Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,122)

Search Parameters:
Keywords = C cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3350 KB  
Article
Multifunctional Peptide-Based Biohybrid for Targeted Reduction of Metastatic Breast Carcinoma-Associated Osteolysis
by Nicole Stadler, Bingjie Gao, Maria Jose Silva, Joscha Borho, Eva Haunschild, Kaloian Koynov, Melanie Haffner-Luntzer, Anita Ignatius, Gilbert Weidinger, Seah Ling Kuan, Tanja Weil and Holger Barth
J. Funct. Biomater. 2025, 16(11), 399; https://doi.org/10.3390/jfb16110399 (registering DOI) - 25 Oct 2025
Abstract
Metastatic breast carcinoma (BC) cells are prone to spreading in the bone microenvironment, leading to a vicious cycle between local osteoclast-mediated osteolysis and tumor progression. Therefore, the targeted pharmacological down-modulation of BC cell proliferation as well as osteoclast differentiation and hyperactivity might represent [...] Read more.
Metastatic breast carcinoma (BC) cells are prone to spreading in the bone microenvironment, leading to a vicious cycle between local osteoclast-mediated osteolysis and tumor progression. Therefore, the targeted pharmacological down-modulation of BC cell proliferation as well as osteoclast differentiation and hyperactivity might represent a promising treatment option. We developed a multifunctional peptide nanocarrier combining bioactive EPI-X4 peptides and the Rho-inhibiting C3bot enzyme from Clostridium botulinum. C3bot is preferentially internalized into the cytosol of monocytic cells, including osteoclasts, where it inhibits Rho-mediated signal transduction. However, Rho-mediated cellular processes like migration and cell division can also be inhibited in non-monocytic cells if C3bot is delivered into their cytosol by a nanocarrier. To accomplish this, we designed a supramolecular transporter where one molecule of biotinylated C3bot and three biotinylated entities of the human EPI-X4 peptide-derived CXCR4 antagonist JM173 are assembled on avidin as a central platform. This modular transport system (JM173)3-Avi-C3 down-modulated osteoclast formation and hyperactivity and delivered the therapeutic cargo C3bot successfully into the cytosol of breast cancer cells, where it inhibited Rho. Full article
(This article belongs to the Special Issue Advanced Biomaterials in Cancer Therapeutics and Diagnosis)
Show Figures

Figure 1

21 pages, 11292 KB  
Article
Thermal Cycling Tribological Behavior and Its Evolution of hBN-Reinforced Ni/WC/CeO2 Cladding Layers from 25 to 600 °C
by Ouyang Li, Guirong Yang, Wenming Song and Ying Ma
Lubricants 2025, 13(11), 473; https://doi.org/10.3390/lubricants13110473 (registering DOI) - 25 Oct 2025
Abstract
Enhancing the high-temperature tribological performance of protective claddings is crucial for demanding industrial applications. This study focuses on developing hexagonal boron nitride (hBN)-reinforced Ni-based composite claddings to improve wear resistance over a wide temperature range. Ni/WC/CeO2 cladding layers with varying hBN contents [...] Read more.
Enhancing the high-temperature tribological performance of protective claddings is crucial for demanding industrial applications. This study focuses on developing hexagonal boron nitride (hBN)-reinforced Ni-based composite claddings to improve wear resistance over a wide temperature range. Ni/WC/CeO2 cladding layers with varying hBN contents (0.25 wt% and 0.75 wt%) were fabricated on 45 steel substrates via vacuum cladding. Their microstructure, mechanical properties, and tribological behavior under thermal cycling (25–600 °C) were systematically evaluated. Results reveal that the in situ formation of a hard Cr2B phase, coupled with hBN addition, was key to achieving optimal overall properties. The composite with 0.25 wt% hBN (NWB25) demonstrated optimal overall properties, featuring the lowest porosity (0.1813%) and the highest H/E ratio (0.0405), leading to the best overall tribological performance. A distinct transition from mild to severe wear was observed during the 300 °C-2 stage, resulting from the fracture of a high-temperature tribo-oxidative layer. An hBN content of 0.25 wt% is identified as optimal for balancing solid lubrication and matrix cohesion, thereby achieving superior thermal cycling wear resistance. Higher hBN concentrations promote grain coarsening and increased porosity, which degrade performance. Full article
Show Figures

