Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,265)

Search Parameters:
Keywords = CLAD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3393 KB  
Article
Q-Switched High-Order Harmonic Mode-Locked Noise-like Pulses in an Erbium/Ytterbium Fiber Laser
by Marco Vinicio Hernández-Arriaga, José León Flores-González, Miguel Ángel Bello-Jiménez, Rosa Elvia López-Estopier, Erika Nohemí Hernández-Escobar, Yareli Navarro-Martínez, Olivier Pottiez, Luis Alberto Rodríguez-Morales, Mario Alberto García-Ramírez, Manuel Durán-Sánchez and Baldemar Ibarra-Escamilla
Photonics 2026, 13(2), 113; https://doi.org/10.3390/photonics13020113 - 26 Jan 2026
Abstract
This work presents, to the best of our knowledge, the first experimental report of an erbium/ytterbium double-clad ring fiber laser based on nonlinear polarization rotation (NPR) operating in a self-starting Q-switched high-order harmonic mode locking noise-like pulse (QHML-NLP) regime. The NPR mechanism relies [...] Read more.
This work presents, to the best of our knowledge, the first experimental report of an erbium/ytterbium double-clad ring fiber laser based on nonlinear polarization rotation (NPR) operating in a self-starting Q-switched high-order harmonic mode locking noise-like pulse (QHML-NLP) regime. The NPR mechanism relies on an arrangement composed of a beam splitter cube, a half-wave retarder, and a quarter-wave retarder. Through specific adjustments of the wave retarders and pump power, the laser cavity engages the QHML-NLP regime, where mode-locked burst-like pulses containing a significant number of NLPs are modulated by a giant Q-switched envelope. The laser system emits at the 132nd-order harmonic mode locking (HML) frequency, representing the highest order achieved to date in the framework of QHML-NLP. Additional features include a broadband optical spectrum with dual-wavelength emission at 1568.4 nm and 1605.9 nm, and maximum energies of 2.37 µJ for the Q-switched envelope and 200 nJ for the mode-locked burst-like pulse. These detailed experimental results reveal remarkable aspects in the NLP dynamics, contributing to a deeper understanding of their physical mechanisms and highlighting their potential as novel laser sources for micromachining and nonlinear optics. Full article
(This article belongs to the Special Issue Mid-IR Active Optical Fiber: Technology and Applications)
Show Figures

Figure 1

22 pages, 51561 KB  
Article
Effect of V Content on Microstructure and Properties of TiNbZrVx Medium-Entropy Alloy Coatings on TC4 Substrate by Laser Cladding
by Wen Zhang, Ying Wu, Chuan Yang, Yongsheng Zhao, Zhenhong Wang, Jia Yang, Wei Feng, Yang Deng, Junjie Zhang, Qingfeng Xian, Xingcheng Long, Zhirong Liang and Hui Chen
Coatings 2026, 16(1), 141; https://doi.org/10.3390/coatings16010141 - 22 Jan 2026
Viewed by 29
Abstract
In order to improve the wear resistance of titanium alloy and apply it to the high-speed train brake disc, TiNbZrVx (x = 0, 0.2, 0.4, 0.6, 0.8) refractory medium-entropy alloy coatings were prepared on Ti-6Al-4V (TC4) substrate. The effect of V content [...] Read more.
In order to improve the wear resistance of titanium alloy and apply it to the high-speed train brake disc, TiNbZrVx (x = 0, 0.2, 0.4, 0.6, 0.8) refractory medium-entropy alloy coatings were prepared on Ti-6Al-4V (TC4) substrate. The effect of V content on the microstructure, mechanical properties, and friction and wear properties of the coatings was studied. TiNbZrVx coatings achieved good metallurgical bonding with the substrate, forming BCC and B2 phases and AlZr3 intermetallic compound (IMC). From TiNbZr coating to TiNbZrV0.8 coating, V promotes element segregation and new phase formation, which decreased the average grain size from 85.055 μm to 56.515 μm, increased the average hardness from 265.5 HV to 343.4 HV, and reduced the room temperature (RT) wear rate by 97.8%. However, the ductility of the coatings decreased from 15.7% to 5.8% because the grain boundary precipitates changed the dislocation arrangement, and the tensile fracture mode changed from ductile fracture to brittle fracture. Abrasive wear was the main wear mode at RT, and adhesive wear and oxidation wear were the main wear modes at elevated temperature. The COF at elevated temperature was lower than that at RT, because a large number of friction pair components were transferred to the coating surface at high temperature and were repeatedly rolled to form a dense film, which played a certain lubricating role. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

