Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = CO2 geosequestration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 982 KB  
Article
Numerical Investigation of CO2 Injection Effects on Shale Caprock Integrity: A Case Study of Opalinus Clay
by Haval Kukha Hawez, Hawkar Bakir, Karwkh Jamal, Matin Kakakhan, Karzan Hussein and Mohammed Omar
Gases 2025, 5(3), 15; https://doi.org/10.3390/gases5030015 - 8 Jul 2025
Viewed by 885
Abstract
Carbon dioxide (CO2) geosequestration is a critical technology for reducing greenhouse gas emissions, with shale caprocks, such as Opalinus Clay (OPA), serving as essential seals to prevent CO2 leakage. This study employs computational fluid dynamics and finite element analysis to [...] Read more.
Carbon dioxide (CO2) geosequestration is a critical technology for reducing greenhouse gas emissions, with shale caprocks, such as Opalinus Clay (OPA), serving as essential seals to prevent CO2 leakage. This study employs computational fluid dynamics and finite element analysis to investigate the hydromechanical behavior of OPA during CO2 injection, integrating qualitative and quantitative insights. Validated numerical models indicate that capillary forces are the most critical factor in determining the material’s reaction, with an entry capillary pressure of 2–6 MPa serving as a significant threshold for CO2 breakthrough. The numbers show that increasing the stress loading from 5 to 30 MPa lowers permeability by 0.3–0.45% for every 5 MPa increase. Porosity, on the other hand, drops by 9.2–9.4% under the same conditions. The OPA is compacted, and axial displacements confirm numerical models with an error margin of less than 10%. Saturation analysis demonstrates that CO2 penetration becomes stronger at higher injection pressures (8–12 MPa), although capillary barriers slow migration until critical pressures are reached. These results demonstrate how OPA’s geomechanical stability and fluid dynamics interact, indicating that it may be utilized as a caprock for CO2 storage. The study provides valuable insights for enhancing injection techniques and assessing the safety of long-term storage. Full article
Show Figures

Figure 1

14 pages, 3547 KB  
Article
Combined Effect of Viscosity Ratio and Interfacial Tension on Residual Saturations: Implications for CO2 Geo-Storage
by Duraid Al-Bayati, Doaa Saleh Mahdi, Emad A. Al-Khdheeawi, Matthew Myers and Ali Saeedi
Gases 2025, 5(3), 13; https://doi.org/10.3390/gases5030013 - 25 Jun 2025
Viewed by 566
Abstract
This work examines how multiphase flow behavior during CO2 and N2 displacement in a microfluidic chip under capillary-dominated circumstances is affected by interfacial tension (IFT) and the viscosity ratio. In order to simulate real pore-scale displacement operations, microfluidic tests were performed [...] Read more.
This work examines how multiphase flow behavior during CO2 and N2 displacement in a microfluidic chip under capillary-dominated circumstances is affected by interfacial tension (IFT) and the viscosity ratio. In order to simulate real pore-scale displacement operations, microfluidic tests were performed on a 2D rock chip at flow rates of 1, 10, and 100 μL/min (displacement of water by N2/supercritical CO2). Moreover, core flooding experiments were performed on various sandstone samples collected from three different geological basins in Australia. Although CO2 is notably denser and more viscous than N2, the findings show that its displacement efficiency is more influenced by the IFT values. Low water recovery in CO2 is the result of non-uniform displacement that results from a high mobility ratio and low IFT; this traps remaining water in smaller pores via snap-off mechanisms. However, due to the blebbing effect, N2 injection enhances the dissociation of water clots, resulting in a greater swept area and fewer remaining water clusters. The morphological investigation of the residual water indicates various displacement patterns; CO2 leaves more retained water in irregular shapes, while N2 enables more uniform displacement. These results confirm earlier studies and suggest that IFT has a crucial role in fluid displacement proficiency in capillary-dominated flows, particularly at low flow rates. This study emphasizes the crucial role of IFT in improving water recovery through optimizing the CO2 flooding process. Full article
Show Figures