Figure 1

20 pages, 3002 KB  
Article
High-Sensitivity Troponin T as a Prognostic Factor of Conventional Echocardiographic Parameters in Cancer Patients: A Prospective Observational Study
by Svetoslava Elefterova Slavcheva, Sevim Ahmed Shefket, Yana Bocheva and Atanas Angelov
Medicina 2025, 61(11), 1911; https://doi.org/10.3390/medicina61111911 (registering DOI) - 24 Oct 2025
Abstract
Background and Objectives: Cardiac injury caused by cancer therapy can be detected early using high-sensitivity cardiac troponins (hs-cTns), and this is crucial for preventing irreversible consequences. Clinically relevant issues regarding hs-cTns in oncologic settings—such as reliable cut-off values, the optimal assessment timeframe, [...] Read more.
Background and Objectives: Cardiac injury caused by cancer therapy can be detected early using high-sensitivity cardiac troponins (hs-cTns), and this is crucial for preventing irreversible consequences. Clinically relevant issues regarding hs-cTns in oncologic settings—such as reliable cut-off values, the optimal assessment timeframe, factors influencing their levels, and their prognostic ability in relation to functional echocardiographic parameters—require further investigation. In this study, we aimed to examine the determinants of hs-cTnT variations during cancer therapy and the relationship between the biomarker and functional conventional echocardiographic parameters. Materials and Methods: We prospectively evaluated adult patients scheduled for chemotherapy for either breast or gastrointestinal cancers, excluding those with pulmonary and cardiac disorders. We enrolled 40 patients who underwent a minimum of one cycle of potentially cardiotoxic regimens containing at least one of the following agents: anthracyclines, cyclophosphamide, taxanes, 5-fluorouracil, platinum compounds, trastuzumab, or bevacizumab. We observed two-dimensional and tissue Doppler echocardiographic parameters and hs-cTnT levels for a median of 360 days (IQR 162, 478) following the start of chemotherapy. Results: The generalised estimating equation (GEE) analysis revealed significant elevations in hs-cTnT levels at three months (β = 1.2; p = 0.005) and six months (β = 2.3; p = 0.02) from baseline, influenced by anthracycline treatment (p = 0.009), renal function (p = 0.003), and increased cardiotoxicity risk (high: p = 0.013; medium: p < 0.001). Elevated hs-cTnT levels independently predicted the deterioration of the LV longitudinal myocardial function, measured by the systolic tissue velocities, according to the GEE analysis. The receiver operating characteristic curve-derived hs-cTnT thresholds—of 8.23 ng/L and 8.08 ng/L—had a high negative predictive value for identifying Average and Lateral LVS′ decreases, respectively. Conclusions: Our research supports the use of baseline and continuing hs-cTnT testing in cancer patients, showing the dependence of the biomarker on renal function, cardiovascular toxicity risk level, and anthracycline treatment. The hs-cTnT cut-off value of approximately 8 ng/L may suggest a low probability of longitudinal myocardial function impairment and this observation needs further validation in larger cohorts. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

