 acetylation. Presently, the role of P300/CBP in human CD4+ T cells activation remains incompletely understood. To assess the function of P300/CBP in T cell activation and autoimmune disease, we utilized iCBP112, a selective inhibitor of P300/CBP, in T cells obtained from healthy controls and JIA patients. Treatment with iCBP112 suppressed T cell activation and cytokine signaling pathways, leading to reduced expression of many proinflammatory cytokines, including IL-2, IFN-γ, IL-4, and IL-17A. Moreover, P300/CBP inhibition in T cells derived from the inflamed synovium of JIA patients resulted in decreased expression of similar pathways and preferentially suppressed the expression of disease-associated genes. This study underscores the regulatory role of P300/CBP in regulating gene expression during T cell activation while offering potential insights into the pathogenesis of autoimmune diseases. Our findings indicate that P300/CBP inhibition could potentially be leveraged for the treatment of autoimmune diseases such as JIA in the future. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine)
Show Figures

Graphical abstract

11 pages, 6669 KiB  
Article
CBP Expression Contributes to Neuropathic Pain via CREB and MeCP2 Regulation in the Spared Nerve Injury Rat Model
by Chae-Chil Lee, Ki-Bong Park, Min Seok Kim and Young Dae Jeon
Medicina 2024, 60(6), 989; https://doi.org/10.3390/medicina60060989 - 17 Jun 2024
Cited by 2 | Viewed by 1861
Abstract
Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) [...] Read more.
Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) models with surgical SNI (n = 6) were prepared, and naive rats (n = 5) were used as controls. The expression levels of CBP and MeCP2 in the spinal cord and dorsal root ganglion (DRG) were compared through immunohistochemistry at 7 and 14 days after surgery. The relationship between neuropathic pain and CBP/MeCP2 was also analyzed through intrathecal siRNA administration. Results: SNI induced a significant increase in the number of CBPs in L4 compared with contralateral DRG as well as with naive rats. The number of MeCP2 cells in the dorsal horn on the ipsilateral side decreased significantly compared with the contralateral dorsal horn and the control group. SNI induced a significant decrease in the number of MeCP2 neurons in the L4 ipsilateral DRG compared with the contralateral DRG and naive rats. The intrathecal injection of CBP siRNA significantly inhibited mechanical allodynia induced by SNI compared with non-targeting siRNA treatment. MeCP2 siRNA injection showed no significant effect on mechanical allodynia. Conclusions: The results suggest that CBP and MeCP2 may play an important role in the generation of neuropathic pain following peripheral nerve injury. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

17 pages, 5464 KiB  
Article
Mitochondrial p38 Mitogen-Activated Protein Kinase: Insights into Its Regulation of and Role in LONP1-Deficient Nematodes
by Eirini Taouktsi, Eleni Kyriakou, Evangelia Voulgaraki, Dimitris Verganelakis, Stefania Krokou, Stamatis Rigas, Gerassimos E. Voutsinas and Popi Syntichaki
Int. J. Mol. Sci. 2023, 24(24), 17209; https://doi.org/10.3390/ijms242417209 - 7 Dec 2023
Cited by 3 | Viewed by 2346
Abstract
p38 Mitogen-Activated Protein Kinase (MAPK) cascades are central regulators of numerous physiological cellular processes, including stress response signaling. In C. elegans, mitochondrial dysfunction activates a PMK-3/p38 MAPK signaling pathway (MAPKmt), but its functional role still remains elusive. Here, we demonstrate [...] Read more.
p38 Mitogen-Activated Protein Kinase (MAPK) cascades are central regulators of numerous physiological cellular processes, including stress response signaling. In C. elegans, mitochondrial dysfunction activates a PMK-3/p38 MAPK signaling pathway (MAPKmt), but its functional role still remains elusive. Here, we demonstrate the induction of MAPKmt in worms deficient in the lonp-1 gene, which encodes the worm ortholog of mammalian mitochondrial LonP1. This induction is subjected to negative regulation by the ATFS-1 transcription factor through the CREB-binding protein (CBP) ortholog CBP-3, indicating an interplay between both activated MAPKmt and mitochondrial Unfolded Protein Response (UPRmt) surveillance pathways. Our results also reveal a genetic interaction in lonp-1 mutants between PMK-3 kinase and the ZIP-2 transcription factor. ZIP-2 has an established role in innate immunity but can also modulate the lifespan by maintaining mitochondrial homeostasis during ageing. We show that in lonp-1 animals, ZIP-2 is activated in a PMK-3-dependent manner but does not confer increased survival to pathogenic bacteria. However, deletion of zip-2 or pmk-3 shortens the lifespan of lonp-1 mutants, suggesting a possible crosstalk under conditions of mitochondrial perturbation that influences the ageing process. Furthermore, loss of pmk-3 specifically diminished the extreme heat tolerance of lonp-1 worms, highlighting the crucial role of PMK-3 in the heat shock response upon mitochondrial LONP-1 inactivation. Full article
(This article belongs to the Special Issue Mitochondria in Human Health and Disease 2.0)
Show Figures

