Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = C-MAPSS data set

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3929 KB  
Article
Large Language Model-Based Autonomous Agent for Prognostics and Health Management
by Minhyeok Cha, Sang-il Yoon, Seongrae Kim, Daeyoung Kang, Keonwoo Nam, Teakyong Lee and Joon-Young Kim
Machines 2025, 13(9), 831; https://doi.org/10.3390/machines13090831 - 9 Sep 2025
Viewed by 2274
Abstract
Prognostics and Health Management (PHM), including fault diagnosis and Remaining Useful Life (RUL) prediction, is critical for ensuring the reliability and efficiency of industrial equipment. However, traditional AI-based methods require extensive expert intervention in data preprocessing, model selection, and hyperparameter tuning, making them [...] Read more.
Prognostics and Health Management (PHM), including fault diagnosis and Remaining Useful Life (RUL) prediction, is critical for ensuring the reliability and efficiency of industrial equipment. However, traditional AI-based methods require extensive expert intervention in data preprocessing, model selection, and hyperparameter tuning, making them less scalable and accessible in real-world applications. To address these limitations, this study proposes an autonomous agent powered by Large Language Models (LLMs) to automate predictive modeling for fault diagnosis and RUL prediction. The proposed agent processes natural language queries, extracts key parameters, and autonomously configures AI models while integrating an iterative optimization mechanism for dynamic hyperparameter tuning. Under identical settings, we compared GPT-3.5 Turbo, GPT-4, GPT-4o, GPT-4o-mini, Gemini-2.0-Flash, and LLaMA-3.2 on accuracy, latency, and cost, using GPT-4 as the baseline. The most accurate model is GPT-4o with an accuracy of 0.96, a gain of six percentage points over GPT-4. It also reduces end-to-end time to 1.900 s and cost to $0.00455 per 1 k tokens, which correspond to reductions of 32% and 59%. For speed and cost efficiency, Gemini-2.0-Flash reaches 0.964 s and $0.00021 per 1 k tokens with accuracy 0.94, an improvement of four percentage points over GPT-4. The agent operates through interconnected modules, seamlessly transitioning from query analysis to AI model deployment while optimizing model selection and performance. Experimental results confirmed that the developed agent achieved stable performance under ideal configurations, attaining accuracy 0.97 on FordA for binary fault classification, accuracy 0.95 on CWRU for multi-fault classification, and an asymmetric score of 380.74 on C-MAPSS FD001 for RUL prediction, while significantly reducing manual intervention. By bridging the gap between domain expertise and AI-driven predictive maintenance, this study advances industrial automation, improving efficiency, scalability, and accessibility. The proposed approach paves the way for the broader adoption of autonomous AI systems in industrial maintenance. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

21 pages, 1827 KB  
Article
A Multi-Model Fusion Framework for Aeroengine Remaining Useful Life Prediction
by Bing Tan, Yang Zhang, Xia Wei, Lei Wang, Yanming Chang, Li Zhang, Yingzhe Fan and Caio Graco Rodrigues Leandro Roza
Eng 2025, 6(9), 210; https://doi.org/10.3390/eng6090210 - 1 Sep 2025
Cited by 2 | Viewed by 1014
Abstract
As the core component of aircraft systems, aeroengines require accurate Remaining Useful Life (RUL) prediction to ensure flight safety, which serves as a key part of Prognostics and Health Management (PHM). Traditional RUL prediction methods primarily fall into two main categories: physics-based and [...] Read more.
As the core component of aircraft systems, aeroengines require accurate Remaining Useful Life (RUL) prediction to ensure flight safety, which serves as a key part of Prognostics and Health Management (PHM). Traditional RUL prediction methods primarily fall into two main categories: physics-based and data-driven approaches. Physics-based methods mainly rely on extensive prior knowledge, limiting their scalability, while data-driven methods (including statistical analysis and machine learning) struggle with handling high-dimensional data and suboptimal modeling of multi-scale temporal dependencies. To address these challenges and enhance prediction accuracy and robustness, we propose a novel hybrid deep learning framework (CLSTM-TCN) integrating 2D Convolutional Neural Network (2D-CNN), Long Short-Term Memory (LSTM) network, and Temporal Convolutional Network (TCN) modules. The CLSTM-TCN framework follows a progressive feature refinement logic: 2D-CNN first extracts short-term local features and inter-feature interactions from input data; the LSTM network then models long-term temporal dependencies in time series to strengthen global temporal dynamics representation; and TCN ultimately captures multi-scale temporal features via dilated convolutions, overcoming the limitations of the LSTM network in long-range dependency modeling while enabling parallel computing. Validated on the NASA C-MAPSS data set (focusing on FD001), the CLSTM-TCN model achieves a root mean square error (RMSE) of 13.35 and a score function (score) of 219. Compared to the CNN-LSTM, CNN-TCN, and LSTM-TCN models, it reduces the RMSE by 27.94%, 30.79%, and 30.88%, respectively, and significantly outperforms the traditional single-model methods (e.g., standalone CNN or LSTM network). Notably, the model maintains stability across diverse operational conditions, with RMSE fluctuations capped within 15% for all test cases. Ablation studies confirm the synergistic effect of each module: removing 2D-CNN, LSTM, or TCN leads to an increase in the RMSE and score. This framework effectively handles high-dimensional data and multi-scale temporal dependencies, providing an accurate and robust solution for aeroengine RUL prediction. While current performance is validated under single operating conditions, ongoing efforts to optimize hyperparameter tuning, enhance adaptability to complex operating scenarios, and integrate uncertainty analysis will further strengthen its practical value in aircraft health management. Full article
Show Figures