34 pages, 5331 KB  
Review
Inflammation, Apoptosis, and Fibrosis in Diabetic Nephropathy: Molecular Crosstalk in Proximal Tubular Epithelial Cells and Therapeutic Implications
by Xuanke Liu, Chunjiang Zhang, Yanjie Fu, Linlin Xie, Yijing Kong and Xiaoping Yang
Curr. Issues Mol. Biol. 2025, 47(11), 885; https://doi.org/10.3390/cimb47110885 (registering DOI) - 24 Oct 2025
Abstract
Diabetic nephropathy (DN) remains the leading cause of end-stage renal disease worldwide, with proximal tubular epithelial cells (PTECs) playing a central role in its pathogenesis. Under hyperglycemic conditions, PTECs drive a pathological triad of inflammation, apoptosis, and fibrosis. Recent advances reveal that these [...] Read more.
Diabetic nephropathy (DN) remains the leading cause of end-stage renal disease worldwide, with proximal tubular epithelial cells (PTECs) playing a central role in its pathogenesis. Under hyperglycemic conditions, PTECs drive a pathological triad of inflammation, apoptosis, and fibrosis. Recent advances reveal that these processes interact synergistically to form a self-perpetuating vicious cycle, rather than operating in isolation. This review systematically elucidates the molecular mechanisms underlying this crosstalk in PTECs. Hyperglycemia induces reactive oxygen species (ROS) overproduction, advanced glycation end products (AGEs) accumulation, and endoplasmic reticulum stress (ERS), which collectively activate key inflammatory pathways (NF-κB, NLRP3, cGAS-STING). The resulting inflammatory milieu triggers apoptosis via death receptor and mitochondrial pathways, while apoptotic cells release damage-associated molecular patterns (DAMPs) that further amplify inflammation. Concurrently, fibrogenic signaling (TGF-β1/Smad, Hippo-YAP/TAZ) promotes epithelial–mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. Crucially, the resulting fibrotic microenvironment reciprocally exacerbates inflammation and apoptosis through mechanical stress and hypoxia. Quantitative data from preclinical and clinical studies are integrated to underscore the magnitude of these effects. Current therapeutic strategies are evolving toward multi-target interventions against this pathological network. We contrast the paradigm of monotargeted agents (e.g., Finerenone, SGLT2 inhibitors), which offer high specificity, with that of multi-targeted natural product-based formulations (e.g., Huangkui capsule, Astragaloside IV), which provide synergistic multi-pathway modulation. Emerging approaches (metabolic reprogramming, epigenetic regulation, mechanobiological signaling) hold promise for reversing fibrosis. Future directions include leveraging single-cell technologies to decipher PTEC heterogeneity and developing kidney-targeted drug delivery systems. We conclude that disrupting the inflammation–apoptosis–fibrosis vicious cycle in PTECs is central to developing next-generation therapies for DN. Full article
Show Figures

