Inhibiting CBP Decreases AR Expression and Inhibits Proliferation in Benign Prostate Epithelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Prostate Tissues
2.2. Cell Culture
2.3. Construction of CBP Knockdown Cells
2.4. Main Reagents and Instruments
2.5. Immunohistochemistry Staining and Quantitative Analysis
2.6. Immunofluorescence
2.7. Cell Viability Analysis
2.8. Cell Apoptosis Analysis
2.9. Cell Cycle Analysis
2.10. Western Blot
2.11. Co-Immunoprecipitation (CoIP)
2.12. Statistics
3. Results
3.1. The Gene Expressions of CBP and AR Were Closely Related
3.2. CBP and AR Were Consistent in Expression Intensity in BPH Prostate Tissues
3.3. Construction of CBP Knockdown Cells
3.4. Inhibiting CBP Decreased the Expression of AR in Prostate Epithelial Cells
3.5. Inhibiting CBP Induced Proliferation Inhibition in Prostate Epithelial Cells
3.6. Inhibiting CBP Induced the Apoptosis of Prostate Epithelial Cells
3.7. Inhibiting CBP Induced Cell Cycle Arrest of Prostate Epithelial Cells
3.8. Inhibiting CBP Increased the Expressions of Apoptosis-Related Proteins and Cell Cycle-Related Proteins in Prostate Epithelial Cells
3.9. CBP Combined with AR to Form the Transcription Complex in Prostate Epithelial Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, E.H.; Larson, J.A.; Andriole, G.L. Management of Benign Prostatic Hyperplasia. Annu. Rev. Med. 2016, 67, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.-F.; Li, J.; Zhang, J.; Bai, P.-D.; Yang, Y.-F.; Li, W.; Wu, Z.; Zheng, J.-X. Crosstalk between Apoptosis and Autophagy in Prostate Epithelial Cells under Androgen Deprivation. Exp. Ther. Med. 2018, 15, 2263–2268. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, H.; Huang, J.; Li, C.; Zhang, Y.; Xu, R.; Wang, Z.; Long, Z.; Tang, J.; Wang, L. METTL3 Promotes Prostatic Hyperplasia by Regulating PTEN Expression in an m6A-YTHDF2-Dependent Manner. Cell Death Dis. 2022, 13, 723. [Google Scholar] [CrossRef]
- Fu, X.; Liu, J.; Liu, D.; Zhou, Y.; Guo, Y.; Wang, Z.; Yang, S.; He, W.; Chen, P.; Wang, X.; et al. Glucose-Regulated Protein 78 Modulates Cell Growth, Epithelial-Mesenchymal Transition, and Oxidative Stress in the Hyperplastic Prostate. Cell Death Dis. 2022, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, D.; Zhang, X.; Li, Y.; Fu, X.; He, W.; Li, M.; Chen, P.; Zeng, G.; DiSanto, M.E.; et al. NELL2 Modulates Cell Proliferation and Apoptosis via ERK Pathway in the Development of Benign Prostatic Hyperplasia. Clin. Sci. 2021, 135, 1591–1608. [Google Scholar] [CrossRef] [PubMed]
- Joseph, D.B.; Henry, G.H.; Malewska, A.; Reese, J.C.; Mauck, R.J.; Gahan, J.C.; Hutchinson, R.C.; Mohler, J.L.; Roehrborn, C.G.; Strand, D.W. 5-Alpha Reductase Inhibitors Induce a Prostate Luminal to Club Cell Transition in Human Benign Prostatic Hyperplasia. J. Pathol. 2022, 256, 427–441. [Google Scholar] [CrossRef]
- Izumi, K.; Mizokami, A.; Lin, W.-J.; Lai, K.-P.; Chang, C. Androgen Receptor Roles in the Development of Benign Prostate Hyperplasia. Am. J. Pathol. 2013, 182, 1942–1949. [Google Scholar] [CrossRef]
- Gormley, G.J.; Stoner, E.; Bruskewitz, R.C.; Imperato-McGinley, J.; Walsh, P.C.; McConnell, J.D.; Andriole, G.L.; Geller, J.; Bracken, B.R.; Tenover, J.S.; et al. The Effect of Finasteride in Men with Benign Prostatic Hyperplasia. N. Engl. J. Med. 1992, 327, 1185–1191. [Google Scholar] [CrossRef]
- Bauman, D.R.; Steckelbroeck, S.; Peehl, D.M.; Penning, T.M. Transcript Profiling of the Androgen Signal in Normal Prostate, Benign Prostatic Hyperplasia, and Prostate Cancer. Endocrinology 2006, 147, 5806–5816. [Google Scholar] [CrossRef]