Figure 1

27 pages, 4256 KB  
Article
A Robust Conformal Framework for IoT-Based Predictive Maintenance
by Alberto Moccardi, Claudia Conte, Rajib Chandra Ghosh and Francesco Moscato
Future Internet 2025, 17(6), 244; https://doi.org/10.3390/fi17060244 - 30 May 2025
Cited by 5 | Viewed by 1905
Abstract
This study, set within the vast and varied research field of industrial Internet of Things (IoT) systems, proposes a methodology to address uncertainty quantification (UQ) issues in predictive maintenance (PdM) practices. At its core, this paper leverages the commercial modular aero-propulsion system simulation [...] Read more.
This study, set within the vast and varied research field of industrial Internet of Things (IoT) systems, proposes a methodology to address uncertainty quantification (UQ) issues in predictive maintenance (PdM) practices. At its core, this paper leverages the commercial modular aero-propulsion system simulation (CMAPSS) dataset to evaluate different artificial intelligence (AI) prognostic algorithms for remaining useful life (RUL) forecasting while supporting the estimation of a robust confidence interval (CI). The methodology primarily involves the comparison of statistical learning (SL), machine learning (ML), and deep learning (DL) techniques for each different scenario of the CMAPSS, evaluating the performances through a tailored metric, the S-score metric, and then benchmarking diverse conformal-based uncertainty estimation techniques, remarkably naive, weighted, and bootstrapping, offering a more suitable and reliable alternative to classical RUL prediction. The results obtained highlight the peculiarities and benefits of the conformal approach, despite probabilistic models favoring the adoption of complex models in cases where the operating conditions of the machine are multiple, and suggest the use of weighted conformal practices in non-exchangeability conditions while recommending bootstrapping alternatives for contexts with a more substantial presence of noise in the data. Full article
(This article belongs to the Special Issue Artificial Intelligence-Enabled Internet of Things (IoT))
Show Figures

Figure 1

17 pages, 2583 KB  
Article
Remaining Useful Life Prediction of Turbofan Engine in Varied Operational Conditions Considering Change Point: A Novel Deep Learning Approach with Optimum Features
by Subrata Rath, Deepjyoti Saha, Subhashis Chatterjee and Ashis Kumar Chakraborty
Mathematics 2025, 13(1), 130; https://doi.org/10.3390/math13010130 - 31 Dec 2024
Cited by 2 | Viewed by 2343
Abstract
In the era of Internet of Things (IoT), remaining useful life (RUL) prediction of turbofan engines is crucial. Various deep learning (DL) techniques proposed recently to predict RUL for such systems have remained silent on the effect of environmental changes on machine reliability. [...] Read more.
In the era of Internet of Things (IoT), remaining useful life (RUL) prediction of turbofan engines is crucial. Various deep learning (DL) techniques proposed recently to predict RUL for such systems have remained silent on the effect of environmental changes on machine reliability. This paper aims (i) to identify the change point in RUL trends and patterns (ii) to select the most relevant features, and (iii) to predict RUL with the selected features and identified change points. A two-stage feature-selection algorithm was developed, followed by a change point identification mechanism, and finally, a Bidirectional Long Short-Term Memory (BiLSTM) model was designed to predict RUL. The study utilizes NASA’s C-MAPSS data set to check the performance of the proposed methodology. The findings affirm that the proposed method enhances the stability of DL models, resulting in a 27.8% improvement in RUL prediction compared to popular and cutting-edge DL models. Full article
Show Figures