Figure 1

14 pages, 5157 KiB  
Article
Inhibiting CBP Decreases AR Expression and Inhibits Proliferation in Benign Prostate Epithelial Cells
by Xingxing Tang, Zhifu Liu, Zheng Li, Chenchen Huang, Wei Yu, Yu Fan, Shuai Hu and Jie Jin
Biomedicines 2023, 11(11), 3028; https://doi.org/10.3390/biomedicines11113028 - 11 Nov 2023
Viewed by 1694
Abstract
(1) Background: CREB-binding protein (CBP) is a key transcriptional coactivator of androgen receptors (AR). We conducted this study to investigate the effects of CBP on AR expression and proliferation in benign prostatic hyperplasia (BPH) prostate epithelial cells. (2) Methods: By analyzing [...] Read more.
(1) Background: CREB-binding protein (CBP) is a key transcriptional coactivator of androgen receptors (AR). We conducted this study to investigate the effects of CBP on AR expression and proliferation in benign prostatic hyperplasia (BPH) prostate epithelial cells. (2) Methods: By analyzing a published data set, we found that CBP was closely related to the gene expression of AR in prostate cells. We enrolled 20 BPH patients who underwent transurethral resection of the prostate (TURP) in Peking University First Hospital in 2022, and analyzed the expressions of CBP and AR in BPH prostate tissues. Then, we used ICG-001 and shRNA to inhibit CBP in prostate epithelial cells (BPH-1 cells and RWPE-1 cells), and conducted immunofluorescence, cell viability assay, flow cytometry analysis, and Western blot to analyze the effects of CBP on AR expression and proliferation in prostate epithelial cells. We also studied the interaction between CBP and AR through a co-immunoprecipitation assay. (3) Results: CBP is consistent with AR in expression intensity in prostate tissues. Inhibiting CBP decreases AR expression, and induces proliferation inhibition, apoptosis, and cell cycle arrest in BPH prostate epithelial cells. The co-immunoprecipitation assay showed that CBP binds with AR to form transcription complexes in prostate epithelial cells. (4) Conclusions: Inhibiting CBP decreases AR expression and inhibits proliferation in benign prostate epithelial cells. CBP may be a potential target to affect AR expression and the proliferation of prostate epithelial cells in BPH. Full article
(This article belongs to the Special Issue Looking Inside the Prostate)
Show Figures

Figure 1

26 pages, 8953 KiB  
Article
Transcriptional and Histone Acetylation Changes Associated with CRE Elements Expose Key Factors Governing the Regulatory Circuit in the Early Stage of Huntington’s Disease Models
by Sandra Arancibia-Opazo, J. Sebastián Contreras-Riquelme, Mario Sánchez, Marisol Cisternas-Olmedo, René L. Vidal, Alberto J. M. Martin and Mauricio A. Sáez
Int. J. Mol. Sci. 2023, 24(13), 10848; https://doi.org/10.3390/ijms241310848 - 29 Jun 2023
Cited by 4 | Viewed by 2187
Abstract
Huntington’s disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of [...] Read more.
Huntington’s disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Neurobiology in Chile, 2nd Edition)
Show Figures

