Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = CLEC4M

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2943 KiB  
Article
Identification of Genes Linked to Meniscal Degeneration in Osteoarthritis: An In Silico Analysis
by Aliki-Alexandra Papageorgiou, Charalampos Balis and Ioanna Papathanasiou
Int. J. Mol. Sci. 2025, 26(14), 6651; https://doi.org/10.3390/ijms26146651 - 11 Jul 2025
Viewed by 266
Abstract
Meniscal degradation is considered a driver of osteoarthritis (OA) progression, but the underlying mechanisms leading to age-related meniscus degeneration remain unknown. This study aimed to identify key genes and pathways involved in meniscal degradation through a computational analysis. Gene expression profiles were obtained [...] Read more.
Meniscal degradation is considered a driver of osteoarthritis (OA) progression, but the underlying mechanisms leading to age-related meniscus degeneration remain unknown. This study aimed to identify key genes and pathways involved in meniscal degradation through a computational analysis. Gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Differential expression gene (DEG) analysis was performed using DESeq2 accompanied by functional enrichment analysis, protein–protein interaction (PPI) and clustering analysis. Additionally, gene set enrichment analysis (GSEA) was performed. A total of 85 mRNAs (DEMs) and 8 long non-coding RNAs (DE LncRNAs) were found to be differentially expressed in OA meniscus tissues. Among 85 DEMs, 12 genes were found to be known OA-related genes, whereas 15 genes acted as transcription regulators, including RUNX2 and TBX4, which were identified as effector genes for OA. Enrichment analysis revealed the implication of DEMs in cartilage-degradation-related processes, including inflammatory pathways, lipid metabolism, extracellular matrix organization and superoxide/nitric oxide metabolic processes. Target genes of DE lncRNAs were found to be involved in chondrocyte differentiation and pathways related to cartilage degradation. A comparative analysis of meniscus, synovium and cartilage datasets identified three genes (GJB2, PAQR5 and CLEC12A) as being differentially expressed across all three OA-affected tissues, which were implicated in inflammatory and cholesterol metabolism processes. Our results support that shared mechanisms lead to meniscal and cartilage degradation during OA progression, providing further insights into the processes underlying OA pathogenesis and potential therapeutic targets for knee OA. Full article
(This article belongs to the Special Issue Computer Analysis for Molecular Pathological Research)
Show Figures