Figure 1

18 pages, 6833 KB  
Article
Synthesis of Zirconium Catalysts Supported on Activated Carbon for Catalytic Oxidative Desulfurization of Dibenzothiophene from N-Octane
by Caixia Yang, Lin Zhang, Shaocui Feng, Yan Chen, Jianmei Zou, Huijun He and Qing Zhang
Sustainability 2025, 17(21), 9483; https://doi.org/10.3390/su17219483 (registering DOI) - 24 Oct 2025
Abstract
The growing emphasis on controlling sulfur-containing compounds in fuel oils has driven the development of numerous desulfurization technologies. Among these, catalytic oxidative desulfurization (CODS) has garnered considerable research interest due to its exceptional capability to efficiently remove refractory sulfur compounds, particularly dibenzothiophene (DBT), [...] Read more.
The growing emphasis on controlling sulfur-containing compounds in fuel oils has driven the development of numerous desulfurization technologies. Among these, catalytic oxidative desulfurization (CODS) has garnered considerable research interest due to its exceptional capability to efficiently remove refractory sulfur compounds, particularly dibenzothiophene (DBT), under relatively mild reaction conditions. However, the widespread application of CODS has been hindered by the high cost and complex preparation processes of the catalysts. To enhance the practical potential of CODS, in this study, a novel Zr@AC catalyst was developed by a facile “solution impregnation + high-temperature calcination” strategy, where zirconium species were effectively supported on activated carbon. Experimental results demonstrated that under optimized conditions of 0.1 g catalyst dosage, 2.0 O/S ratio, reaction temperature 100 °C and reaction time 50 min, the Zr@AC-mediated CODS system achieved a remarkable desulfurization efficiency of 97.24% for DBT removal. The removal efficiency of DBT increased by 9.0% compared with non-catalytic systems. The characterization techniques revealed that the Zr@AC catalyst possesses a hierarchically rough surface morphology, high specific surface area, abundant active sites, and distinctive Zr-O functional groups. Kinetic analysis indicated that the oxidation process follows second-order reaction kinetics. Furthermore, the catalyst maintained over 95% desulfurization efficiency after five consecutive regeneration cycles, confirming that the prepared catalyst has the exceptional recyclability and operational stability. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
47 pages, 36851 KB  
Article
Comparative Analysis of ML and DL Models for Data-Driven SOH Estimation of LIBs Under Diverse Temperature and Load Conditions
by Seyed Saeed Madani, Marie Hébert, Loïc Boulon, Alexandre Lupien-Bédard and François Allard
Batteries 2025, 11(11), 393; https://doi.org/10.3390/batteries11110393 (registering DOI) - 24 Oct 2025
Abstract
Accurate estimation of lithium-ion battery (LIB) state of health (SOH) underpins safe operation, predictive maintenance, and lifetime-aware energy management. Despite recent advances in machine learning (ML), systematic benchmarking across heterogeneous real-world cells remains limited, often confounded by data leakage and inconsistent validation. Here, [...] Read more.
Accurate estimation of lithium-ion battery (LIB) state of health (SOH) underpins safe operation, predictive maintenance, and lifetime-aware energy management. Despite recent advances in machine learning (ML), systematic benchmarking across heterogeneous real-world cells remains limited, often confounded by data leakage and inconsistent validation. Here, we establish a leakage-averse, cross-battery evaluation framework encompassing 32 commercial LIBs (B5–B56) spanning diverse cycling histories and temperatures (≈4 °C, 24 °C, 43 °C). Models ranging from classical regressors to ensemble trees and deep sequence architectures were assessed under blocked 5-fold GroupKFold splits using RMSE, MAE, R2 with confidence intervals, and inference latency. The results reveal distinct stratification among model families. Sequence-based architectures—CNN–LSTM, GRU, and LSTM—consistently achieved the highest accuracy (mean RMSE ≈ 0.006; per-cell R2 up to 0.996), demonstrating strong generalization across regimes. Gradient-boosted ensembles such as LightGBM and CatBoost delivered competitive mid-tier accuracy (RMSE ≈ 0.012–0.015) yet unrivaled computational efficiency (≈0.001–0.003 ms), confirming their suitability for embedded applications. Transformer-based hybrids underperformed, while approximately one-third of cells exhibited elevated errors linked to noise or regime shifts, underscoring the necessity of rigorous evaluation design. Collectively, these findings establish clear deployment guidelines: CNN–LSTM and GRU are recommended where robustness and accuracy are paramount (cloud and edge analytics), while LightGBM and CatBoost offer optimal latency–efficiency trade-offs for embedded controllers. Beyond model choice, the study highlights data curation and leakage-averse validation as critical enablers for transferable and reliable SOH estimation. This benchmarking framework provides a robust foundation for future integration of ML models into real-world battery management systems. Full article
Show Figures