Figure 1

18 pages, 5122 KiB  
Article
Bioinformatics Analysis of the Molecular Networks Associated with the Amelioration of Aberrant Gene Expression by a Tyr–Trp Dipeptide in Brains Treated with the Amyloid-β Peptide
by Momoko Hamano, Takashi Ichinose, Tokio Yasuda, Tomoko Ishijima, Shinji Okada, Keiko Abe, Kosuke Tashiro and Shigeki Furuya
Nutrients 2023, 15(12), 2731; https://doi.org/10.3390/nu15122731 - 13 Jun 2023
Cited by 3 | Viewed by 2198
Abstract
Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported that the oral administration of the Tyr–Trp (YW) dipeptide to mice markedly enhances noradrenaline metabolism in the [...] Read more.
Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported that the oral administration of the Tyr–Trp (YW) dipeptide to mice markedly enhances noradrenaline metabolism in the brain and ameliorates the working-memory deficits induced by the β-amyloid 25–35 peptide (Aβ25–35). In the current study, we performed multiple bioinformatics analyses of microarray data from Aβ25–35/YW-treated brains to determine the mechanism underlying the action of YW in the brain and to infer the molecular mechanisms and networks involved in the protective effect of YW in the brain. We found that YW not only reversed inflammation-related responses but also activated various molecular networks involving a transcriptional regulatory system, which is mediated by the CREB binding protein (CBP), EGR-family proteins, ELK1, and PPAR, and the calcium-signaling pathway, oxidative stress tolerance, and an enzyme involved in de novo l-serine synthesis in brains treated with Aβ25–35. This study revealed that YW has a neuroprotective effect against Aβ25–35 neuropathy, suggesting that YW is a new functional-food-material peptide. Full article
Show Figures

Figure 1

17 pages, 3171 KiB  
Article
Distinct Responses to IL4 in Macrophages Mediated by JNK
by Luís Arpa, Carlos Batlle, Peijin Jiang, Carme Caelles, Jorge Lloberas and Antonio Celada
Cells 2023, 12(8), 1127; https://doi.org/10.3390/cells12081127 - 11 Apr 2023
Cited by 3 | Viewed by 2974
Abstract
IL(Interleukin)-4 is the main macrophage M2-type activator and induces an anti-inflammatory phenotype called alternative activation. The IL-4 signaling pathway involves the activation of STAT (Signal Transducer and Activator of Transcription)-6 and members of the MAPK (Mitogen-activated protein kinase) family. In primary-bone-marrow-derived macrophages, we [...] Read more.
IL(Interleukin)-4 is the main macrophage M2-type activator and induces an anti-inflammatory phenotype called alternative activation. The IL-4 signaling pathway involves the activation of STAT (Signal Transducer and Activator of Transcription)-6 and members of the MAPK (Mitogen-activated protein kinase) family. In primary-bone-marrow-derived macrophages, we observed a strong activation of JNK (Jun N-terminal kinase)-1 at early time points of IL-4 stimulation. Using selective inhibitors and a knockout model, we explored the contribution of JNK-1 activation to macrophages’ response to IL-4. Our findings indicate that JNK-1 regulates the IL-4-mediated expression of genes typically involved in alternative activation, such as Arginase 1 or Mannose receptor, but not others, such as SOCS (suppressor of cytokine signaling) 1 or p21Waf−1 (cyclin dependent kinase inhibitor 1A). Interestingly, we have observed that after macrophages are stimulated with IL-4, JNK-1 has the capacity to phosphorylate STAT-6 on serine but not on tyrosine. Chromatin immunoprecipitation assays revealed that functional JNK-1 is required for the recruitment of co-activators such as CBP (CREB-binding protein)/p300 on the promoter of Arginase 1 but not on p21Waf−1. Taken together, these data demonstrate the critical role of STAT-6 serine phosphorylation by JNK-1 in distinct macrophage responses to IL-4. Full article
(This article belongs to the Topic Inflammation: The Cause of All Diseases)
Show Figures