Figure 1

13 pages, 3053 KB  
Article
Effects of CO2 Geosequestration on Opalinus Clay
by Taimoor Asim and Haval Kukha Hawez
Energies 2024, 17(10), 2431; https://doi.org/10.3390/en17102431 - 19 May 2024
Cited by 2 | Viewed by 1810
Abstract
CO2 geosequestration is an important contributor to United Nations Sustainable Development Goal 13, i.e., Climate Action, which states a global Net-Zero CO2 emissions by 2050. A potential impact of CO2 geosequestration in depleted oil and gas reservoirs is the variations [...] Read more.
CO2 geosequestration is an important contributor to United Nations Sustainable Development Goal 13, i.e., Climate Action, which states a global Net-Zero CO2 emissions by 2050. A potential impact of CO2 geosequestration in depleted oil and gas reservoirs is the variations in induced pressure across the caprocks, which can lead to significant local variations in CO2 saturation. A detailed understanding of the relationship between the pressure gradient across the caprock and local CO2 concentration is of utmost importance for assessing the potential of CO2 geosequestration. Achieving this through experimental techniques is extremely difficult, and thus, we employ a coupled Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) based solver to mimic sub-critical CO2 injection in Opalinus Clay under various pressure gradients across the sample. The geomechanical and multiphase flow modelling utilising Darcy Law helps evaluate local variations in CO2 concentration in Opalinus Clay. Well-validated numerical results indicate favourable sub-critical CO2 geosequestration under a positive pressure gradient across Opalinus Clay. In the absence of a positive pressure gradient, a peak CO2 concentration of 5% has been recorded, which increases substantially (above 90%) as the pressure gradient across the sample increases. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

14 pages, 5906 KB  
Article
Optimizing CO2-Water Injection Ratio in Heterogeneous Reservoirs: Implications for CO2 Geo-Storage
by Emad A. Al-Khdheeawi
Energies 2024, 17(3), 678; https://doi.org/10.3390/en17030678 - 31 Jan 2024
Cited by 8 | Viewed by 1848
Abstract
The performance of carbon geo-sequestration is influenced by several parameters, such as the heterogeneity of the reservoir, the characteristics of the caprock, the wettability of the rock, and the salinity of the aquifer brine. Although many characteristics, like the formation geology, are fixed [...] Read more.
The performance of carbon geo-sequestration is influenced by several parameters, such as the heterogeneity of the reservoir, the characteristics of the caprock, the wettability of the rock, and the salinity of the aquifer brine. Although many characteristics, like the formation geology, are fixed and cannot be altered, it is feasible to choose and manipulate other parameters in order to design an optimized storage programme such as the implementation of CO2 injection techniques, including continuous injection or water alternating CO2, which can significantly increase storage capacity and guarantee secure containment. Although WAG (water-alternating-gas) technology has been widely applied in several industrial sectors such as enhanced oil recovery (EOR) and CO2 geo-sequestration, the impact of the CO2-to-water ratio on the performance of CO2 geo-sequestration in heterogeneous formations has not been investigated. In this study, we have constructed a 3D heterogeneous reservoir model to simulate the injection of water alternating gas in deep reservoirs. We have tested several CO2-water ratios, specifically the 2:1, 1:1, and 1:2 ratios. Additionally, we have estimated the capacity of CO2 trapping, as well as the mobility and migration of CO2. Our findings indicate that injecting a low ratio of CO2 to water (specifically 1:2) resulted in a much better performance compared to situations with no water injection and high CO2-water ratios. The residual and solubility trappings were notably increased by 11% and 19%, respectively, but the presence of free mobile CO2 was reduced by 27%. Therefore, in the reservoir under investigation, the lower CO2-water ratio is recommended due to its improvement in CO2 storage capacity and containment security. Full article
(This article belongs to the Special Issue Volume II: Carbon Capture, Utilisation and Storage)
Show Figures

Figure 1

29 pages, 7426 KB  
Article
Modeling of Brine/CO2/Mineral Wettability Using Gene Expression Programming (GEP): Application to Carbon Geo-Sequestration
by Jafar Abdi, Menad Nait Amar, Masoud Hadipoor, Thomas Gentzis, Abdolhossein Hemmati-Sarapardeh and Mehdi Ostadhassan
Minerals 2022, 12(6), 760; https://doi.org/10.3390/min12060760 - 15 Jun 2022
Cited by 5 | Viewed by 3058
Abstract
Carbon geo-sequestration (CGS), as a well-known procedure, is employed to reduce/store greenhouse gases. Wettability behavior is one of the important parameters in the geological CO2 sequestration process. Few models have been reported for characterizing the contact angle of the brine/CO2/mineral [...] Read more.
Carbon geo-sequestration (CGS), as a well-known procedure, is employed to reduce/store greenhouse gases. Wettability behavior is one of the important parameters in the geological CO2 sequestration process. Few models have been reported for characterizing the contact angle of the brine/CO2/mineral system at different environmental conditions. In this study, a smart machine learning model, namely Gene Expression Programming (GEP), was implemented to model the wettability behavior in a ternary system of CO2, brine, and mineral under different operating conditions, including salinity, pressure, and temperature. The presented models provided an accurate estimation for the receding, static, and advancing contact angles of brine/CO2 on various minerals, such as calcite, feldspar, mica, and quartz. A total of 630 experimental data points were utilized for establishing the correlations. Both statistical evaluation and graphical analyses were performed to show the reliability and performance of the developed models. The results showed that the implemented GEP model accurately predicted the wettability behavior under various operating conditions and a few data points were detected as probably doubtful. The average absolute percent relative error (AAPRE) of the models proposed for calcite, feldspar, mica, and quartz were obtained as 5.66%, 1.56%, 14.44%, and 13.93%, respectively, which confirm the accurate performance of the GEP algorithm. Finally, the investigation of sensitivity analysis indicated that salinity and pressure had the utmost influence on contact angles of brine/CO2 on a range of different minerals. In addition, the effect of the accurate estimation of wettability on CO2 column height for CO2 sequestration was illustrated. According to the impact of wettability on the residual and structural trapping mechanisms during the geo-sequestration of the carbon process, the outcomes of the GEP model can be beneficial for the precise prediction of the capacity of these mechanisms. Full article
(This article belongs to the Special Issue Shale and Tight Reservoir Characterization and Resource Assessment)
Show Figures