Figure 1

16 pages, 493 KB  
Article
Remaining Useful Life Prediction for Turbofan Engine Using SAE-TCN Model
by Xiaofeng Liu, Liuqi Xiong, Yiming Zhang and Chenshuang Luo
Aerospace 2023, 10(8), 715; https://doi.org/10.3390/aerospace10080715 - 16 Aug 2023
Cited by 14 | Viewed by 3033
Abstract
Turbofan engines are known as the heart of the aircraft. The turbofan’s health state determines the aircraft’s operational status. Therefore, the equipment monitoring and maintenance of the engine is an important part of ensuring the healthy and stable operation of the aircraft, and [...] Read more.
Turbofan engines are known as the heart of the aircraft. The turbofan’s health state determines the aircraft’s operational status. Therefore, the equipment monitoring and maintenance of the engine is an important part of ensuring the healthy and stable operation of the aircraft, and it is vital to monitor the remaining useful life (RUL) of the engine. The monitored data of turbofan engines have high dimensions and a long time span, which cause difficulties in predicting the remaining useful life of the engine. This paper proposes a residual life prediction model based on Autoencoder and a Temporal Convolutional Network (TCN). Among them, Autoencoder is used to reduce the dimension of the data and extract features from the engine monitoring data. The TCN network is trained on the obtained low-dimensional data to predict the remaining useful life. The model mentioned in this article is verified on the NASA public data set (C-MAPSS) and compared with common machine learning methods and other deep neural networks. The SAE-TCN model achieved better scores on the FD001 independent testing data set with an RMSE of 18.01 and a score of 161. The average relative error of the model relative to other common learning models is 0.9499 in RMSE and 0.2656 in Scoring Function. The experimental results show that the model proposed in this paper performs the best in the evaluation, and this conclusion has important implications for engine health. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 5285 KB  
Article
ProgNet: A Transferable Deep Network for Aircraft Engine Damage Propagation Prognosis under Real Flight Conditions
by Tarek Berghout, Mohamed-Djamel Mouss, Leïla-Hayet Mouss and Mohamed Benbouzid
Aerospace 2023, 10(1), 10; https://doi.org/10.3390/aerospace10010010 - 23 Dec 2022
Cited by 27 | Viewed by 5428
Abstract
Machine learning prognosis for condition monitoring of safety-critical systems, such as aircraft engines, continually faces challenges of data unavailability, complexity, and drift. Consequently, this paper overcomes these challenges by introducing adaptive deep transfer learning methodologies, strengthened with robust feature engineering. Initially, data engineering [...] Read more.
Machine learning prognosis for condition monitoring of safety-critical systems, such as aircraft engines, continually faces challenges of data unavailability, complexity, and drift. Consequently, this paper overcomes these challenges by introducing adaptive deep transfer learning methodologies, strengthened with robust feature engineering. Initially, data engineering encompassing: (i) principal component analysis (PCA) dimensionality reduction; (ii) feature selection using correlation analysis; (iii) denoising with empirical Bayesian Cauchy prior wavelets; and (iv) feature scaling is used to obtain the required learning representations. Next, an adaptive deep learning model, namely ProgNet, is trained on a source domain with sufficient degradation trajectories generated from PrognosEase, a run-to-fail data generator for health deterioration analysis. Then, ProgNet is transferred to the target domain of obtained degradation features for fine-tuning. The primary goal is to achieve a higher-level generalization while reducing algorithmic complexity, making experiments reproducible on available commercial computers with quad-core microprocessors. ProgNet is tested on the popular New Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) dataset describing real flight scenarios. To the extent we can report, this is the first time that all N-CMAPSS subsets have been fully screened in such an experiment. ProgNet evaluations with numerous metrics, including the well-known CMAPSS scoring function, demonstrate promising performance levels, reaching 234.61 for the entire test set. This is approximately four times better than the results obtained with the compared conventional deep learning models. Full article
Show Figures