Graphical abstract

15 pages, 3651 KiB  
Article
Upregulation of DJ-1 in Dopaminergic Neurons by a Physically-Modified Saline: Implications for Parkinson’s Disease
by Malabendu Jana, Sridevi Dasarathy, Supurna Ghosh and Kalipada Pahan
Int. J. Mol. Sci. 2023, 24(5), 4652; https://doi.org/10.3390/ijms24054652 - 28 Feb 2023
Cited by 3 | Viewed by 2414
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. Mechanisms and agents by which the level of DJ-1 could be increased in the CNS are poorly described. RNS60 is a bioactive aqueous solution created by exposing normal saline to Taylor-Couette-Poiseuille flow under high oxygen pressure. Recently we have described neuroprotective, immunomodulatory and promyelinogenic properties of RNS60. Here we delineate that RNS60 is also capable of increasing the level of DJ-1 in mouse MN9D neuronal cells and primary dopaminergic neurons, highlighting another new neuroprotective effect of RNS60. While investigating the mechanism we found the presence of cAMP response element (CRE) in DJ-1 gene promoter and stimulation of CREB activation in neuronal cells by RNS60. Accordingly, RNS60 treatment increased the recruitment of CREB to the DJ-1 gene promoter in neuronal cells. Interestingly, RNS60 treatment also induced the enrollment of CREB-binding protein (CBP), but not the other histone acetyl transferase p300, to the promoter of DJ-1 gene. Moreover, knockdown of CREB by siRNA led to the inhibition of RNS60-mediated DJ-1 upregulation, indicating an important role of CREB in DJ-1 upregulation by RNS60. Together, these results indicate that RNS60 upregulates DJ-1 in neuronal cells via CREB–CBP pathway. It may be of benefit for PD and other neurodegenerative disorders. Full article
(This article belongs to the Special Issue Development of Dopaminergic Neurons 2.0)
Show Figures

Figure 1

16 pages, 882 KiB  
Article
T Cell Transcriptional Signatures of Influenza A/H3N2 Antibody Response to High Dose Influenza and Adjuvanted Influenza Vaccine in Older Adults
by Iana H. Haralambieva, Huy Quang Quach, Inna G. Ovsyannikova, Krista M. Goergen, Diane E. Grill, Gregory A. Poland and Richard B. Kennedy
Viruses 2022, 14(12), 2763; https://doi.org/10.3390/v14122763 - 11 Dec 2022
Cited by 8 | Viewed by 3771
Abstract
Older adults experience declining influenza vaccine-induced immunity and are at higher risk of influenza and its complications. For this reason, high dose (e.g., Fluzone) and adjuvanted (e.g., Fluad) vaccines are preferentially recommended for people age 65 years and older. However, T cell transcriptional [...] Read more.
Older adults experience declining influenza vaccine-induced immunity and are at higher risk of influenza and its complications. For this reason, high dose (e.g., Fluzone) and adjuvanted (e.g., Fluad) vaccines are preferentially recommended for people age 65 years and older. However, T cell transcriptional activity shaping the humoral immune responses to Fluzone and Fluad vaccines in older adults is still poorly understood. We designed a study of 234 older adults (≥65 years old) who were randomly allocated to receive Fluzone or Fluad vaccine and provided blood samples at baseline and at Day 28 after immunization. We measured the humoral immune responses (hemagglutination inhibition/HAI antibody titer) to influenza A/H3N2 and performed mRNA-Seq transcriptional profiling in purified CD4+ T cells, in order to identify T cell signatures that might explain differences in humoral immune response by vaccine type. Given the large differences in formulation (higher antigen dose vs adjuvant), our hypothesis was that each vaccine elicited a distinct transcriptomic response after vaccination. Thus, the main focus of our study was to identify the differential gene expression influencing the antibody titer in the two vaccine groups. Our analyses identified three differentially expressed, functionally linked genes/proteins in CD4+ T cells: the calcium/calmodulin dependent serine/threonine kinase IV (CaMKIV); its regulator the TMEM38B/transmembrane protein 38B, involved in maintenance of intracellular Ca2+ release; and the transcriptional coactivator CBP/CREB binding protein, as regulators of transcriptional activity/function in CD4+ T cells that impact differences in immune response by vaccine type. Significantly enriched T cell-specific pathways/biological processes were also identified that point to the importance of genes/proteins involved in Th1/Th2 cell differentiation, IL-17 signaling, calcium signaling, Notch signaling, MAPK signaling, and regulation of TRP cation Ca2+ channels in humoral immunity after influenza vaccination. In summary, we identified the genes/proteins and pathways essential for cell activation and function in CD4+ T cells that are associated with differences in influenza vaccine-induced humoral immunity by vaccine type. These findings provide an additional mechanistic perspective for achieving protective immunity in older adults. Full article
(This article belongs to the Special Issue Advances in Universal Influenza Vaccines and Therapies)
Show Figures