17 pages, 19260 KB  
Article
Microstructure and Properties of Conventional Cast Versus Annular Laser-Clad Babbitt Alloy Layers for Sliding Bearings
by Jing Jin, Jun Ye, Hao Xue, Yongli Xu, Zhongwai Guo, Zhenghong Zhou, Gaohuan Xu and Guobiao Wang
Micromachines 2026, 17(1), 134; https://doi.org/10.3390/mi17010134 - 21 Jan 2026
Viewed by 184
Abstract
Sliding bearing alloy layers must combine excellent tribological performance with reliable metallurgical bonding, but conventional fabrication methods often suffer from coarse grains, chemical segregation and poor interface adhesion. Annular coaxial laser wire-feed cladding, by providing more uniform heat input and rapid solidification, is [...] Read more.
Sliding bearing alloy layers must combine excellent tribological performance with reliable metallurgical bonding, but conventional fabrication methods often suffer from coarse grains, chemical segregation and poor interface adhesion. Annular coaxial laser wire-feed cladding, by providing more uniform heat input and rapid solidification, is expected to mitigate these deficiencies; however, systematic studies of this technique applied to tin-based Babbitt alloy layers remain limited. In this work, Babbitt layers produced by conventional casting and by annular coaxial laser wire-feed cladding were compared in terms of microstructure, phase constitution, hardness and tribological behavior. The results indicate that laser cladding can produce continuous, dense and well-bonded coatings and markedly refine the SnSb phase, reducing grain size from approximately 100 μm in the cast material to 10-20 μm. Hardness increased from 25.3 HB to 27.6 HB, while tribological performance improved substantially: the coefficient of friction decreased by about 38.19% and the wear volume was reduced by approximately 10.46%. These improvements are attributed mainly to the rapid solidification, low dilution and more uniform phase distribution associated with annular coaxial laser cladding, demonstrating the strong potential of this process for fabricating high-performance tin-based Babbitt bearing layers. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

19 pages, 6089 KB  
Article
Energy-Efficient Automated Detection of OPGW Features for Sustainable UAV-Based Inspection
by Xiaoling Yan, Wuxing Mao, Xiao Li, Ruiming Huang, Chi Ye, Faguang Li and Zheyu Fan
Sensors 2026, 26(2), 658; https://doi.org/10.3390/s26020658 - 19 Jan 2026
Viewed by 157
Abstract
Unmanned Aerial Vehicle (UAV)-based inspection is crucial for the maintenance and monitoring of high-voltage transmission lines, but detecting small objects in inspection images presents significant challenges, especially under complex backgrounds and varying lighting. These challenges are particularly evident when detecting the wire features [...] Read more.
Unmanned Aerial Vehicle (UAV)-based inspection is crucial for the maintenance and monitoring of high-voltage transmission lines, but detecting small objects in inspection images presents significant challenges, especially under complex backgrounds and varying lighting. These challenges are particularly evident when detecting the wire features of optical fiber composite overhead ground wire and conventional ground wires. Optical fiber composite overhead ground wire (OPGW) is a specialized cable designed to replace conventional shield wires on power utility towers. It contains one or more optical fibers housed in a protective tube, surrounded by layers of aluminum-clad steel and/or aluminum alloy wires, ensuring robust mechanical strength for grounding and high-bandwidth capabilities for remote sensing and control. Existing detection methods often struggle with low accuracy, insufficient performance, and high computational demands when dealing with small objects. To address these issues, this paper proposes an energy-efficient OPGW feature detection model for UAV-based inspection. The model incorporates a Feature Enhancement Module (FEM) to replace the C3K2 module in the sixth layer of the YOLO11 backbone, improving multi-scale feature extraction. A P2 shallow detection head is added to enhance the perception of small and edge features. Additionally, the traditional Intersection over Union (IoU) loss is replaced with Normalized Wasserstein Distance (NWD) loss function, which improves boundary regression accuracy for small objects. Experimental results show that the proposed method achieves a mAP50 of 78.3% and mAP5095 of 52.0%, surpassing the baseline by 2.3% and 1.1%, respectively. The proposed model offers the advantages of high detection accuracy and low computational resource requirements, providing a practical solution for sustainable UAV-based inspections. Full article
Show Figures