Figure 1

12 pages, 1192 KB  
Article
Modelling of Battery Energy Storage Systems Under Real-World Applications and Conditions
by Achim Kampker, Benedikt Späth, Xiaoxuan Song and Datao Wang
Batteries 2025, 11(11), 392; https://doi.org/10.3390/batteries11110392 (registering DOI) - 24 Oct 2025
Abstract
Understanding the degradation behavior of lithium-ion batteries under realistic application conditions is critical for the design and operation of Battery Energy Storage Systems (BESS). This research presents a modular, cell-level simulation framework that integrates electrical, thermal, and aging models to evaluate system performance [...] Read more.
Understanding the degradation behavior of lithium-ion batteries under realistic application conditions is critical for the design and operation of Battery Energy Storage Systems (BESS). This research presents a modular, cell-level simulation framework that integrates electrical, thermal, and aging models to evaluate system performance in representative utility and residential scenarios. The framework is implemented using Python and allows time-series simulations to be performed under different state of charge (SOC), depth of discharge (DOD), C-rate, and ambient temperature conditions. Simulation results reveal that high-SOC windows, deep cycling, and elevated temperatures significantly accelerate capacity fade, with distinct aging behavior observed between residential and utility profiles. In particular, frequency modulation and deep-cycle self-consumption use cases impose more severe aging stress compared to microgrid or medium-cycle conditions. The study provides interpretable degradation metrics and visualizations, enabling targeted aging analysis under different load conditions. The results highlight the importance of thermal effects and cell-level stress variability, offering insights for lifetime-aware BESS control strategies. This framework serves as a practical tool to support the aging-resilient design and operation of grid-connected storage systems. Full article
(This article belongs to the Special Issue AI-Powered Battery Management and Grid Integration for Smart Cities)
12 pages, 2548 KB  
Article
Highly Graphitized Straw-Derived Carbon via Molten Salt Electrolysis for Potassium-Ion Batteries
by Yao Chang, Xinrui Wang, Yi Lu, Shijie Li, Zhenghao Pu, Wei-Li Song and Dongbai Sun
Materials 2025, 18(21), 4877; https://doi.org/10.3390/ma18214877 (registering DOI) - 24 Oct 2025
Abstract
The conversion of straw biomass into highly graphitized carbon materials is achieved through an efficient molten salt electrolysis process at moderate temperatures (900–950 °C). Increasing the electrolysis temperature significantly enhances the degree of graphitization, structural ordering, and heteroatom removal efficiency, as evidenced by [...] Read more.
The conversion of straw biomass into highly graphitized carbon materials is achieved through an efficient molten salt electrolysis process at moderate temperatures (900–950 °C). Increasing the electrolysis temperature significantly enhances the degree of graphitization, structural ordering, and heteroatom removal efficiency, as evidenced by multiscale characterization and electrochemical simulations. The resulting graphitic material exhibits a highly ordered layered structure with improved crystallinity and a larger specific surface area. When used as a potassium-ion battery anode, this biomass-derived carbon delivers a reversible capacity of 232.9 mA·h·g−1 after 100 cycles and retains 230.8 mA·h·g−1 after 500 cycles, owing to its well-developed graphite framework, which accommodates volume changes and facilitates rapid ion diffusion. This study presents a sustainable and scalable strategy for transforming low-cost agricultural waste into high-performance energy storage materials and provides valuable insights into the electrochemical graphitization process. Full article
(This article belongs to the Section Carbon Materials)
27 pages, 15115 KB  
Article
Macro-Meso Characteristics and Damage Mechanism of Cement-Stabilized Macadam Under Freeze–Thaw Cycles and Scouring
by Hongfu Liu, Sirui Zhou, Ao Kuang, Dongzhao Jin, Xinghai Peng and Songtao Lv
Materials 2025, 18(21), 4874; https://doi.org/10.3390/ma18214874 (registering DOI) - 24 Oct 2025
Abstract
This study quantifies the effects of freeze–thaw (FT) cycling and dynamic water scouring, and establishes links between mesoscale pore evolution and macroscale strength degradation in cement-stabilized macadam (CSM) bases. The objective is to provide quantitative indicators for durability design and non-destructive evaluation of [...] Read more.
This study quantifies the effects of freeze–thaw (FT) cycling and dynamic water scouring, and establishes links between mesoscale pore evolution and macroscale strength degradation in cement-stabilized macadam (CSM) bases. The objective is to provide quantitative indicators for durability design and non-destructive evaluation of CSM bases. First, laboratory tests were conducted to simulate alpine service conditions: CSM cylindrical specimens (Ø150 × 150 mm) with 4.5% cement content, cured for 28 days, were exposed to 0, 5, or 20 FT cycles (−18 °C for 16 h ↔ +25 °C for 8 h), followed by dynamic water scouring (0.5 MPa, 10 Hz) for 15, 30, or 60 min. Second, the resulting damage was tracked at two scales. Acoustic emission (AE) sensors monitored internal damage during subsequent splitting tests, while industrial computed tomography (CT) was used to scan selected specimens and quantify porosity, pore number, and average pore diameter. Third, gray relational analysis correlated pore structure parameters with strength loss. The results indicate that under 30 min of scouring, increasing FT cycles from 0 to 20 increased mass loss from 0.33% to 1.27% and reduced splitting strength by 28.8%. AE cumulative ringing count and energy decreased by 97.9% and 98.4%, respectively, indicating severe internal degradation. CT scans revealed porosity and pore count increased monotonically with FT cycles, while average pore diameter decreased (dominated by microcrack formation). Frost-heave pressure and cyclic suction enlarged edge pores and interconnected internal voids, accelerating erosion of cement paste. FT cycles compromise the cement–aggregate interfacial bond, thereby predisposing the matrix to accelerated deterioration under dynamic scouring; the ensuing evolution of pore structure emerges as the pivotal mechanism governing strength degradation. Average pore diameter exhibited the strongest correlation with splitting strength (r = 0.763), and its change was the primary driver of strength loss (r = 0.774). These findings facilitate optimizing cement dosage, validating non-destructive evaluation models for in-service base courses, and erosion durability of road base materials in permafrost regions. Full article
Show Figures