Figure 1

10 pages, 1161 KiB  
Article
MCP-1 Reduction by L-SIGN Expression in Dengue Virus-Infected Liver Endothelial Cells
by Keh-Sen Liu, Lin Wang, Po-Ming Chen, Ing-Kit Lee, Kuender D. Yang and Rong-Fu Chen
Viruses 2025, 17(3), 344; https://doi.org/10.3390/v17030344 - 28 Feb 2025
Cited by 1 | Viewed by 684
Abstract
(1) Background: The C-type lectin domain family 4 member M (CLEC4M, also known as L-SIGN) is a crucial pathogen-recognition receptor for the dengue virus (DENV). Our previous study has exhibited a polymorphism in its extracellular neck region, specifically within the long tandem repeats [...] Read more.
(1) Background: The C-type lectin domain family 4 member M (CLEC4M, also known as L-SIGN) is a crucial pathogen-recognition receptor for the dengue virus (DENV). Our previous study has exhibited a polymorphism in its extracellular neck region, specifically within the long tandem repeats of exon 4, which correlates with DHF in DENV infection and causes liver damage. (2) Methods: Using monocyte-derived dendritic cells (MDDCs) and SK-HEP1 liver endothelial cell lines to compare viral replication relative to L-SIGN expression. (3) Results: Results indicated that SK-HEP1 cells were more susceptible to DENV infection than MDDCs, and L-SIGN transfection significantly increased viral replication in SK-HEP1 cell lines. The study also found that L-SIGN-enhanced DENV infection is mediated by the decrease in monocyte chemoattractant protein-1 (MCP-1) but not interferon gamma inducible protein-10 (IP-10). These findings reveal that L-SIGN-induced DENV infection leads to reduced MCP-1 levels, which, in turn, enhances DENV replication velocity. (4) Conclusions: This study offers insights into the molecular mechanisms of DENV replication and identifies potential therapeutic targets involving MCP-1 and L-SIGN pathways. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 1499 KiB  
Article
The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome
by Ali Kemal Oguz, Cagdas Sahap Oygur, Bala Gur Dedeoglu, Irem Dogan Turacli, Sibel Serin Kilicoglu and Ihsan Ergun
Medicina 2025, 61(1), 162; https://doi.org/10.3390/medicina61010162 - 19 Jan 2025
Viewed by 1388
Abstract
Background and Objectives: Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated, fibroinflammatory, multiorgan disease with an obscure pathogenesis. Findings indicating excessive platelet activation have been reported in systemic sclerosis, which is another autoimmune, multisystemic fibrotic disorder. The immune-mediated, inflammatory, and fibrosing intersections of IgG4-RD [...] Read more.
Background and Objectives: Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated, fibroinflammatory, multiorgan disease with an obscure pathogenesis. Findings indicating excessive platelet activation have been reported in systemic sclerosis, which is another autoimmune, multisystemic fibrotic disorder. The immune-mediated, inflammatory, and fibrosing intersections of IgG4-RD and systemic sclerosis raised a question about platelets’ role in IgG4-RD. Materials and Methods: By borrowing transcriptomic data from Nakajima et al. (GEO repository, GSE66465) we sought a platelet contribution to the pathogenesis of IgG4-RD. GEO2R and BRB-ArrayTools were used for class comparisons, and WebGestalt for functional enrichment analysis. During the selection of differentially expressed genes (DEGs), the translationally active but significantly low amount of platelet mRNA was specifically considered. The platelet-specific gene signature derived was used for cluster analysis of patient and control groups. Results: When IgG4-RD patients were compared with controls, 268 DEGs (204 with increased and 64 with decreased expression) were detected. Among these, a molecular signature of 22 platelet-specific genes harbored genes important for leukocyte–platelet aggregate formation (i.e., CLEC1B, GP1BA, ITGA2B, ITGB3, SELP, and TREML1) and extracellular matrix synthesis (i.e., CLU, PF4, PPBP, SPARC, and THBS1). Functional enrichment analysis documented significantly enriched terms related to platelets, including but not limited to “platelet reactivity”, “platelet degranulation”, “platelet aggregation”, and “platelet activation”. During clustering, the 22 gene signatures successfully discriminated IgG4-RD and the control and the IgG4-RD before and after treatment groups. Conclusions: Patients with IgG4-RD apparently display an activated platelet phenotype with a potential contribution to disease immunopathogenesis. If the platelets’ role is validated through further carefully designed research, the therapeutic potentials of selected conventional and/or novel antiplatelet agents remain to be evaluated in patients with IgG4-RD. Transcriptomics and/or proteomics research with platelets should take into account the relatively low amounts of platelet mRNA, miRNA, and protein. Secondary analysis of omics data sets has great potential to reveal new and valuable information. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Graphical abstract

26 pages, 1057 KiB  
Review
State of Knowledge About Thyroid Cancers in the Era of COVID-19—A Narrative Review
by Agnieszka Bronowicka-Szydełko, Maciej Rabczyński, Ilias Dumas, Żanna Fiodorenko-Dumas, Beata Wojtczak, Łukasz Kotyra, Irena Kustrzeba-Wójcicka, Łukasz Lewandowski, Beata Ponikowska, Aleksandra Kuzan, Joanna Kluz, Andrzej Gamian and Katarzyna Madziarska
Biomedicines 2024, 12(12), 2829; https://doi.org/10.3390/biomedicines12122829 - 13 Dec 2024
Cited by 2 | Viewed by 1758
Abstract
Thyroid cancer (TC), due to its heterogeneous nature, remains a clinical challenge. Many factors can initiate the carcinogenesis process of various types of TC, which complicates diagnosis and treatment. The presented review gathers current information on specific types of TC, taking into account [...] Read more.
Thyroid cancer (TC), due to its heterogeneous nature, remains a clinical challenge. Many factors can initiate the carcinogenesis process of various types of TC, which complicates diagnosis and treatment. The presented review gathers current information on specific types of TC, taking into account the effects of the COVID-19 pandemic. It is likely that COVID-19 has influenced and continues to influence the function of the thyroid gland. A high percentage of patients with COVID-19 showing simultaneous pathological changes in the thyroid suggests that SARS-CoV-2 may disrupt the function of this gland and initiate pro-oxidative mechanisms, inflammatory states, and autoimmune diseases, thereby promoting the formation of neoplastic changes. Furthermore, changes in the expression of the ACE2, TMPRSS2, CLEC4M and DPP4 genes, observed in TC, also occur in COVID-19. Therefore, it is probable that the interaction of SARS-CoV-2 with thyroid cell receptors may initiate carcinogenesis in this gland. Additionally, some drugs used in TC therapy (e.g., levothyroxine) may increase the affinity of SARS-CoV-2 for cells, which could contribute to a more severe course of COVID-19 and the emergence of long-term symptoms (post-COVID-19). Moreover, the consequences of sanitary restrictions (limited access to medical services, reduction in endocrinological and oncological procedures) that took place in many countries during the COVID-19 pandemic may lead in the future to an increased number of missed diagnoses and the emergence of aggressive cancers. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