Figure 1

28 pages, 3982 KB  
Article
Assessment and Numerical Modeling of the Thermophysical Efficiency of Newly Developed Adaptive Building Envelopes Under Variable Climatic Impacts
by Nurlan Zhangabay, Arukhan Oner, Ulzhan Ibraimova, Mohamad Nasir Mohamad Ibrahim, Timur Tursunkululy and Akmaral Utelbayeva
Buildings 2026, 16(2), 366; https://doi.org/10.3390/buildings16020366 - 15 Jan 2026
Viewed by 160
Abstract
The relevance of this study is driven by the increasing requirements for the energy efficiency and indoor comfort of residential and public buildings, particularly in regions with extreme climatic conditions characterized by substantial daily and seasonal temperature fluctuations. Effective management of heat transfer [...] Read more.
The relevance of this study is driven by the increasing requirements for the energy efficiency and indoor comfort of residential and public buildings, particularly in regions with extreme climatic conditions characterized by substantial daily and seasonal temperature fluctuations. Effective management of heat transfer through building envelopes has become a key factor in reducing energy consumption and improving indoor comfort. This paper presents the results of an experimental–numerical investigation of the thermal behavior of an adaptive exterior wall system with a controllable air cavity. Steady-state and transient simulations were performed for three envelope configurations: a baseline design, a design with vertical air channels, and an adaptive configuration equipped with adjustable openings. Quantitative analysis showed that during the winter period, the adaptive configuration increases the interior surface temperature by 1.5–2.3 °C compared to the baseline design, resulting in a 12–18% reduction in the specific heat flux through the wall. In the summer period, the temperature of the exterior cladding decreases by 3–5 °C relative to the baseline, which reduces heat gains by 8–14% and lowers the cooling load. Additional analysis of temperature fields demonstrated that the presence of vertical air channels has a limited effect during winter: temperature differences at the surfaces do not exceed 1 °C. A similar pattern is observed in warm periods; however, due to controlled air circulation, the adaptive configuration provides an improved thermal regime. The results confirm the effectiveness of the adaptive wall system under the climatic conditions of southern Kazakhstan, characterized by high solar radiation and large diurnal temperature variations. The practical significance of the study lies in the potential application of adaptive façades to enhance the energy efficiency of buildings during both winter and summer seasons. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 4172 KB  
Article
Comparative Study on Heat Transfer Through Three Candidate Alloys for Fuel Element Cladding
by Marioara Abrudeanu, Nicanor Cimpoesu, Madalina Gabriela Stanciulescu Paunoiu, Andrei Galatanu, Magdalena Galatanu, Florentina Popa, Alexandra Georgiana Jinga, Ionut Cosmin Pirvu, Anita Haeussler, Radu Stefanoiu, Aurelian Denis Negrea and Mircea Ionut Petrescu
Appl. Sci. 2026, 16(2), 800; https://doi.org/10.3390/app16020800 - 13 Jan 2026
Viewed by 133
Abstract
The paper presents a comparative experimental study of heat-transfer behavior in three alloys considered candidate materials for nuclear reactors: the austenitic stainless steel 316L, Zircaloy-4 (currently used in CANDU reactors), and an ODS alloy with a ferritic matrix. The investigation was conducted across [...] Read more.
The paper presents a comparative experimental study of heat-transfer behavior in three alloys considered candidate materials for nuclear reactors: the austenitic stainless steel 316L, Zircaloy-4 (currently used in CANDU reactors), and an ODS alloy with a ferritic matrix. The investigation was conducted across five temperature intervals, each sample being subjected to a thermal shock through short-term overheating to the upper limit of its respective interval. The variation of thermal diffusivity in the three alloys was determined as a function of both measurement temperature and applied thermal shock, and trends in heat-transfer behavior were compared across the five temperature ranges. The experimental results show that up to 400 °C, Zircaloy-4 exhibits the highest thermal diffusivity, followed by the ODS alloy, with the lowest values measured for 316L steel. At approximately 450 °C, the ratio between 316L and the ODS alloy reverses. Beyond this point, increasing the temperature up to 900 °C is accompanied by a continuous rise in thermal diffusivity for both 316L stainless steel and Zircaloy-4. In contrast, for the ODS steel, increasing temperature leads to a continuous decrease in thermal diffusivity, reaching a minimum near the Curie point. The novelty of the study lies in the comparative assessment of the influence of temperature on the heat-transfer process in three alloys relevant to nuclear energy, covering the operating temperature ranges of CANDU and ALFRED reactors, as well as potential accidental overheating up to 900 °C. A particular feature of the work is the prior application of a short-duration overheating step produced using solar energy. The results are relevant not only for nuclear reactors but also for other high-temperature applications in corrosive environments. Full article
Show Figures