Figure 1

26 pages, 2510 KB  
Review
A Review of the Studies on CO2–Brine–Rock Interaction in Geological Storage Process
by Ameh Peter, Dongmin Yang, Kenneth Imo-Imo Israel Eshiet and Yong Sheng
Geosciences 2022, 12(4), 168; https://doi.org/10.3390/geosciences12040168 - 12 Apr 2022
Cited by 55 | Viewed by 7090
Abstract
CO2–brine–rock interaction impacts the behavior and efficiency of CO2 geological storage; a thorough understanding of these impacts is important. A lot of research in the past has considered the nature and impact of CO2–brine–rock interaction and much has [...] Read more.
CO2–brine–rock interaction impacts the behavior and efficiency of CO2 geological storage; a thorough understanding of these impacts is important. A lot of research in the past has considered the nature and impact of CO2–brine–rock interaction and much has been learned. Given that the solubility and rate of mineralization of CO2 in brine under reservoir conditions is slow, free and mobile, CO2 will be contained in the reservoir for a long time until the phase of CO2 evolves. A review of independent research indicates that the phase of CO2 affects the nature of CO2–brine–rock interaction. It is important to understand how different phases of CO2 that can be present in a reservoir affects CO2–brine–rock interaction. However, the impact of the phase of CO2 in a CO2–brine–rock interaction has not been given proper attention. This paper is a systematic review of relevant research on the impact of the phase of CO2 on the behavior and efficiency of CO2 geological storage, extending to long-term changes in CO2, brine, and rock properties; it articulates new knowledge on the effect of the phase of CO2 on CO2–brine–rock behavior in geosequestration sites and highlights areas for further development. Full article
Show Figures

Figure 1

21 pages, 3071 KB  
Article
Gas Migration Patterns with Different Borehole Sizes in Underground Coal Seams: Numerical Simulations and Field Observations
by Haibo Liu, Zhihang Shu, Yinbin Shi, Xuebing Wang, Xucheng Xiao and Jia Lin
Minerals 2021, 11(11), 1254; https://doi.org/10.3390/min11111254 - 11 Nov 2021
Cited by 3 | Viewed by 2422
Abstract
Gas flow in a coal seam is a complex process due to the complicated coal structure and the sorption characteristics of coal to adsorbable gas (such as carbon dioxide and methane). It is essential to understand the gas migration patterns for different fields [...] Read more.
Gas flow in a coal seam is a complex process due to the complicated coal structure and the sorption characteristics of coal to adsorbable gas (such as carbon dioxide and methane). It is essential to understand the gas migration patterns for different fields of engineering, such as CBM exploitation, underground coal mine gas drainage, and CO2 geo-sequestration. Many factors influence gas migration patterns. From the surface production wells, the in-seam patterns of gas content cannot be quantified, and it is difficult to predict the total gas production time. In order to understand the gas flow patterns during gas recovery and the gas content variations with respect to production time, a solid-fluid coupled gas migration model is proposed to illustrate the gas flow in a coal seam. Field data was collected and simulation parameters were obtained. Based on this model, different scenarios with different borehole sizes were simulated for both directional boreholes and normal parallel boreholes in coal seams. Specifically, the borehole sizes for the directional boreholes were 10 m, 15 m, and 20 m. The borehole sizes for the normal parallel boreholes were 2 m, 4 m, and 6 m. Under different gas drainage leading times, the total gas recovery and residual gas contents were quantified. In Longwall Panel 909 of the Wuhushan coal mine, one gas drainage borehole and five 4 m monitoring boreholes were drilled. After six months of monitoring, the residual gas content was obtained and compared with the simulation results. Of the total gas, 61.36% was drained out from the first 4 m borehole. In this field study, the effective drainage diameter of the drainage borehole was less than 8 m after six months of drainage. The gas drainage performance was tightly affected by the borehole size and the gas drainage time. It was determined that the field observations were in line with the simulation results. The findings of this study can provide field data for similar conditions. Full article
(This article belongs to the Special Issue Minerals Impact on CO2 Geo-sequestration in Deep Reservoirs)
Show Figures

