Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = C–H–O–S–Pb isotope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9353 KiB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 293
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

31 pages, 54013 KiB  
Article
Ore-Forming Fluid Evolution and Ore Genesis of the Cuyu Gold Deposit in Central Jilin Province, NE China: Constraints from Geology, Fluid Inclusions, and H–O–S–Pb Isotope Studies
by Haozhe Li, Qun Yang, Leigang Zhang, Yunsheng Ren, Mingtao Li, Chan Li, Bin Wang, Sitong Chen and Xiaolei Peng
Minerals 2025, 15(5), 535; https://doi.org/10.3390/min15050535 - 17 May 2025
Cited by 1 | Viewed by 661
Abstract
The Cuyu gold deposit in central Jilin Province in Northeast China is located in the eastern segment of the northern margin of the North China Craton (NCC), as well as the eastern segment of the Xing’an–Mongolian Orogenic Belt (XMOB). Gold ore-bodies are controlled [...] Read more.
The Cuyu gold deposit in central Jilin Province in Northeast China is located in the eastern segment of the northern margin of the North China Craton (NCC), as well as the eastern segment of the Xing’an–Mongolian Orogenic Belt (XMOB). Gold ore-bodies are controlled by NW-trending faults and mainly occur in late Hercynian granodiorite. The mineralization process in the Cuyu deposit can be divided into three stages: quartz + coarse grained arsenopyrite + pyrite (stage I), quartz + sericite + pyrite + arsenopyrite + electrum + chalcopyrite + sphalerite (stage II), and quartz + calcite ± pyrite (stage III). Stage II is the most important for gold mineralization. We conducted analyses including petrography, microthermometry, laser Raman spectroscopy of fluid inclusions, and H–O–S–Pb isotopic analysis to elucidate the mineralization processes in the Cuyu deposit. Five types of primary fluid inclusions (FIs) are present in the hydrothermal quartz and calcite grains of the ore: liquid-rich two-phase aqueous fluid inclusions (L-type), vapor-rich two-phase aqueous fluid inclusions (V-type), CO2-bearing two- or three-phase inclusions (C1-type), CO2-rich two- or three-phase inclusions (C2-type), and pure CO2 mono-phase inclusions (C3-type). From stages I to III, the fluid inclusion assemblages changed from L-, C2-, and C3-types to L-, V-, C1-, C2-, and C3-types and, finally, to L-types only. The corresponding homogenization temperatures for stages I to III were 242–326 °C, 202–298 °C, and 106–188 °C, and the salinities were 4.69–9.73, 1.63–7.30, and 1.39–3.53 wt.% NaCl equiv., respectively. The ore-forming fluid system evolved from a NaCl-H2O-CO2 ± CH4 ± H2S fluid system in stage I and II with immiscible characteristics to a homogeneous NaC-H2O fluid system in stage III. Microthermometric data for stages I to III show a decreasing trend in homogenization temperatures and salinities. The mineral assemblages, fluid inclusions, and H–O–S–Pb isotopes indicate that the initial ore-forming fluids of stage I were exsolved from diorite porphyrite and characterized by a high temperature and low salinity. The addition of meteoric water in large quantities led to decreases in temperature and pressure, resulting in a NaCl-H2O-CO2 ± CH4 ± H2S fluid system with significant immiscibility in stage II, facilitating the deposition of gold and associated polymetallic sulfides. The Cuyu gold deposit has a similar ore genesis to those of gold deposits in the Jiapigou–Haigou gold belt (JHGB) of southeastern Jilin Province indicating potential for gold prospecting in the northwest-trending seam of the JHGB. Full article
Show Figures