Figure 1

10 pages, 2349 KB  
Article
Long Period Grating Modified with Quasi-2D Perovskite/PAN Hybrid Nanofibers for Relative Humidity Measurement
by Dingyi Feng, Changjiang Zhang, Syed Irshad Haider, Jing Tian, Jiandong Wu, Fu Liu and Biqiang Jiang
Nanomaterials 2026, 16(2), 99; https://doi.org/10.3390/nano16020099 - 12 Jan 2026
Viewed by 225
Abstract
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to [...] Read more.
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to fabricate a long-period grating (LPG) humidity sensor based on the perovskite/polyacrylonitrile (PAN) hybrid nanofibers film. The pure-bromide quasi-2D perovskite nanocrystals were in situ synthesized and encapsulated in the PAN matrix on the fiber grating via an electrospinning technique. Humidity-induced variation in the complex permittivity of perovskites can alter the evanescent field of the co-propagating cladding modes, resulting in changes in both resonant amplitude and wavelength in the transmission spectrum of the LPG. These effects yielded an intensity sensitivity of ~0.21 dB/%RH and a wavelength sensitivity of ~18.2 pm/%RH, respectively, in the relative humidity range of 50–80%RH. The proposed LPG sensor demonstrated a good performance, indicating its potential application in the humidity-sensing field. Full article
(This article belongs to the Special Issue Nanomaterials for Optical Fiber Sensing)
Show Figures

Figure 1

24 pages, 18396 KB  
Article
Modeling and Mechanistic Analysis of Molten Pool Evolution and Energy Synergy in Laser–Cold Metal Transfer Hybrid Additive Manufacturing of 316L Stainless Steel
by Jun Deng, Chen Yan, Xuefei Cui, Chuang Wei and Ji Chen
Materials 2026, 19(2), 292; https://doi.org/10.3390/ma19020292 - 11 Jan 2026
Viewed by 288
Abstract
The present work uses numerical methods to explore the impact of spatial orientation on the behavior of molten pool and thermal responses during the laser–Cold Metal Transfer (CMT) hybrid additive manufacturing of metallic cladding layers. Based on the traditional double-ellipsoidal heat source model, [...] Read more.
The present work uses numerical methods to explore the impact of spatial orientation on the behavior of molten pool and thermal responses during the laser–Cold Metal Transfer (CMT) hybrid additive manufacturing of metallic cladding layers. Based on the traditional double-ellipsoidal heat source model, an adaptive CMT arc heat source model was developed and optimized using experimentally calibrated parameters to accurately represent the coupled energy distribution of the laser and CMT arc. The improved model was employed to simulate temperature and velocity fields under horizontal, transverse, vertical-up, and vertical-down orientations. The results revealed that variations in gravity direction had a limited effect on the overall molten pool morphology due to the dominant role of vapor recoil pressure, while significantly influencing the local convection patterns and temperature gradients. The simulations further demonstrated the formation of keyholes, dual-vortex flow structures, and Marangoni-driven circulation within the molten pool, as well as the redistribution of molten metal under different orientations. In multi-layer deposition simulations, optimized heat input effectively mitigated excessive thermal stresses, ensured uniform interlayer bonding, and maintained high forming accuracy. This work establishes a comprehensive numerical framework for analyzing orientation-dependent heat and mass transfer mechanisms and provides a solid foundation for the adaptive control and optimization of laser–CMT hybrid additive manufacturing processes. Full article
Show Figures