Figure 1

20 pages, 2106 KB  
Article
Coupling Effects of Organic Fertilizer Substituting Chemical Fertilizer on Potato Yield, Quality and Soil Nitrogen Content in the Erhai Lake Basin of China
by Xuemei Sun, Wenmei Zhang, Ting Wang, Wanting Li, Yongmei Li, Benshuai Yan, Mengge Zhang, Jixia Zhao and Maopan Fan
Agronomy 2025, 15(11), 2470; https://doi.org/10.3390/agronomy15112470 (registering DOI) - 24 Oct 2025
Viewed by 32
Abstract
Rational fertilization boosts crop yields and enhances nutritional value, but over-fertilization is counterproductive. Furthermore, water eutrophication caused by excessive use of nitrogen fertilizers has become a major agricultural non-point source pollution problem in the Erhai Lake Basin of China. This study took high-fertility [...] Read more.
Rational fertilization boosts crop yields and enhances nutritional value, but over-fertilization is counterproductive. Furthermore, water eutrophication caused by excessive use of nitrogen fertilizers has become a major agricultural non-point source pollution problem in the Erhai Lake Basin of China. This study took high-fertility soil as the research object and set up six treatments: no fertilization (CK), local recommended fertilization (T1), optimized chemical fertilizer (T2), organic fertilizer replacing 20% (T3), 40% (T4), 60% (T5) of chemical fertilizer with equal nitrogen. The results show that replacement of chemical nitrogen fertilizers with organic nitrogen fertilizers at an appropriate ratio can optimize soil nitrogen supply, enhance the activity of soil nitrogen cycle enzymes, thereby promoting the activity of nitrogen metabolism enzymes and nitrogen assimilation capacity in potato plants, and ultimately achieve a synergistic effect of increased yield, improved quality and higher fertilizer use efficiency. Among the treatments, the nitrate reductase (S-NR) activity in potato leaves was 36.74% and 41.66% higher under T3 than T1 and T4, respectively. For potato quality, Vitamin C (VC) content was 17.41% higher under T3 than T2; soluble protein content was 11.44%, 10.63%, and 9.44% higher under T3 than T1, T2, and T4, respectively. The replacement of chemical fertilizers with organic fertilizers mainly enhances the protein content in potato tubers by increasing soil urease (S-URE) activity and leaf relative chlorophyll content (SPAD) value. Based on the comprehensive differential combination evaluation model, considering potato metabolic absorption, yield, quality, and soil nitrogen content, the T3 treatment is the optimal fertilization method in the Erhai Lake Basin of China. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 5513 KB  
Article
Sustainable Cyanobacterial Bloom Control: Inhibitory Effects of Nano Zero-Valent Iron on Microcystis aeruginosa and Metabolic Disruption
by Guoming Zeng, Zilong Ma, Xiaoling Lei, Yong Xiao, Da Sun and Yuanyuan Huang
Toxics 2025, 13(11), 915; https://doi.org/10.3390/toxics13110915 - 24 Oct 2025
Viewed by 49
Abstract
The bloom of cyanobacteria has severely disrupted ecological balances, posing significant risks to human health and safety. However, there is currently a lack of environmentally friendly methods that can sustainably suppress these blooms over the long term. This study integrates untargeted metabolomics, Fourier-transform [...] Read more.
The bloom of cyanobacteria has severely disrupted ecological balances, posing significant risks to human health and safety. However, there is currently a lack of environmentally friendly methods that can sustainably suppress these blooms over the long term. This study integrates untargeted metabolomics, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) to systematically characterize the responses of Microcystis aeruginosa to nano zero-valent iron (nZVI). Exposure to nZVI reprograms lipid and amino acid metabolism, coincides with the suppression of protein biosynthesis, and perturbs central pathways—including the tricarboxylic acid (TCA) cycle, photosynthesis, and carbohydrate metabolism—leading to disruptions in energy balance and metabolic homeostasis. FTIR and SEM provide complementary evidence of membrane compromise, with attenuation of -OH, -C-H, and C=O functional group signals, abnormal cell morphology, and progressive oxidative injury culminating in cell lysis and solute leakage. Together, these results support the inhibitory effect of nZVI on M. aeruginosa and provide insights to guide metabolomics studies of M. aeruginosa using nZVI. Full article
Show Figures