13 pages, 902 KiB  
Article
Oral Spore-Based Probiotic Supplementation Alters Post-Prandial Expression of mRNA Associated with Gastrointestinal Health
by Brian K. McFarlin, Sarah E. Deemer and Elizabeth A. Bridgeman
Biomedicines 2024, 12(10), 2386; https://doi.org/10.3390/biomedicines12102386 - 18 Oct 2024
Cited by 1 | Viewed by 1478
Abstract
Background/Objectives: Unregulated post-prandial dietary endotoxemia may accumulate over time and underlie the development of chronic disease (e.g., leaky gut, inflammatory bowel disease, etc.), for which oral probiotic supplementation may be a prophylactic. The purpose of this study was to determine if 45 [...] Read more.
Background/Objectives: Unregulated post-prandial dietary endotoxemia may accumulate over time and underlie the development of chronic disease (e.g., leaky gut, inflammatory bowel disease, etc.), for which oral probiotic supplementation may be a prophylactic. The purpose of this study was to determine if 45 d of oral spore-based probiotic supplementation altered gastrointestinal-associated mRNA expression following a high-fat meal. Methods: A subset of apparently healthy individuals from a larger study who had dietary endotoxemia at baseline completed 45 d of supplementation with either a placebo (rice flour; n = 10) or spore-based probiotic (Megasporebiotic™; Novonesis, Kongens Lyngby, Denmark; Bacillus indicus (HU36™), Bacillus subtilis (HU58™), Bacillus coagulans (SC208™), and Bacillus licheniformis (SL-307), and Bacillus clausii (SC109™); n = 10). Venous blood was collected in Paxgene RNA tubes prior to (PRE), 3 h, and 5 h after consumption of a high-fat meal (85% of the daily fat RDA and 65% of the daily calorie needs). Total RNA was analyzed for 579 mRNAs of interest (Nanostring nCounter Sprint; Seattle, WA, USA). After normalization to housekeeping controls and calculation of differential expression relative to PRE and controlled for FDR, 15 mRNAs were determined to be significantly changed at either 3 h and/or 5 h post-prandial in the probiotic group but not in the placebo group. Results: Significant mRNA expressions were associated with gastrointestinal tract barrier function (four mRNAs: BATF3, CCR6, CXCR6, and PDCD2), gastrointestinal immunity (four mRNAs: CLEC5A, IL7, CARD9, and FCER1G), or future IBD risk (seven mRNAs: PD-L1, CSF1R, FAS, BID, FADD, GATA3, and KIR3DL). Conclusions: Collectively, the present findings may support the notion that post-prandial immune response to eating is enhanced following 45 d of probiotic supplementation. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine)
Show Figures