Figure 1

30 pages, 7429 KiB  
Article
Isotope Geochemistry and Metallogenic Model of the Bailugou Vein-Type Zn-Pb-Ag Deposit, Eastern Qinling Orogen, China
by Yan Yang, Hui Chen, Nana Guo, Donghao Wu, Zhenshan Pang and Yanjing Chen
Minerals 2024, 14(12), 1244; https://doi.org/10.3390/min14121244 - 6 Dec 2024
Cited by 1 | Viewed by 929
Abstract
The large-scale vein-type Zn-Pb-Ag deposit in the Eastern Qinling Orogen (EQO) has sparked a long-standing debate over whether magmatism or metamorphism was the primary control or factor in its formation. Among the region’s vein-type deposits, the large-sized Bailugou deposit offers a unique opportunity [...] Read more.
The large-scale vein-type Zn-Pb-Ag deposit in the Eastern Qinling Orogen (EQO) has sparked a long-standing debate over whether magmatism or metamorphism was the primary control or factor in its formation. Among the region’s vein-type deposits, the large-sized Bailugou deposit offers a unique opportunity to study this style of mineralization. Similar to other deposits in the area, the vein-type orebodies of the Bailugou deposit are hosted in dolomitic marbles (carbonate–shale–chert association, CSC) of the Mesoproterozoic Guandaokou Group. Faults control the distribution of the Bailugou deposit but do not show apparent spatial links to the regional Yanshanian granitic porphyry. This study conducted comprehensive H–O–C–S–Pb isotopic analyses to constrain the sources of the ore-forming metals and metal endowments of the Bailugou deposit. The δ34SCDT values of sulfides range from 1.1‰ to 9.1‰ with an average of 4.0‰, indicating that the sulfur generated from homogenization during the high-temperature source acted on host sediments. The Pb isotopic compositions obtained from 31 sulfide samples reveal that the lead originated from the host sediments rather than from the Mesozoic granitic intrusions. The results indicate that the metals for the Bailugou deposit were jointly sourced from host sediments of the Mid-Late Proterozoic Meiyaogou Fm. and the Nannihu Fm. of the Luanchuan Group and Guandaokou Group, as well as lower crust and mantle materials. The isotopic composition of carbon, hydrogen, and oxygen collectively indicate that the metallogenic constituents of the Bailugou deposit were contributed by ore-bearing surrounding rocks, lower crust, and mantle materials. In summary, the study presents a composite geologic-metallogenic model suggesting that the Bailugou mineral system, along with other lead-zinc-silver deposits, porphyry-skarn molybdenum-tungsten deposits, and the small granitic intrusions in the Luanchuan area, are all products of contemporaneous hydrothermal diagenetic mineralization. This mineralization event transpired during a continental collision regime between the Yangtze and the North China Block (including syn- to post-collisional settings), particularly during the transition from collisional compression to extension around 140 Ma. The Bailugou lead-zinc-silver mineralization resembles an orogenic-type deposit formed by metamorphic fluid during the Yanshanian Orogeny. Full article
Show Figures