Figure 1

23 pages, 5213 KB  
Article
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
by Tiago Gaspar da Rosa, Arthur Henrique de Andrade Melani, Fabio Henrique Pereira, Fabio Norikazu Kashiwagi, Gilberto Francisco Martha de Souza and Gisele Maria De Oliveira Salles
Sensors 2022, 22(24), 9738; https://doi.org/10.3390/s22249738 - 12 Dec 2022
Cited by 5 | Viewed by 2829
Abstract
This paper presents a generic framework for fault prognosis using autoencoder-based deep learning methods. The proposed approach relies upon a semi-supervised extrapolation of autoencoder reconstruction errors, which can deal with the unbalanced proportion between faulty and non-faulty data in an industrial context to [...] Read more.
This paper presents a generic framework for fault prognosis using autoencoder-based deep learning methods. The proposed approach relies upon a semi-supervised extrapolation of autoencoder reconstruction errors, which can deal with the unbalanced proportion between faulty and non-faulty data in an industrial context to improve systems’ safety and reliability. In contrast to supervised methods, the approach requires less manual data labeling and can find previously unknown patterns in data. The technique focuses on detecting and isolating possible measurement divergences and tracking their growth to signalize a fault’s occurrence while individually evaluating each monitored variable to provide fault detection and prognosis. Additionally, the paper also provides an appropriate set of metrics to measure the accuracy of the models, which is a common disadvantage of unsupervised methods due to the lack of predefined answers during training. Computational results using the Commercial Modular Aero Propulsion System Simulation (CMAPSS) monitoring data show the effectiveness of the proposed framework. Full article
(This article belongs to the Special Issue Intelligent Systems for Fault Diagnosis and Prognosis)
Show Figures

Figure 1

16 pages, 3667 KB  
Article
AI-Based Exhaust Gas Temperature Prediction for Trustworthy Safety-Critical Applications
by Asteris Apostolidis, Nicolas Bouriquet and Konstantinos P. Stamoulis
Aerospace 2022, 9(11), 722; https://doi.org/10.3390/aerospace9110722 - 17 Nov 2022
Cited by 12 | Viewed by 5261
Abstract
Data-driven condition-based maintenance (CBM) and predictive maintenance (PdM) strategies have emerged over recent years and aim at minimizing the aviation maintenance costs and environmental impact by the diagnosis and prognosis of aircraft systems. As the use of data and relevant algorithms is essential [...] Read more.
Data-driven condition-based maintenance (CBM) and predictive maintenance (PdM) strategies have emerged over recent years and aim at minimizing the aviation maintenance costs and environmental impact by the diagnosis and prognosis of aircraft systems. As the use of data and relevant algorithms is essential to AI-based gas turbine diagnostics, there are different technical, operational, and regulatory challenges that need to be tackled in order for the aeronautical industry to be able to exploit their full potential. In this work, the machine learning (ML) method of the generalised additive model (GAM) is used in order to predict the evolution of an aero engine’s exhaust gas temperature (EGT). Three different continuous synthetic data sets developed by NASA are employed, known as New Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS), with increasing complexity in engine deterioration. The results show that the GAM can be predict the evolution of the EGT with high accuracy when using several input features that resemble the types of physical sensors installed in aero gas turbines currently in operation. As the GAM offers good interpretability, this case study is used to discuss the different data attributes a data set needs to have in order to build trust and move towards certifiable models in the future. Full article
Show Figures