Figure 1

16 pages, 15928 KB  
Article
High-Temperature Tribological and Oxidation Performance of a Cr-Al-C Composite Coating on H13 Steel by Laser Cladding
by Shengshu Zuo, Shibo Li, Yixiong Zhang, Xuejin Zhang, Guoping Bei, Faqiang Chen and Dong Liu
Coatings 2026, 16(1), 88; https://doi.org/10.3390/coatings16010088 - 10 Jan 2026
Viewed by 165
Abstract
Laser cladding is an effective surface engineering technique to enhance the high-temperature performance of metallic materials. In this work, a Cr-Al-C composite coating was in situ fabricated on H13 steel by laser cladding to alleviate the performance degradation of H13 steel under severe [...] Read more.
Laser cladding is an effective surface engineering technique to enhance the high-temperature performance of metallic materials. In this work, a Cr-Al-C composite coating was in situ fabricated on H13 steel by laser cladding to alleviate the performance degradation of H13 steel under severe thermomechanical conditions, particularly in high-temperature piercing applications. The phase composition, microstructure, microhardness, high-temperature oxidation behavior, and tribological performance of the coating were systematically investigated. The coating is mainly composed of a B2-ordered Fe-Cr-Al phase reinforced by uniformly dispersed M3C2/M7C3-type carbides, which provides a synergistic combination of oxidation protection and mechanical strengthening, offering a microstructural design that differs from conventional Cr-Al or Cr3C2-based laser-clad coatings. Cyclic oxidation tests conducted at 800–1000 °C revealed that the oxidation behavior of the coating followed parabolic kinetics, with oxidation rate constants significantly lower than those of the H13 substrate, attributed to the formation of a dense and adherent Al2O3/Cr2O3 composite protective scale acting as an effective diffusion barrier. Benefiting from the stable oxide layer and the thermally stable carbide-reinforced microstructure, the wear rate of Cr-Al-C coating is significantly reduced compared to H13 steel. At room temperature, the wear rate of the coating is 6.563 × 10−6 mm3/(N·m), about two orders of magnitude lower than 8.175 × 10−4 mm3/(N·m) for the substrate. When the temperature was increased to 1000 °C, the wear rate of the coating remained as low as 5.202 × 10−6 mm3/(N·m), corresponding to only 1.9% of that of the substrate. This work demonstrates that the Cr-Al-C laser-cladded coating can effectively improve the high-temperature oxidation resistance and wear resistance of steel materials under extreme service conditions. Full article
Show Figures

Figure 1

19 pages, 1487 KB  
Article
Valorizing Food Waste into Functional Bio-Composite Façade Cladding: A Circular Approach to Sustainable Construction Materials
by Olga Ioannou and Fieke Konijnenberg
Clean Technol. 2026, 8(1), 11; https://doi.org/10.3390/cleantechnol8010011 - 9 Jan 2026
Viewed by 425
Abstract
Façades account for approximately 15–20% of a building’s embodied carbon, making them a key target for material decarbonization. While bio-composites are increasingly explored for façade insulation, cladding systems remain dominated by carbon-intensive materials such as aluminum and fiber-reinforced polymers (FRPs). This paper presents [...] Read more.
Façades account for approximately 15–20% of a building’s embodied carbon, making them a key target for material decarbonization. While bio-composites are increasingly explored for façade insulation, cladding systems remain dominated by carbon-intensive materials such as aluminum and fiber-reinforced polymers (FRPs). This paper presents findings from a study investigating the use of food-waste-derived bulk fillers in bio-composite materials for façade cladding applications. Several food-waste streams, including hazelnut and pistachio shells, date seeds, avocado and mango pits, tea leaves, and brewing waste, were processed into fine powders (<0.125 μm) and combined with a furan-based biobased thermoset resin to produce flat composite sheets. The samples were evaluated through mechanical testing (flexural strength, stiffness, and impact resistance), water absorption, freeze–thaw durability, and optical microscopy to assess microstructural characteristics before and after testing. The results reveal substantial performance differences between waste streams. In particular, hazelnut and pistachio shell fillers produced bio-composites suitable for façade cladding, achieving flexural strengths of 62.6 MPa and 53.6 MPa and impact strengths of 3.42 kJ/m2 and 1.39 kJ/m2, respectively. These findings demonstrate the potential of food-waste-based bio-composites as low-carbon façade cladding materials and highlight future opportunities for optimization of processing, supply chains, and material design. Full article
(This article belongs to the Special Issue Selected Papers from Circular Materials Conference 2025)
Show Figures