Figure 1

17 pages, 3881 KiB  
Article
The H–O–S Isotope Characteristics and Diagenetic, Mineralization Ages of the Zhueryu Au Deposit from the Jidong Gold Belt, China
by Wenjing Yang, Tianshe Cheng, Xuebin Zhang, Lijun Guo, Hongsheng Gao, Xingfang Duo, Lipeng Tu and Xianzhen Zhang
Minerals 2024, 14(11), 1068; https://doi.org/10.3390/min14111068 - 24 Oct 2024
Viewed by 1056
Abstract
The Zhueryu Au deposit is one of the important quartz-vein type Au deposits. It is located at the western margin of the Jidong gold belt in China and characterized by ore bodies hosted in structural fractures within the Zhueryu syenite. The H, O, [...] Read more.
The Zhueryu Au deposit is one of the important quartz-vein type Au deposits. It is located at the western margin of the Jidong gold belt in China and characterized by ore bodies hosted in structural fractures within the Zhueryu syenite. The H, O, and S isotopes as well as the Rb–Sr isotope age of fluid inclusions from the quartz-polymetallic sulfide ore bodies (main stage) and the zircon U–Pb isotope age from the syenite were analyzed so as to discuss the source of ore-forming fluids and constrain the Au’s mineralization age. The textural characteristics of the fluid inclusions indicate that the fluid inclusions in the quartz (QzII) are from the same stage, with no evidence of secondary fluid inclusions from the later stage. Fluid inclusion microthermometry performed on the quartz (QzII) reveals a predominance of vapor–liquid two-phase inclusions, with homogenization temperatures ranging from 177 °C to 337 °C (average: 260 °C), characteristic of a medium-low temperature hydrothermal system. Furthermore, H, O, and S isotope analyses of the ore-forming fluids yielded δD, δ18O, and δ34S values ranging from +12.8‰ to +14.8‰, +9.15‰ to +9.51‰, and −8.395‰ to -1.918‰ (average: −5.826‰), respectively. These isotopic signatures, particularly the distinctly positive δD values, strongly suggest that the Zhueryu ore-forming fluids were primarily derived from metamorphic sources, contrasting with the magmatic-hydrothermal fluids implicated in the formation of many other Au deposits within the Jidong belt. The LA–ICP–MS zircon U–Pb dating yielded a concordia age of 242 ± 2 Ma (MSWD = 0.17), indicating a Middle Triassic crystallization age for the Zhueryu syenite. In contrast, the Rb–Sr dating of primary fluid inclusions hosted within quartz (QzII) yielded an isochron age of 181 ± 12 Ma (MSWD = 2.5), placing the Au mineralization event firmly within the Early Jurassic. This demonstrates that the Au mineralization is significantly younger than the host syenite, representing a distinct mineralization event. These results might have certain significance for studying the dynamics of Au mineralization in the Jidong gold belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 13736 KiB  
Article
Gold Mineralization at the Syenite-Hosted Anwangshan Gold Deposit, Western Qinling Orogen, Central China
by Wenyuan Chen, Zhibo Yan, Jin Yuan, Yuanyuan Zhao, Xinyu Xu, Liqiang Sun, Xinbiao Lü and Jian Ma
Minerals 2024, 14(10), 1057; https://doi.org/10.3390/min14101057 - 21 Oct 2024
Viewed by 1629
Abstract
The Anwangshan gold deposit is located in the northwestern part of the Fengtai Basin, Western Qinling Orogen (WQO). The gold ore is hosted within quartz syenite and its contact zone. The U–Pb weighted mean age of the quartz syenite is 231 ± 1.8 [...] Read more.
The Anwangshan gold deposit is located in the northwestern part of the Fengtai Basin, Western Qinling Orogen (WQO). The gold ore is hosted within quartz syenite and its contact zone. The U–Pb weighted mean age of the quartz syenite is 231 ± 1.8 Ma. It is characterized by high potassium (K2O = 10.13%, K2O/Na2O > 1) and high magnesium (Mg# = 55.31 to 72.78) content, enriched in large ion lithophile elements (Th, U, and Ba) and light rare earth elements (LREE), with a typical “TNT” (Ti, Nb, and Ta) deficiency. The geochemical features and Hf isotope compositions (εHf(t) = −6.68 to +2.25) suggest that the quartz syenite would form from partial melting of an enriched lithospheric mantle under an extensional setting. Three generations of gold mineralization have been identified, including the quartz–sericite–pyrite (Py1) stage I, the quartz–pyrite (Py2)–polymetallic sulfide–early calcite stage II, and the epidote–late calcite stage III. In situ sulfur isotope analysis of pyrite shows that Py1 (δ34S = −1.1 to +3.8‰) possesses mantle sulfur characteristics. However, Py2 has totally different δ34S (+5.1 to +6.7‰), which lies between the typical orogenic gold deposits in the WQO (δ34S = +8 to +12‰) and mantle sulfur. This suggests a mixed source of metamorphosed sediments and magmatic sulfur during stage II gold mineralization. The fluid inclusions in auriferous quartz have three different types, including the liquid-rich phase type, pure (gas or liquid)-phase type, and daughter-minerals-bearing phase type. Multiple-stage fluid inclusions indicate that the ore fluids are medium-temperature (concentrated at 220 to 270 °C), medium-salinity (7.85 to 13.80% NaCleq) CO2–H2O–NaCl systems. The salinity is quite different from typical orogenic gold deposits in WQO and worldwide, and this is more likely to be a mixture of magmatic and metamorphic fluids as well. In summary, the quartz syenite should have not only a spatio-temporal but also a genetical relationship with the Anwangshan gold deposit. It could provide most of the gold and ore fluids at the first stage, with metamorphic fluids and/or gold joining in during the later stages. Full article
(This article belongs to the Special Issue The Formation and Evolution of Gold Deposits in China)
Show Figures