- Alonso-Magdalena, P.; Brössner, C.; Reiner, A.; Cheng, G.; Sugiyama, N.; Warner, M.; Gustafsson, J.-A. A Role for Epithelial-Mesenchymal Transition in the Etiology of Benign Prostatic Hyperplasia. Proc. Natl. Acad. Sci. USA 2009, 106, 2859–2863. [Google Scholar] [CrossRef]
- Lu, T.; Lin, W.-J.; Izumi, K.; Wang, X.; Xu, D.; Fang, L.-Y.; Li, L.; Jiang, Q.; Jin, J.; Chang, C. Targeting Androgen Receptor to Suppress Macrophage-Induced EMT and Benign Prostatic Hyperplasia (BPH) Development. Mol. Endocrinol. 2012, 26, 1707–1715. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen Receptor (AR) Coregulators: An Overview. Endocr. Rev. 2002, 23, 175–200. [Google Scholar] [CrossRef] [PubMed]
- Love, H.D.; Booton, S.E.; Boone, B.E.; Breyer, J.P.; Koyama, T.; Revelo, M.P.; Shappell, S.B.; Smith, J.R.; Hayward, S.W. Androgen Regulated Genes in Human Prostate Xenografts in Mice: Relation to BPH and Prostate Cancer. PLoS ONE 2009, 4, e8384. [Google Scholar] [CrossRef] [PubMed]
- Frønsdal, K.; Engedal, N.; Slagsvold, T.; Saatcioglu, F. CREB Binding Protein Is a Coactivator for the Androgen Receptor and Mediates Cross-Talk with AP-1. J. Biol. Chem. 1998, 273, 31853–31859. [Google Scholar] [CrossRef] [PubMed]
- Welti, J.; Sharp, A.; Brooks, N.; Yuan, W.; McNair, C.; Chand, S.N.; Pal, A.; Figueiredo, I.; Riisnaes, R.; Gurel, B.; et al. Targeting the P300/CBP Axis in Lethal Prostate Cancer. Cancer Discov. 2021, 11, 1118–1137. [Google Scholar] [CrossRef]
- Ho, C.K.M.; Habib, F.K. Estrogen and Androgen Signaling in the Pathogenesis of BPH. Nat. Rev. Urol. 2011, 8, 29–41. [Google Scholar] [CrossRef]
- Comuzzi, B.; Lambrinidis, L.; Rogatsch, H.; Godoy-Tundidor, S.; Knezevic, N.; Krhen, I.; Marekovic, Z.; Bartsch, G.; Klocker, H.; Hobisch, A.; et al. The Transcriptional Co-Activator cAMP Response Element-Binding Protein-Binding Protein Is Expressed in Prostate Cancer and Enhances Androgen- and Anti-Androgen-Induced Androgen Receptor Function. Am. J. Pathol. 2003, 162, 233–241. [Google Scholar] [CrossRef]
- Salami, J.; Alabi, S.; Willard, R.R.; Vitale, N.J.; Wang, J.; Dong, H.; Jin, M.; McDonnell, D.P.; Crew, A.P.; Neklesa, T.K.; et al. Androgen Receptor Degradation by the Proteolysis-Targeting Chimera ARCC-4 Outperforms Enzalutamide in Cellular Models of Prostate Cancer Drug Resistance. Commun. Biol. 2018, 1, 100. [Google Scholar] [CrossRef]
- Xu, L.; Glass, C.K.; Rosenfeld, M.G. Coactivator and Corepressor Complexes in Nuclear Receptor Function. Curr. Opin. Genet. Dev. 1999, 9, 140–147. [Google Scholar] [CrossRef]
- Dancy, B.M.; Cole, P.A. Protein Lysine Acetylation by P300/CBP. Chem. Rev. 2015, 115, 2419–2452. [Google Scholar] [CrossRef]
- Vandel, L.; Trouche, D. Physical Association between the Histone Acetyl Transferase CBP and a Histone Methyl Transferase. EMBO Rep. 2001, 2, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Meehan, K.L.; Sadar, M.D. Androgens and Androgen Receptor in Prostate and Ovarian Malignancies. Front. Biosci. J. Virtual Libr. 2003, 8, d780–d800. [Google Scholar] [CrossRef]
- Shang, Y.; Myers, M.; Brown, M. Formation of the Androgen Receptor Transcription Complex. Mol. Cell 2002, 9, 601–610. [Google Scholar] [CrossRef]
- Kim, J.; Jia, L.; Stallcup, M.R.; Coetzee, G.A. The Role of Protein Kinase A Pathway and cAMP Responsive Element-Binding Protein in Androgen Receptor-Mediated Transcription at the Prostate-Specific Antigen Locus. J. Mol. Endocrinol. 2005, 34, 107–118. [Google Scholar] [CrossRef]