Graphical abstract

16 pages, 729 KB  
Article
Towards Credible and Comparable Accounting of Environmental Attributes: Applicability and Limitation on Non-Proportional Allocation as Mass Balance Model
by Taichi Suzuki, Jun Nakatani and Ichiro Daigo
Sustainability 2025, 17(21), 9446; https://doi.org/10.3390/su17219446 - 24 Oct 2025
Viewed by 61
Abstract
There is a growing demand for industrial materials that claim environmental attributes based on life cycle thinking. To track and manage such environmental attributes, Chain of custody (CoC) models are growingly applied. Among CoC models, the mass balance model–credit method (MB-CR) and book [...] Read more.
There is a growing demand for industrial materials that claim environmental attributes based on life cycle thinking. To track and manage such environmental attributes, Chain of custody (CoC) models are growingly applied. Among CoC models, the mass balance model–credit method (MB-CR) and book and claim (B&C) model implement non-proportional allocation of environmental attributes. Though there is a case that applying these models could avoid additional environmental burdens that would otherwise occur, the eligibility of applying non-proportional allocation requires careful consideration. This study aims to clarify the requirement and limitation for applying MB-CR and B&C models and to justify the cases of applying those models. A key requirement is environmental rationality, defined as the ability to contribute to avoiding additional environmental burdens, particularly during transition phases where the target environmental attribute is not abundant. A key limitation is technical feasibility, which constrains allocation within what is physically achievable for industrial materials. This study contributes to establishing a scientifically grounded and systematically structured methodology for non-proportional allocation of environmental attributes. Applying MB-CR and B&C models under the requirement and limitation ensures that the non-proportional allocation aligns with the avoidance of environmental burden while maintaining credibility, transparency, and feasibility in environmental claims of industrial materials. Full article
(This article belongs to the Special Issue Advancing Towards Smart and Sustainable Supply Chain Management)
Show Figures

Figure 1

18 pages, 9796 KB  
Article
Integrative Transcriptomic and Proteomic Analysis Reveals CaMK4-Mediated Regulation of Proliferation in Goat Skeletal Muscle Satellite Cells
by He Cong, Lu Xu, Yaolong Liu, Zixuan Wang, Tao Ren, Pengcheng Ruan, Haoyuan Zhang, Chengli Liu, Yanguo Han, Pengfei Hu, Yan Zeng, Simone Ceccobelli and Guangxin E
Animals 2025, 15(21), 3083; https://doi.org/10.3390/ani15213083 - 24 Oct 2025
Viewed by 54
Abstract
CaMK4, a calcium/calmodulin-dependent protein kinase, is an important mediator of cellular signal transduction, yet its role in the regulation of skeletal muscle satellite cells (MuSCs) in goats has remained unclear. In this study, CaMK4 overexpression and knockdown models were established, and integrated [...] Read more.
CaMK4, a calcium/calmodulin-dependent protein kinase, is an important mediator of cellular signal transduction, yet its role in the regulation of skeletal muscle satellite cells (MuSCs) in goats has remained unclear. In this study, CaMK4 overexpression and knockdown models were established, and integrated transcriptomic and proteomic analyses were performed to systematically elucidate its regulatory network. CaMK4 overexpression altered key pathways associated with cell proliferation and muscle development, including cAMP, PI3K-Akt, and actin cytoskeleton regulation, while proteomic data highlighted calcium signaling and JAK-STAT pathways. Conversely, CaMK4 knockdown enhanced MuSC proliferation by upregulating cell cycle-related genes and proteins. Integrated analyses further identified that Galectin-9 (LGALS9), Collagen triple helix repeat containing-1 (CTHRC1), Hyaluronan Synthase 1 (HAS1), and L-Threonine Dehydrogenase (TDH) may serve as potential key nodes regulating cell cycle, apoptosis, and metabolic control. This suggests a regulatory role for CaMK4. Collectively, these findings provide a mechanistic framework for understanding CaMK4 function in ruminant muscle development and may offer insights for improving goat muscle growth, meat quality traits, and production efficiency. Full article
(This article belongs to the Special Issue Genetics and Breeding for Enhancing Production Traits in Ruminants)
Show Figures