Figure 1

24 pages, 12322 KB  
Article
Research on the Properties of Clad Layers Applied to Biomass Shredding Tools
by Ján Viňáš, Milan Fiľo, Janette Brezinová, Miroslav Džupon, Viktor Puchý, Jakub Brezina, Samuel Mikita, Gyula Bagyinszki and Péter Pinke
Metals 2026, 16(1), 74; https://doi.org/10.3390/met16010074 - 8 Jan 2026
Viewed by 177
Abstract
This paper investigates the applicability of plasma transferred arc (PTA) cladding for extending the service life of biomass shredder tools. The study evaluates the possibility of replacing Hardox 500 steel with a lower-cost structural steel S355J2 whose functional surfaces are modified by PTA [...] Read more.
This paper investigates the applicability of plasma transferred arc (PTA) cladding for extending the service life of biomass shredder tools. The study evaluates the possibility of replacing Hardox 500 steel with a lower-cost structural steel S355J2 whose functional surfaces are modified by PTA cladding. Three commercially available powder fillers were examined: CoCrWNi (PL1), FeCoCrSi (PL2), and NiCrMoFeCuBSi (PL3). The quality and performance of the cladded layers were assessed through hardness measurements, microstructural analysis using SEM and EDX, and tribological testing focused on abrasive and adhesive wear at room temperature. The results showed that the PL1 cladding achieved the highest surface hardness, reaching up to 602 HV0.1, due to the presence of hard carbide phases. In contrast, the PL2 cladding exhibited the best resistance to abrasive wear, demonstrating the lowest mass loss for both as-deposited and machined surfaces. The PL3 cladding showed intermediate performance in terms of wear resistance. Overall, the findings indicate that PTA cladding using an FeCoCrSi-based filler on an S355J2 substrate represents a promising and cost-effective alternative to Hardox 500 for biomass shredder applications. Full article
Show Figures

Graphical abstract

13 pages, 5612 KB  
Article
Effects of Corrugated Flat Rolling Process on the Bonding Interface, Microstructure, and Properties of Mg/Al Clad Plates
by Lifang Pan, Zhiyuan Zhu, Huanhuan Wang, Yong Chen, Sha Li, Cuirong Liu and Guangming Liu
Materials 2026, 19(2), 252; https://doi.org/10.3390/ma19020252 - 8 Jan 2026
Viewed by 183
Abstract
In this paper, an AZ31B Mg/Al clad plate with 5052 aluminum alloy as the cladding was successfully prepared by a new composite process of corrugated roll roughing + flat roll finishing. First, finite element simulation software was used to predict and analyze the [...] Read more.
In this paper, an AZ31B Mg/Al clad plate with 5052 aluminum alloy as the cladding was successfully prepared by a new composite process of corrugated roll roughing + flat roll finishing. First, finite element simulation software was used to predict and analyze the rolling process. Subsequently, experimental research was carried out according to the simulation results, and clad plate samples under single corrugated rolling and corrugated–flat rolling processes were prepared. Finally, the differences between the two clad plates in shape quality, interface bonding state, and mechanical properties were systematically compared and analyzed. The results show that, compared with the traditional corrugated rolling process, the sheet formed by corrugated–flat rolling composite rolling has a flatter shape with no warpage, and its interface bonding quality is better. The specific performance is as follows: the mechanical properties were significantly improved, and the tensile strength and elongation reached 259.96 MPa and 8.11%, respectively, in the transverse direction (TD). This study provides a new strategy for the preparation of high-performance Mg/Al clad plates. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 1914 KB  
Article
Analysis of Bonding Defects in Cementing Casing Using Attenuation Characteristic of Circumferential SH Guided Waves
by Jie Gao, Tianhao Chen, Yan Lyu, Guorong Song, Jian Peng and Cunfu He
Sensors 2026, 26(1), 332; https://doi.org/10.3390/s26010332 - 4 Jan 2026
Viewed by 321
Abstract
Circumferential guided wave detection technology can serve as an alternative method for detecting casing bond defects. Due to the presence of the cement cladding, the circumferential SH guided waves transmit shear waves into the cement cladding as they propagate in the cementing casing, [...] Read more.
Circumferential guided wave detection technology can serve as an alternative method for detecting casing bond defects. Due to the presence of the cement cladding, the circumferential SH guided waves transmit shear waves into the cement cladding as they propagate in the cementing casing, which cause the circumferential SH guided waves to show attenuation characteristics. In this study, the cementing casing structure was considered as a steel substratum semi-infinite domain cemented cladding pipe structure, and the corresponding dispersion and attenuation characteristics of circumferential SH guided waves were numerically solved based on the state matrix and Legendre polynomial hybrid method. In addition, a finite element simulation model of cementing casing was established to explore the interaction between SH guided waves and bonding defects. The relationship between the amplitude of SH guided waves and the size of the bonding defects was established through the attenuation coefficient. Moreover, an experimental platform for cementing casing detection is constructed to detect bonding defects of different sizes and to achieve the acoustic analysis of cementing defects in cementing casing, which provides a research path for the non-destructive testing and evaluation of bonding defects in cementing casing. Full article
Show Figures