Figure 1

15 pages, 3576 KiB  
Article
High-Throughput Transcriptomics Identifies Chemoresistance-Associated Gene Expression Signatures in Human Angiosarcoma
by Glenys Mai Shia Khor, Sara Haghani, Tiffany Rui En Tan, Elizabeth Chun Yong Lee, Bavani Kannan, Boon Yee Lim, Jing Yi Lee, Zexi Guo, Tun Kiat Ko and Jason Yongsheng Chan
Int. J. Mol. Sci. 2024, 25(19), 10863; https://doi.org/10.3390/ijms251910863 - 9 Oct 2024
Viewed by 1960
Abstract
Angiosarcomas, clinically aggressive cancers of endothelial origin, are a rare subtype of soft-tissue sarcomas characterized by resistance to chemotherapy and dismal prognosis. In this study, we aim to identify the transcriptomic biomarkers of chemoresistance in angiosarcoma. We examined 72 cases of Asian angiosarcomas, [...] Read more.
Angiosarcomas, clinically aggressive cancers of endothelial origin, are a rare subtype of soft-tissue sarcomas characterized by resistance to chemotherapy and dismal prognosis. In this study, we aim to identify the transcriptomic biomarkers of chemoresistance in angiosarcoma. We examined 72 cases of Asian angiosarcomas, including 35 cases treated with palliative chemotherapy, integrating information from NanoString gene expression profiling, whole transcriptome profiling (RNA-seq), immunohistochemistry, cell line assays, and clinicopathological data. In the chemoresistant cohort (defined as stable disease or progression), we observed the significant overexpression of genes, including SPP1 (log2foldchange 3.49, adj. p = 0.0112), CXCL13, CD48, and CLEC5A, accompanied by the significant enrichment of myeloid compartment and cytokine and chemokine signaling pathways, as well as neutrophils and macrophages. RNA-seq data revealed higher SPP1 expression (p = 0.0008) in tumor tissues over adjacent normal compartments. Immunohistochemistry showed a significant moderate positive correlation between SPP1 protein and gene expression (r = 0.7016; p < 0.00110), while higher SPP1 protein expression correlated with lower chemotherapeutic sensitivity in patient-derived angiosarcoma cell lines MOLAS and ISOHAS. In addition, SPP1 mRNA overexpression positively correlated with epithelioid histology (p = 0.007), higher tumor grade (p = 0.0023), non-head and neck location (p = 0.0576), and poorer overall survival outcomes (HR 1.84, 95% CI 1.07–3.18, p = 0.0288). There was no association with tumor mutational burden, tumor inflammation signature, the presence of human herpesvirus-7, ultraviolet exposure signature, and metastatic state at diagnosis. In conclusion, SPP1 overexpression may be a biomarker of chemoresistance and poor prognosis in angiosarcoma. Further investigation is needed to uncover the precise roles and underlying mechanisms of SPP1. Full article
Show Figures

Figure 1

26 pages, 5530 KiB  
Article
Production of GcMAF with Anti-Inflammatory Properties and Its Effect on Models of Induced Arthritis in Mice and Cystitis in Rats
by Svetlana S. Kirikovich, Evgeniy V. Levites, Anastasia S. Proskurina, Genrikh S. Ritter, Evgeniya V. Dolgova, Vera S. Ruzanova, Sofya G. Oshihmina, Julia S. Snegireva, Svetlana G. Gamaley, Galina M. Sysoeva, Elena D. Danilenko, Oleg S. Taranov, Alexandr A. Ostanin, Elena R. Chernykh, Nikolay A. Kolchanov and Sergey S. Bogachev
Curr. Issues Mol. Biol. 2024, 46(10), 10934-10959; https://doi.org/10.3390/cimb46100650 - 28 Sep 2024
Cited by 2 | Viewed by 2377
Abstract
Vitamin D3 transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates [...] Read more.
Vitamin D3 transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates mouse peritoneal macrophages towards synthesis of either pro- (IL-1β, TNF-α—M1 phenotype) or anti-inflammatory (TGF-β, IL-10—M2 phenotype) cytokines. The condition for the transition of the direction of the inflammatory response of macrophages when exposed to GcMAF is the initial glycosylated state of the population of DBP molecules and the associated effective deglycosylation of DBP by β-galactosidase. In vivo experiments with GcMAF exhibiting anti-inflammatory properties on models of induced arthritis in mice and cystitis in rats indicate a significant anti-inflammatory effect of the macrophage activator. The feasibility of unidirectional induction of anti-inflammatory properties of macrophages allows creation of combined therapeutic platforms where M2 macrophages are among the key therapeutic components. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammatory Diseases)
Show Figures