Figure 1

20 pages, 1653 KB  
Article
Influence of Pore Size Distribution on the Electrokinetic Coupling Coefficient in Two-Phase Flow Conditions
by Jan Vinogradov, Rhiannon Hill and Damien Jougnot
Water 2021, 13(17), 2316; https://doi.org/10.3390/w13172316 - 24 Aug 2021
Cited by 11 | Viewed by 4177
Abstract
Streaming potential is a promising method for a variety of hydrogeophysical applications, including the characterisation of the critical zone, contaminant transport or saline intrusion. A simple bundle of capillary tubes model that accounts for realistic pore and pore throat size distribution of porous [...] Read more.
Streaming potential is a promising method for a variety of hydrogeophysical applications, including the characterisation of the critical zone, contaminant transport or saline intrusion. A simple bundle of capillary tubes model that accounts for realistic pore and pore throat size distribution of porous rocks is presented in this paper to simulate the electrokinetic coupling coefficient and compared with previously published models. In contrast to previous studies, the non-monotonic pore size distribution function used in our model relies on experimental data for Berea sandstone samples. In our approach, we combined this explicit capillary size distribution with the alternating radius of each capillary tube to mimic pores and pore throats of real rocks. The simulation results obtained with our model predicts water saturation dependence of the relative electrokinetic coupling coefficient more accurately compared with previous studies. Compared with previous studies, our simulation results demonstrate that the relative coupling coefficient remains stable at higher water saturations but vanishes to zero more rapidly as water saturation approaches the irreducible value. This prediction is consistent with the published experimental data. Moreover, our model was more accurate compared with previously published studies in computing the true irreducible water saturation relative to the value reported in an experimental study on a Berea sandstone sample saturated with tap water and liquid CO2. Further modifications, including explicit modelling of the capillary trapping of the non-wetting phase, are required to improve the accuracy of the model. Full article
Show Figures

Figure 1

15 pages, 1919 KB  
Article
Strength Reduction of Coal Pillar after CO2 Sequestration in Abandoned Coal Mines
by Qiuhao Du, Xiaoli Liu, Enzhi Wang and Sijing Wang
Minerals 2017, 7(2), 26; https://doi.org/10.3390/min7020026 - 17 Feb 2017
Cited by 28 | Viewed by 5585
Abstract
CO2 geosequestration is currently considered to be the most effective and economical method to dispose of artificial greenhouse gases. There are a large number of coal mines that will be scrapped, and some of them are located in deep formations in China. [...] Read more.
CO2 geosequestration is currently considered to be the most effective and economical method to dispose of artificial greenhouse gases. There are a large number of coal mines that will be scrapped, and some of them are located in deep formations in China. CO2 storage in abandoned coal mines will be a potential option for greenhouse gas disposal. However, CO2 trapping in deep coal pillars would induce swelling effects of coal matrix. Adsorption-induced swelling not only modifies the volume and permeability of coal mass, but also causes the basic physical and mechanical properties changing, such as elastic modulus and Poisson ratio. It eventually results in some reduction in pillar strength. Based on the fractional swelling as a function of time and different loading pressure steps, the relationship between volumetric stress and adsorption pressure increment is acquired. Eventually, this paper presents a theory model to analyze the pillar strength reduction after CO2 adsorption. The model provides a method to quantitatively describe the interrelation of volumetric strain, swelling stress, and mechanical strength reduction after gas adsorption under the condition of step-by-step pressure loading and the non-Langmuir isothermal model. The model might have a significantly important implication for predicting the swelling stress and mechanical behaviors of coal pillars during CO2 sequestration in abandoned coal mines. Full article
Show Figures

Figure 1

18 pages, 275 KB  
Article
The Environmental and Economic Sustainability of Carbon Capture and Storage
by Paul E. Hardisty, Mayuran Sivapalan and Peter Brooks
Int. J. Environ. Res. Public Health 2011, 8(5), 1460-1477; https://doi.org/10.3390/ijerph8051460 - 9 May 2011
Cited by 57 | Viewed by 15129
Abstract
For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; [...] Read more.
For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency. Full article
(This article belongs to the Special Issue Carbon Capture and Storage)
Show Figures

Back to TopTop