Figure 1

23 pages, 19585 KB  
Article
Laser-Clad TiB2–TiC Ferroboron Coatings Resist Molten Al
by Lianmin Cao, Sipeng Li and Jianjun Yuan
Coatings 2026, 16(1), 43; https://doi.org/10.3390/coatings16010043 - 1 Jan 2026
Viewed by 560
Abstract
Carbon steel components used in aluminum alloy casting are prone to severe corrosion by molten aluminum, which significantly shortens their service life. To address this limitation, protective coatings were applied to improve corrosion resistance and extend durability. In this study, laser-clad TiB2 [...] Read more.
Carbon steel components used in aluminum alloy casting are prone to severe corrosion by molten aluminum, which significantly shortens their service life. To address this limitation, protective coatings were applied to improve corrosion resistance and extend durability. In this study, laser-clad TiB2–TiC reinforced ferroboron coatings were fabricated on carbon steel substrates. The microstructure, phase composition, and interface characteristics were systematically analyzed. Electrochemical and immersion tests were conducted to evaluate corrosion resistance in molten aluminum. The results demonstrate that the composite coating forms a dense barrier layer that effectively prevents aluminum infiltration and suppresses intermetallic compound growth. Consequently, the coated carbon steel exhibits markedly enhanced resistance to molten aluminum attack, providing a promising solution for extending the lifetime of steel components in aluminum alloy casting environments. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

15 pages, 4385 KB  
Article
A New Approach to Palaeontological Exhibition in Public Space: Revitalizing Disappearing Knowledge of Extinct Species
by Anna Chrobak-Žuffová, Marta Bąk, Agnieszka Ciurej, Piotr Strzeboński, Ewa Welc, Sławomir Bębenek, Anna Wolska, Karol Augustowski and Krzysztof Bąk
Resources 2026, 15(1), 7; https://doi.org/10.3390/resources15010007 - 29 Dec 2025
Viewed by 413
Abstract
This paper presents an innovative concept for the musealization of everyday public space through the use of natural stone cladding as an in situ palaeontological exhibition. Polished slabs of Holy Cross Mts marble, widely used as flooring in public buildings, contain abundant and [...] Read more.
This paper presents an innovative concept for the musealization of everyday public space through the use of natural stone cladding as an in situ palaeontological exhibition. Polished slabs of Holy Cross Mts marble, widely used as flooring in public buildings, contain abundant and well-preserved Devonian marine fossils, offering a unique opportunity to revitalize public engagement with palaeontology and geoheritage. The proposed exhibition transforms passers-by into active observers by integrating authentic fossil material directly into daily circulation routes, thereby emphasizing the educational and geotouristic potential of ordinary architectural elements. The case study focuses on the main hall of the University of the National Education Commission (Kraków, Poland), where over 1000 m2 of fossil-bearing limestone flooring is used as a continuous exhibition surface. The target audience includes students of Earth sciences, zoology, biological sciences, pedagogy, social sciences, and humanities, for whom the exhibition serves as both an educational supplement and a geotouristic experience. The scientific, educational, and touristic value of the proposed exhibition was assessed using a modified geoheritage valorization method and compared with established palaeontological collections in Kraków and Kielce. The expert valuation method used in the article enables a comparison of the described collection with other similar places on Earth, making its application universal and global. The results demonstrate that polished stone cladding can function as a valuable geoheritage asset of regional and global significance, offering an accessible, low-cost, and sustainable model for disseminating palaeontological knowledge within public space. Full article
Show Figures

Figure 1

Back to TopTop