Figure 1

19 pages, 3040 KiB  
Article
Identification of Podoplanin Aptamers by SELEX for Protein Detection and Inhibition of Platelet Aggregation Stimulated by C-Type Lectin-like Receptor 2
by Hui-Ju Tsai, Kai-Wen Cheng, Jou-Chen Li, Tsai-Xiang Ruan, Ting-Hsin Chang, Jin-Ru Wang and Ching-Ping Tseng
Biosensors 2024, 14(10), 464; https://doi.org/10.3390/bios14100464 - 27 Sep 2024
Viewed by 1765
Abstract
Tumor cell-induced platelet aggregation (TCIPA) is a mechanism for the protection of tumor cells in the bloodstream and the promotion of tumor progression and metastases. The platelet C-type lectin-like receptor 2 (CLEC-2) can bind podoplanin (PDPN) on a cancer cell surface to facilitate [...] Read more.
Tumor cell-induced platelet aggregation (TCIPA) is a mechanism for the protection of tumor cells in the bloodstream and the promotion of tumor progression and metastases. The platelet C-type lectin-like receptor 2 (CLEC-2) can bind podoplanin (PDPN) on a cancer cell surface to facilitate TCIPA. Selective blockage of PDPN-mediated platelet–tumor cell interaction is a plausible strategy for inhibiting metastases. In this study, we aimed to screen for aptamers, which are the single-stranded DNA oligonucleotides that form a specific three-dimensional structure, bind to specific molecular targets with high affinity and specificity, bind to PDPN, and interfere with PDPN/CLEC-2 interactions. The systematic evolution of ligands by exponential enrichment (SELEX) was employed to enrich aptamers that recognize PDPN. The initial characterization of ssDNA pools enriched by SELEX revealed a PDPN aptamer designated as A1 displaying parallel-type G-quadruplexes and long stem-and-loop structures and binding PDPN with a material with a dissociation constant (Kd) of 1.3 ± 1.2 nM. The A1 aptamer recognized both the native and denatured form of PDPN. Notably, the A1 aptamer was able to quantitatively detect PDPN proteins in Western blot analysis. The A1 aptamer could interfere with the interaction between PDPN and CLEC-2 and inhibit PDPN-induced platelet aggregation in a concentration-dependent manner. These findings indicated that the A1 aptamer is a candidate for the development of biosensors in detecting the levels of PDPN expression. The action by A1 aptamer could result in the prevention of tumor cell metastases, and if so, could become an effective pharmacological agent in treating cancer patients. Full article
(This article belongs to the Special Issue Design and Application of Novel Nucleic Acid Probe)
Show Figures

Figure 1

14 pages, 3186 KiB  
Article
Relationship between the Number of Repeats in the Neck Regions of L-SIGN and Augmented Virus Replication and Immune Responses in Dengue Hemorrhagic Fever
by Keh-Sen Liu, Po-Ming Chen, Lin Wang, Ing-Kit Lee, Kuender D. Yang and Rong-Fu Chen
Int. J. Mol. Sci. 2024, 25(10), 5497; https://doi.org/10.3390/ijms25105497 - 17 May 2024
Cited by 1 | Viewed by 1431
Abstract
C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: [...] Read more.
C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection. PCR genotyping was utilized to identify polymorphisms in variable-number tandem repeats. We constructed L-SIGN variants containing either 7- or 9-tandem repeats and transfected these constructs into K562 and U937 cells, and cytokine and chemokine levels were evaluated using enzyme-linked immunosorbent assays (ELISAs) following DEN-2 virus infection. The L-SIGN allele 9 was observed to correlate with a heightened risk of developing DHF. Subsequent results revealed that the 9-tandem repeat was linked to elevated viral load alongside predominant T-helper 2 (Th2) cell responses (IL-4 and IL-10) in K562 and U937 cells. Transfecting K562 cells in vitro with L-SIGN variants containing 7- and 9-tandem repeats confirmed that the 9-tandem repeat transfectants facilitated a higher dengue viral load accompanied by increased cytokine production (MCP-1, IL-6, and IL-8). Considering the higher prevalence of DHF and an increased frequency of the L-SIGN neck’s 9-tandem repeat in the Taiwanese population, individuals with the 9-tandem repeat may necessitate more stringent protection against mosquito bites during dengue outbreaks in Taiwan. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