Figure 1

24 pages, 3609 KB  
Article
Experimental Characterization and Modelling of a Humidification–Dehumidification (HDH) System Coupled with Photovoltaic/Thermal (PV/T) Modules
by Giovanni Picotti, Riccardo Simonetti, Luca Molinaroli and Giampaolo Manzolini
Energies 2025, 18(21), 5586; https://doi.org/10.3390/en18215586 - 24 Oct 2025
Viewed by 80
Abstract
Water scarcity is a relevant issue whose impact can be mitigated through sustainable solutions. Humidification–dehumidification (HDH) cycles powered by photovoltaic thermal (PVT) modules enable pure water production in remote areas. In this study, models have been developed and validated for the main components [...] Read more.
Water scarcity is a relevant issue whose impact can be mitigated through sustainable solutions. Humidification–dehumidification (HDH) cycles powered by photovoltaic thermal (PVT) modules enable pure water production in remote areas. In this study, models have been developed and validated for the main components of the system, the humidifier and the dehumidifier. A unique HDH-PVT prototype was built and experimentally tested at the SolarTech Lab of Politecnico di Milano in Milan, Italy. The experimental system is a Closed Air Closed Water—Water Heated (CACW-WH) that mimics a Closed Air Open Water—Water Heated (CAOW-WH) cycle through brine cooling, pure water mixing, and recirculation, avoiding a continuous waste of water. Tests were performed varying the mass flow ratio (MR) between 0.346 and 2.03 during summer and autumn in 2023 and 2024. The experimental results enabled the verification of the developed models. The optimal system performance was obtained for an MR close to 1 and a maximum cycle temperature of 44 °C, enabling a 0.51 gain output ratio (GOR) and 0.72% recovery ratio (RR). The electrical and thermal energy generation of the PVT modules satisfied the whole consumption of the system enabling pure water production exploiting only the solar resource available. The PVT-HDH system proved the viability of the proposed solution for a sustainable self-sufficient desalination system in remote areas, thus successfully addressing water scarcity issues exploiting a renewable energy source. Full article
Show Figures

Figure 1

20 pages, 1797 KB  
Article
An Innovative Industrial Complex for Sustainable Hydrocarbon Production with Near-Zero Emissions
by Viral Ajay Modi, Qiang Xu and Sujing Wang
Clean Technol. 2025, 7(4), 93; https://doi.org/10.3390/cleantechnol7040093 - 23 Oct 2025
Viewed by 110
Abstract
The Allam power cycle is a groundbreaking elevated-pressure power generation unit that utilizes oxygen and fossil fuels to generate low-cost electricity while capturing carbon dioxide (CO2) inherently. In this project, we utilize the CO2 generated from the Allam cycle as [...] Read more.
The Allam power cycle is a groundbreaking elevated-pressure power generation unit that utilizes oxygen and fossil fuels to generate low-cost electricity while capturing carbon dioxide (CO2) inherently. In this project, we utilize the CO2 generated from the Allam cycle as feedstock for a newly envisioned industrial complex dedicated to producing renewable hydrocarbons. The industrial complex (FAAR) comprises four subsystems: (i) a Fischer–Tropsch synthesis plant (FTSP), (ii) an alkaline water electrolysis plant (AWEP), (iii) an Allam power cycle plant (APCP), and (iv) a reverse water-gas shift plant (RWGSP). Through effective material, heat, and power integration, the FAAR complex, utilizing 57.1% renewable energy for its electricity needs, can poly-generate sustainable hydrocarbons (C1–C30), pure hydrogen, and oxygen with near-zero emissions from natural gas and water. Economic analysis indicates strong financial performance of the development, with an internal rate of return (IRR) of 18%, a discounted payback period of 8.7 years, and a profitability index of 2.39. The complex has been validated through rigorous modeling and simulation using Aspen Plus version 14, including sensitivity analysis. Full article
Show Figures

Figure 1

Back to TopTop