Figure 1

13 pages, 3652 KB  
Letter
Remaining Useful Life Prediction of Airplane Engine Based on PCA–BLSTM
by Shixin Ji, Xuehao Han, Yichun Hou, Yong Song and Qingfu Du
Sensors 2020, 20(16), 4537; https://doi.org/10.3390/s20164537 - 13 Aug 2020
Cited by 31 | Viewed by 4267
Abstract
The accurate prediction of airplane engine failure can provide a reasonable decision basis for airplane engine maintenance, effectively reducing maintenance costs and reducing the incidence of failure. According to the characteristics of the monitoring data of airplane engine sensors, this work proposed a [...] Read more.
The accurate prediction of airplane engine failure can provide a reasonable decision basis for airplane engine maintenance, effectively reducing maintenance costs and reducing the incidence of failure. According to the characteristics of the monitoring data of airplane engine sensors, this work proposed a remaining useful life (RUL) prediction model based on principal component analysis and bidirectional long short-term memory. Principal component analysis is used for feature extraction to remove useless information and noise. After this, bidirectional long short-term memory is used to learn the relationship between the state monitoring data and remaining useful life. This work includes data preprocessing, the construction of a hybrid model, the use of the NASA’s Commercial Aerodynamic System Simulation (C-MAPSS) data set for training and testing, and the comparison of results with those of support vector regression, long short-term memory and bidirectional long short-term memory models. The hybrid model shows better prediction accuracy and performance, which can provide a basis for formulating a reasonable airplane engine health management plan. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 3440 KB  
Article
Aircraft Engine Prognostics Based on Informative Sensor Selection and Adaptive Degradation Modeling with Functional Principal Component Analysis
by Bin Zhang, Kai Zheng, Qingqing Huang, Song Feng, Shangqi Zhou and Yi Zhang
Sensors 2020, 20(3), 920; https://doi.org/10.3390/s20030920 - 9 Feb 2020
Cited by 24 | Viewed by 10090
Abstract
Engine prognostics are critical to improve safety, reliability, and operational efficiency of an aircraft. With the development in sensor technology, multiple sensors are embedded or deployed to monitor the health condition of the aircraft engine. Thus, the challenge of engine prognostics lies in [...] Read more.
Engine prognostics are critical to improve safety, reliability, and operational efficiency of an aircraft. With the development in sensor technology, multiple sensors are embedded or deployed to monitor the health condition of the aircraft engine. Thus, the challenge of engine prognostics lies in how to model and predict future health by appropriate utilization of these sensor information. In this paper, a prognostic approach is developed based on informative sensor selection and adaptive degradation modeling with functional data analysis. The presented approach selects sensors based on metrics and constructs health index to characterize engine degradation by fusing the selected informative sensors. Next, the engine degradation is adaptively modeled with the functional principal component analysis (FPCA) method and future health is prognosticated using the Bayesian inference. The prognostic approach is applied to run-to-failure data sets of C-MAPSS test-bed developed by NASA. Results show that the proposed method can effectively select the informative sensors and accurately predict the complex degradation of the aircraft engine. Full article
(This article belongs to the Special Issue Sensors for Prognostics and Health Management)
Show Figures

Figure 1

18 pages, 3697 KB  
Article
A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics
by David Verstraete, Enrique Droguett and Mohammad Modarres
Sensors 2020, 20(1), 176; https://doi.org/10.3390/s20010176 - 27 Dec 2019
Cited by 49 | Viewed by 5460
Abstract
Multi-sensor systems are proliferating in the asset management industry. Industry 4.0, combined with the Internet of Things (IoT), has ushered in the requirements of prognostics and health management systems to predict the system’s reliability and assess maintenance decisions. State of the art systems [...] Read more.
Multi-sensor systems are proliferating in the asset management industry. Industry 4.0, combined with the Internet of Things (IoT), has ushered in the requirements of prognostics and health management systems to predict the system’s reliability and assess maintenance decisions. State of the art systems now generate big machinery data and require multi-sensor fusion for integrated remaining useful life prognostic capabilities. When dealing with these data sets, traditional prediction methods are not equipped to handle the multiple sensor signals in unison. To address this challenge, this paper proposes a new, deep, adversarial approach to any remaining useful life prediction in which a novel, non-Markovian, variational, inference-based model, incorporating an adversarial methodology, is derived. To evaluate the proposed approach, two public multi-sensor data sets are used for the remaining useful life prediction applications: (1) CMAPSS turbofan engine dataset, and (2) FEMTO Pronostia rolling element bearing data set. The proposed approach obtains favorable results when against similar deep learning models. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

Back to TopTop