14 pages, 3038 KiB  
Article
EcoHIV-Infected Mice Show No Signs of Platelet Activation
by Hammodah R. Alfar, Dominic Ngima Nthenge-Ngumbau, Kathryn E. Saatman and Sidney W. Whiteheart
Viruses 2024, 16(1), 55; https://doi.org/10.3390/v16010055 - 29 Dec 2023
Cited by 3 | Viewed by 2318
Abstract
Platelets express several surface receptors that could interact with different viruses. To understand the mechanisms of HIV-1′s interaction with platelets, we chose the EcoHIV model. While EcoHIV is an established model for neuroAIDS, its effects on platelets are ill-defined. Our results indicate that [...] Read more.
Platelets express several surface receptors that could interact with different viruses. To understand the mechanisms of HIV-1′s interaction with platelets, we chose the EcoHIV model. While EcoHIV is an established model for neuroAIDS, its effects on platelets are ill-defined. Our results indicate that EcoHIV behaves differently from HIV-1 and is cleared from circulation after 48 h post-infection. The EcoHIV course of infection resembles an HIV-1 infection under the effects of combined antiretroviral therapy (cART) since infected mice stayed immunocompetent and the virus was readily detected in the spleen. EcoHIV-infected mice failed to become thrombocytopenic and showed no signs of platelet activation. One explanation is that mouse platelets lack the EcoHIV receptor, murine Cationic Amino acid Transporter-1 (mCAT-1). No mCAT-1 was detected on their surface, nor was any mCAT-1 mRNA detected. Thus, mouse platelets would not bind or become activated by EcoHIV. However, impure virus preparations, generated by Polyethylene Glycol (PEG) precipitation, do activate platelets, suggesting that nonspecific PEG-precipitates may contain other platelet activators (e.g., histones and cell debris). Our data do not support the concept that platelets, through general surface proteins such as DC-SIGN or CLEC-2, have a wide recognition for different viruses and suggest that direct platelet/pathogen interactions are receptor/ligand specific. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

37 pages, 8919 KiB  
Article
The Molecular Aspects of Functional Activity of Macrophage-Activating Factor GcMAF
by Svetlana S. Kirikovich, Evgeniy V. Levites, Anastasia S. Proskurina, Genrikh S. Ritter, Sergey E. Peltek, Asya R. Vasilieva, Vera S. Ruzanova, Evgeniya V. Dolgova, Sofya G. Oshihmina, Alexandr V. Sysoev, Danil I. Koleno, Elena D. Danilenko, Oleg S. Taranov, Alexandr A. Ostanin, Elena R. Chernykh, Nikolay A. Kolchanov and Sergey S. Bogachev
Int. J. Mol. Sci. 2023, 24(24), 17396; https://doi.org/10.3390/ijms242417396 - 12 Dec 2023
Cited by 5 | Viewed by 2654
Abstract
Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, [...] Read more.
Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa—pro-inflammatory (TNF-α, IL-1β) and 63 kDa—anti-inflammatory (TGF-β, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated. Full article
(This article belongs to the Special Issue Vitamin D and Vitamin D Binding Protein in Health and Disease 3.0)
Show Figures

Figure 1

13 pages, 1623 KiB  
Article
C-Type Lectin-like Receptor 2 Expression Is Decreased upon Platelet Activation and Is Lower in Most Tumor Entities Compared to Healthy Controls
by Mani Etemad, Foteini Christodoulou, Stefanie Uhlig, Jessica C. Hassel, Petra Schrotz-King, Hermann Brenner, Cornelia M. Ulrich, Karen Bieback, Harald Klüter and Peter Bugert
Cancers 2023, 15(23), 5514; https://doi.org/10.3390/cancers15235514 - 22 Nov 2023
Cited by 2 | Viewed by 2061
Abstract
The C-type lectin-like receptor 2 (CLEC-2) is expressed on platelets and mediates binding to podoplanin (PDPN) on various cell types. The binding to circulating tumor cells (CTCs) leads to platelet activation and promotes metastatic spread. An increased level of soluble CLEC-2 (sCLEC-2), presumably [...] Read more.
The C-type lectin-like receptor 2 (CLEC-2) is expressed on platelets and mediates binding to podoplanin (PDPN) on various cell types. The binding to circulating tumor cells (CTCs) leads to platelet activation and promotes metastatic spread. An increased level of soluble CLEC-2 (sCLEC-2), presumably released from activated platelets, was shown in patients with thromboinflammatory and malignant disease. However, the functional role of sCLEC-2 and the mechanism of sCLEC-2 release are not known. In this study, we focused on the effect of platelet activation on CLEC-2 expression and the sCLEC-2 plasma level in patients with cancer. First, citrated blood from healthy volunteer donors (n = 20) was used to measure the effect of platelet stimulation by classical agonists and PDPN on aggregation, CLEC-2 expression on platelets with flow cytometry, sCLEC-2 release to the plasma with ELISA and total CLEC-2 expression with Western blot analysis. Second, sCLEC-2 was determined in plasma samples from healthy donors (285) and patients with colorectal carcinoma (CRC; 194), melanoma (160), breast cancer (BC; 99) or glioblastoma (49). PDPN caused a significant increase in the aggregation response induced by classical agonists. ADP or PDPN stimulation of platelets caused a significant decrease in CLEC-2 on platelets and sCLEC-2 in the plasma, whereas total CLEC-2 in platelet lysates remained the same. Thus, the increased plasma level of sCLEC-2 is not a suitable biomarker of platelet activation. In patients with CRC (median 0.9 ng/mL), melanoma (0.9 ng/mL) or BC (0.7 ng/mL), we found significantly lower sCLEC-2 levels (p < 0.0001), whereas patients with glioblastoma displayed higher levels (2.6 ng/mL; p = 0.0233) compared to healthy controls (2.1 ng/mL). The low sCLEC-2 plasma level observed in most of the tumor entities of our study presumably results from the internalization of sCLEC-2 by activated platelets or binding of sCLEC-2 to CTCs. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