Figure 1

16 pages, 10561 KiB  
Article
Transcriptional Activation of Ecdysone-Responsive Genes Requires H3K27 Acetylation at Enhancers
by Dong Cheng, Zhaoming Dong, Ping Lin, Guanwang Shen and Qingyou Xia
Int. J. Mol. Sci. 2022, 23(18), 10791; https://doi.org/10.3390/ijms231810791 - 16 Sep 2022
Cited by 10 | Viewed by 2721
Abstract
The steroid hormone ecdysone regulates insect development via its nuclear receptor (the EcR protein), which functions as a ligand-dependent transcription factor. The EcR regulates target gene expression by binding to ecdysone response elements (EcREs) in their promoter or enhancer regions. Its role in [...] Read more.
The steroid hormone ecdysone regulates insect development via its nuclear receptor (the EcR protein), which functions as a ligand-dependent transcription factor. The EcR regulates target gene expression by binding to ecdysone response elements (EcREs) in their promoter or enhancer regions. Its role in epigenetic regulation and, particularly, in histone acetylation remains to be clarified. Here, we analyzed the dynamics of histone acetylation and demonstrated that the acetylation of histone H3 on lysine 27 (H3K27) at enhancers was required for the transcriptional activation of ecdysone-responsive genes. Western blotting and ChIP-qPCR revealed that ecdysone altered the acetylation of H3K27. For E75B and Hr4, ecdysone-responsive genes, enhancer activity, and transcription required the histone acetyltransferase activity of the CBP. EcR binding was critical in inducing enhancer activity and H3K27 acetylation. The CREB-binding protein (CBP) HAT domain catalyzed H3K27 acetylation and CBP coactivation with EcR, independent of the presence of ecdysone. Increased H3K27 acetylation promoted chromatin accessibility, with the EcR and CBP mediating a local chromatin opening in response to ecdysone. Hence, epigenetic mechanisms, including the modification of acetylation and chromatin accessibility, controlled ecdysone-dependent gene transcription. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 2865 KiB  
Article
New Inhibitors of the Human p300/CBP Acetyltransferase Are Selectively Active against the Arabidopsis HAC Proteins
by Chiara Longo, Andrea Lepri, Andrea Paciolla, Antonella Messore, Daniela De Vita, Maria Carmela Bonaccorsi di Patti, Matteo Amadei, Valentina Noemi Madia, Davide Ialongo, Roberto Di Santo, Roberta Costi and Paola Vittorioso
Int. J. Mol. Sci. 2022, 23(18), 10446; https://doi.org/10.3390/ijms231810446 - 9 Sep 2022
Cited by 5 | Viewed by 2849
Abstract
Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana [...] Read more.
Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies. Full article
Show Figures

Figure 1

14 pages, 2317 KiB  
Article
TRPM3-Induced Gene Transcription Is under Epigenetic Control
by Gerald Thiel and Oliver G. Rössler
Pharmaceuticals 2022, 15(7), 846; https://doi.org/10.3390/ph15070846 - 10 Jul 2022
Cited by 3 | Viewed by 2317
Abstract
Transient receptor potential M3 (TRPM3) cation channels regulate numerous biological functions, including gene transcription. Stimulation of TRPM3 channels with pregnenolone sulfate activates stimulus-responsive transcription factors, which bind to short cognate sequences in the promoters of their target genes. In addition, coregulator proteins are [...] Read more.
Transient receptor potential M3 (TRPM3) cation channels regulate numerous biological functions, including gene transcription. Stimulation of TRPM3 channels with pregnenolone sulfate activates stimulus-responsive transcription factors, which bind to short cognate sequences in the promoters of their target genes. In addition, coregulator proteins are involved that convert the chromatin into a configuration that is permissive for gene transcription. In this study, we determined whether TRPM3-induced gene transcription requires coactivators that change the acetylation pattern of histones. We used compound A485, a specific inhibitor of the histone acetyltransferases CBP and p300. In addition, the role of bromodomain proteins that bind to acetylated lysine residues of histones was analyzed. We used JQ1, an inhibitor of bromodomain and extra terminal domain (BET) family proteins. The results show that both compounds attenuated the activation of AP-1 and CREB-regulated gene transcription following stimulation of TRPM3 channels. Inhibition of CBP/p300 and BET proteins additionally reduced the transcriptional activation potential of the transcription factors c-Fos and Elk-1. Transcriptional upregulation of the interleukin-8 gene was attenuated by A485 and JQ1, indicating that proinflammatory cytokine expression is controlled by CBP/p300 and bromodomain proteins. We conclude that TRPM3-induced signaling involves transcriptional coactivators and acetyl-lysine-bound bromodomain proteins for activating gene transcription. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