- Eguchi, M.; Nguyen, C.; Lee, S.C.; Kahn, M. ICG-001, a Novel Small Molecule Regulator of TCF/Beta-Catenin Transcription. Med. Chem. 2005, 1, 467–472. [Google Scholar] [CrossRef]
- Emami, K.H.; Nguyen, C.; Ma, H.; Kim, D.H.; Jeong, K.W.; Eguchi, M.; Moon, R.T.; Teo, J.-L.; Kim, H.Y.; Moon, S.H.; et al. A Small Molecule Inhibitor of Beta-Catenin/CREB-Binding Protein Transcription. Proc. Natl. Acad. Sci. USA 2004, 101, 12682–12687. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.M.; La Thangue, N.B. P300/CBP Proteins: HATs for Transcriptional Bridges and Scaffolds. J. Cell Sci. 2001, 114, 2363–2373. [Google Scholar] [CrossRef]
- Kalous, J.; Jansová, D.; Šušor, A. Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase. Cells 2020, 9, 1568. [Google Scholar] [CrossRef]
- Chakraborty, R.; Ostriker, A.C.; Xie, Y.; Dave, J.M.; Gamez-Mendez, A.; Chatterjee, P.; Abu, Y.; Valentine, J.; Lezon-Geyda, K.; Greif, D.M.; et al. Histone Acetyltransferases P300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity. Circulation 2022, 145, 1720–1737. [Google Scholar] [CrossRef]
- Kung, A.L.; Rebel, V.I.; Bronson, R.T.; Ch’ng, L.E.; Sieff, C.A.; Livingston, D.M.; Yao, T.P. Gene Dose-Dependent Control of Hematopoiesis and Hematologic Tumor Suppression by CBP. Genes Dev. 2000, 14, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Wang, C.; Reutens, A.T.; Wang, J.; Angeletti, R.H.; Siconolfi-Baez, L.; Ogryzko, V.; Avantaggiati, M.L.; Pestell, R.G. P300 and P300/cAMP-Response Element-Binding Protein-Associated Factor Acetylate the Androgen Receptor at Sites Governing Hormone-Dependent Transactivation. J. Biol. Chem. 2000, 275, 20853–20860. [Google Scholar] [CrossRef] [PubMed]
Rank | Gene Symbol | Gene Description | Degree |
---|---|---|---|
1 | GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | 29 |
2 | TNF | Tumor necrosis factor | 25 |
3 | CBP | CREB-binding protein | 17 |
4 | PPARG | Peroxisome proliferator-activated receptor, gamma | 14 |
5 | POLR2C | Polymerase (RNA) II polypeptide C | 12 |
6 | TBP | TATA box-binding protein | 12 |
7 | STAT5A | Signal transducer and activator of transcription 5A | 10 |
8 | SERPINA1 | Serine proteinase inhibitor, clade A | 10 |
9 | SAA1 | Serum amyloid A1 | 10 |
10 | CXCL10 | Chemokine (C-X-C motif) ligand 10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Liu, Z.; Li, Z.; Huang, C.; Yu, W.; Fan, Y.; Hu, S.; Jin, J. Inhibiting CBP Decreases AR Expression and Inhibits Proliferation in Benign Prostate Epithelial Cells. Biomedicines 2023, 11, 3028. https://doi.org/10.3390/biomedicines11113028
Tang X, Liu Z, Li Z, Huang C, Yu W, Fan Y, Hu S, Jin J. Inhibiting CBP Decreases AR Expression and Inhibits Proliferation in Benign Prostate Epithelial Cells. Biomedicines. 2023; 11(11):3028. https://doi.org/10.3390/biomedicines11113028
Chicago/Turabian StyleTang, Xingxing, Zhifu Liu, Zheng Li, Chenchen Huang, Wei Yu, Yu Fan, Shuai Hu, and Jie Jin. 2023. "Inhibiting CBP Decreases AR Expression and Inhibits Proliferation in Benign Prostate Epithelial Cells" Biomedicines 11, no. 11: 3028. https://doi.org/10.3390/biomedicines11113028
APA StyleTang, X., Liu, Z., Li, Z., Huang, C., Yu, W., Fan, Y., Hu, S., & Jin, J. (2023). Inhibiting CBP Decreases AR Expression and Inhibits Proliferation in Benign Prostate Epithelial Cells. Biomedicines, 11(11), 3028. https://doi.org/10.3390/biomedicines11113028