20 pages, 5532 KiB  
Article
Intermittent Hypoxia Promotes TAM-Induced Glycolysis in Laryngeal Cancer Cells via Regulation of HK1 Expression through Activation of ZBTB10
by Minlan Yang, Weisong Cai, Zehua Lin, Aikebaier Tuohuti and Xiong Chen
Int. J. Mol. Sci. 2023, 24(19), 14808; https://doi.org/10.3390/ijms241914808 - 30 Sep 2023
Cited by 7 | Viewed by 2497
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), may increase the risk of cancer development and a poor cancer prognosis. TAMs of the M2 phenotype, together with the intermittent hypoxic environment within the tumor, drive tumor aggressiveness. However, the mechanism of TAMs [...] Read more.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), may increase the risk of cancer development and a poor cancer prognosis. TAMs of the M2 phenotype, together with the intermittent hypoxic environment within the tumor, drive tumor aggressiveness. However, the mechanism of TAMs in IH remains unclear. In our study, IH induced the recruitment of macrophages, and IH-induced M2-like TAMs promoted glycolysis in laryngeal cancer cells through hexokinase 1. The hexokinase inhibitor 2-deoxy-D-glucose and HK1 shRNA were applied to verify this finding, confirming that M2-like TAMs enhanced glycolysis in laryngeal cancer cells through HK1 under intermittent hypoxic conditions. Comprehensive RNA-seq analysis disclosed a marked elevation in the expression levels of the transcription factor ZBTB10, while evaluation of a laryngeal cancer patient tissue microarray demonstrated a positive correlation between ZBTB10 and HK1 expression in laryngeal carcinoma. Knockdown of ZBTB10 decreased HK1 expression, and overexpression of ZBTB10 increased HK1 expression in both laryngeal cancer cells and 293T cells. The luciferase reporter assay and Chromatin immunoprecipitation assay confirmed that ZBTB10 directly bound to the promoter region of HK1 and regulated the transcriptional activity of HK1. Finally, the CLEC3B level of the M2 supernatant is significantly higher in the IH group and showed a protumor effect on Hep2 cells. As ZBTB10-mediated regulation of HK1 affects glycolysis in laryngeal cancer, our findings may provide new potential therapeutic targets for laryngeal cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 6200 KiB  
Article
Development of a Macrophage-Related Risk Model for Metastatic Melanoma
by Zhaoxiang Li, Xinyuan Zhang, Quanxin Jin, Qi Zhang, Qi Yue, Manabu Fujimoto and Guihua Jin
Int. J. Mol. Sci. 2023, 24(18), 13752; https://doi.org/10.3390/ijms241813752 - 6 Sep 2023
Cited by 4 | Viewed by 2394
Abstract
As a metastasis-prone malignancy, the metastatic form and location of melanoma seriously affect its prognosis. Although effective surgical methods and targeted drugs are available to enable the treatment of carcinoma in situ, for metastatic tumors, the diagnosis, prognosis assessment and development of immunotherapy [...] Read more.
As a metastasis-prone malignancy, the metastatic form and location of melanoma seriously affect its prognosis. Although effective surgical methods and targeted drugs are available to enable the treatment of carcinoma in situ, for metastatic tumors, the diagnosis, prognosis assessment and development of immunotherapy are still pending. This study aims to integrate multiple bioinformatics approaches to identify immune-related molecular targets viable for the treatment and prognostic assessment of metastatic melanoma, thus providing new strategies for its use as an immunotherapy. Immunoinfiltration analysis revealed that M1-type macrophages have significant infiltration differences in melanoma development and metastasis. In total, 349 genes differentially expressed in M1-type macrophages and M2-type macrophages were extracted from the MSigDB database. Then we derived an intersection of these genes and 1111 melanoma metastasis-related genes from the GEO database, and 31 intersected genes identified as melanoma macrophage immunomarkers (MMIMs) were obtained. Based on MMIMs, a risk model was constructed using the Lasso algorithm and regression analysis, which contained 10 genes (NMI, SNTB2, SLC1A4, PDE4B, CLEC2B, IFI27, COL1A2, MAF, LAMP3 and CCDC69). Patients with high+ risk scores calculated via the model have low levels of infiltration by CD8+ T cells and macrophages, which implies a poor prognosis for patients with metastatic cancer. DCA decision and nomogram curves verify the high sensitivity and specificity of this model for metastatic cancer patients. In addition, 28 miRNAs, 90 transcription factors and 29 potential drugs were predicted by targeting the 10 MMIMs derived from this model. Overall, we developed and validated immune-related prognostic models, which accurately reflected the prognostic and immune infiltration characteristics of patients with melanoma metastasis. The 10 MMIMs may also be prospective targets for immunotherapy. Full article
Show Figures