23 pages, 3317 KiB  
Review
Natural Products with Antitumor Potential Targeting the MYB-C/EBPβ-p300 Transcription Module
by Thomas J. Schmidt and Karl-Heinz Klempnauer
Molecules 2022, 27(7), 2077; https://doi.org/10.3390/molecules27072077 - 23 Mar 2022
Cited by 8 | Viewed by 4287
Abstract
The transcription factor MYB is expressed predominantly in hematopoietic progenitor cells, where it plays an essential role in the development of most lineages of the hematopoietic system. In the myeloid lineage, MYB is known to cooperate with members of the CCAAT box/enhancer binding [...] Read more.
The transcription factor MYB is expressed predominantly in hematopoietic progenitor cells, where it plays an essential role in the development of most lineages of the hematopoietic system. In the myeloid lineage, MYB is known to cooperate with members of the CCAAT box/enhancer binding protein (C/EBP) family of transcription factors. MYB and C/EBPs interact with the co-activator p300 or its paralog CREB-binding protein (CBP), to form a transcriptional module involved in myeloid-specific gene expression. Recent work has demonstrated that MYB is involved in the development of human leukemia, especially in acute T-cell leukemia (T-ALL) and acute myeloid leukemia (AML). Chemical entities that inhibit the transcriptional activity of the MYB-C/EBPβ-p300 transcription module may therefore be of use as potential anti-tumour drugs. In searching for small molecule inhibitors, studies from our group over the last 10 years have identified natural products belonging to different structural classes, including various sesquiterpene lactones, a steroid lactone, quinone methide triterpenes and naphthoquinones that interfere with the activity of this transcriptional module in different ways. This review gives a comprehensive overview on the various classes of inhibitors and the inhibitory mechanisms by which they affect the MYB-C/EBPβ-p300 transcriptional module as a potential anti-tumor target. We also focus on the current knowledge on structure-activity relationships underlying these biological effects and on the potential of these compounds for further development. Full article
Show Figures

Figure 1

17 pages, 3922 KiB  
Article
Targeting Wnt/Beta-Catenin Signaling in HPV-Positive Head and Neck Squamous Cell Carcinoma
by Faris F. Brkic, Stefan Stoiber, Tobias Maier, Elisabeth Gurnhofer, Lukas Kenner, Gregor Heiduschka and Lorenz Kadletz-Wanke
Pharmaceuticals 2022, 15(3), 378; https://doi.org/10.3390/ph15030378 - 20 Mar 2022
Cited by 11 | Viewed by 4474
Abstract
Wnt/Beta-Catenin signaling is involved in the carcinogenesis of different solid malignant tumors. The interaction of Creb-binding protein (CBP) with Beta-Catenin is a pivotal component of the Wnt/Beta-Catenin signaling pathway. The first aim of this study was to evaluate the association of CBP expression [...] Read more.
Wnt/Beta-Catenin signaling is involved in the carcinogenesis of different solid malignant tumors. The interaction of Creb-binding protein (CBP) with Beta-Catenin is a pivotal component of the Wnt/Beta-Catenin signaling pathway. The first aim of this study was to evaluate the association of CBP expression with survival in patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC). Second, the in vitro effects of the inhibition of CBP/Beta-Catenin interaction were analyzed. In particular, the effects of ICG-001, an inhibitor of CBP/Beta-Catenin interaction, on proliferation, cell death, modulation of Wnt/Beta-Catenin target expression, and cell migration were examined in vitro. High CBP expression is significantly associated with better survival on mRNA and protein levels. Furthermore, we observed cytotoxic as well as anti-migratory effects of ICG-001. These effects were particularly more potent in the HPV-positive than in the -negative cell line. Mechanistically, ICG-001 treatment induced apoptosis and led to a downregulation of CBP, c-MYC, and Cyclin D1 in HPV-positive cells, indicating inhibition of Wnt/Beta-Catenin signaling. In conclusion, high CBP expression is observed in HPV-positive HNSCC patients with a good prognosis, and ICG-001 showed a promising antineoplastic potential, particularly in HPV-positive HNSCC cells. Therefore, ICG-001 may potentially become an essential component of treatment de-escalation regimens for HPV-positive HNSCC. Further studies are warranted for additional assessment of the mechanistic background of our in vitro findings. Full article
(This article belongs to the Special Issue Novel Anti-proliferative Agents)
Show Figures

Figure 1

Back to TopTop