Figure 1

14 pages, 657 KiB  
Article
Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis
by Emilia Dybska, Jan Krzysztof Nowak and Jarosław Walkowiak
Biomedicines 2023, 11(6), 1698; https://doi.org/10.3390/biomedicines11061698 - 13 Jun 2023
Cited by 1 | Viewed by 1991
Abstract
The runt-related transcription factor 3 (RUNX3) regulates the differentiation of monocytes and their response to inflammation. However, the transcriptomic context of RUNX3 expression in blood monocytes remains poorly understood. We aim to learn about RUNX3 from its relationships within transcriptomes of bulk CD14+ [...] Read more.
The runt-related transcription factor 3 (RUNX3) regulates the differentiation of monocytes and their response to inflammation. However, the transcriptomic context of RUNX3 expression in blood monocytes remains poorly understood. We aim to learn about RUNX3 from its relationships within transcriptomes of bulk CD14+ cells in adults. This study used immunomagnetically sorted CD14+ cell gene expression microarray data from the Multi-Ethnic Study of Atherosclerosis (MESA, n = 1202, GSE56047) and the Correlated Expression and Disease Association Research (CEDAR, n = 281, E-MTAB-6667) cohorts. The data were preprocessed, subjected to RUNX3-focused correlation analyses and random forest modeling, followed by the gene ontology analysis. Immunity-focused differential ratio analysis with intermediary inference (DRAIMI) was used to integrate the data with protein–protein interaction network. Correlation analysis of RUNX3 expression revealed the strongest positive association for EVL (rmean = 0.75, pFDR-MESA = 5.37 × 10−140, pFDR-CEDAR = 5.52 × 10−80), ARHGAP17 (rmean = 0.74, pFDR-MESA = 1.13 × 10−169, pFDR-CEDAR = 9.20 × 10−59), DNMT1 (rmean = 0.74, pFDR-MESA = 1.10 × 10−169, pFDR-CEDAR = 1.67 × 10−58), and CLEC16A (rmean = 0.72, pFDR-MESA = 3.51 × 10−154, pFDR-CEDAR = 2.27 × 10−55), while the top negative correlates were C2ORF76 (rmean = −0.57, pFDR-MESA = 8.70 × 10−94, pFDR-CEDAR = 1.31 × 10−25) and TBC1D7 (rmean = −0.55, pFDR-MESA = 1.36 × 10−69, pFDR-CEDAR = 7.81 × 10−30). The RUNX3-associated transcriptome signature was involved in mRNA metabolism, signal transduction, and the organization of cytoskeleton, chromosomes, and chromatin, which may all accompany mitosis. Transcriptomic context of RUNX3 expression in monocytes hints at its relationship with cell growth, shape maintenance, and aspects of the immune response, including tyrosine kinases. Full article
Show Figures

Figure 1

Back to TopTop