Figure 1

25 pages, 50215 KiB  
Article
Source of Ore-Forming Fluids and Ore Genesis of the Batailing Au Deposit, Central Jilin Province, Northeast China: Constraints from Fluid Inclusions and H-O-C-S-Pb Isotopes
by Haoming Li, Keyong Wang, Xiangjin Yan, Qingying Zhao and Lixue Sun
Minerals 2024, 14(10), 1028; https://doi.org/10.3390/min14101028 - 14 Oct 2024
Viewed by 1079
Abstract
The Batailing Au deposit is a vein-type deposit in central Jilin Province, situated in the southern sector of the Lesser Xing’an–Zhangguangcai Range within the eastern Central Asian Orogenic Belt. NE-trending fault-controlled orebodies occur in the Upper Permian Yangjiagou Formation and quartz diorite–porphyrite. The [...] Read more.
The Batailing Au deposit is a vein-type deposit in central Jilin Province, situated in the southern sector of the Lesser Xing’an–Zhangguangcai Range within the eastern Central Asian Orogenic Belt. NE-trending fault-controlled orebodies occur in the Upper Permian Yangjiagou Formation and quartz diorite–porphyrite. The mineralisation process was delineated into three stages: (I) quartz–arsenopyrite–pyrite, (II) quartz–polymetallic sulphides (main Au mineralisation stage), and (III) quartz–pyrite–carbonate. Fluid inclusions (FIs) in quartz were identified as four types: PC-type (pure CO2), C1-type (CO2-bearing), C2-type (CO2-rich), and W-type (aqueous two-phase). Raman spectroscopy analysis revealed that the vapor components of the FIs predominantly comprised CO2 with minor quantities of CH4 in stages I–II. Stages I and II encompassed four types of FIs with homogenisation temperature ranging from 264 to 332 °C and 213 to 292 °C and salinity spanning from 4.7 to 11.2 wt% and 1.8 to 11.6 wt%, respectively. Stage III exclusively contained W-type FIs with homogenisation temperature ranging from 152 to 215 °C and salinity spanning from 1.4 to 6.4 wt%. H-O isotopic values (δD = −84 to −79.6‰, δ18OH2O = 6.2 to 6.4‰ in stage I and δD = −96.4 to −90.4‰, δ18OH2O = 2.8 to 4.4‰ in stage II) and microthermometric data indicated that the ore-forming fluids are initially from a magmatic source, with later meteoric water input. Low C isotopic data from CO2 in FIs in quartz (−24.4 to −24.3‰ in stage I and −23.7 to −22.6‰ in stage II) indicated an organic carbon source. Ore precipitation is mainly attributable to fluid immiscibility. S-Pb isotopic data (δ34S = −3.5 to −1.6‰; 206Pb/204Pb = 18.325–18.362, 207Pb/204Pb = 15.523–5.562, 208Pb/204Pb = 38.064–38.221) revealed that ore metals primarily originated from magma. Based on this research, the origin of the Batailing Au deposit is of the mesothermal magmatic–hydrothermal lode type. Full article
Show Figures

Figure 1

22 pages, 12900 KiB  
Article
Origin and Evolution of Ore-Forming Fluid and Metallogenic Mechanism of the Baoshan Cu-Pb-Zn Deposit, South China: Constraints of Fluid Inclusion and C-H-O Isotopes
by Xueling Dai, Yongshun Li, Junke Zhang, Zhongfa Liu, Ke Chen and Mingpeng He
Minerals 2024, 14(10), 961; https://doi.org/10.3390/min14100961 - 24 Sep 2024
Viewed by 1278
Abstract
The Southern Hunan area is located in the superposition of the Qin-Hang Cu-Pb-Zn polymetallic ore belt and the Nanling W-Sn-Mo polymetallic ore belt, which is an important window to study the mineralization of W-Sn-Mo and Cu-Pb-Zn polymetallic deposits. The Baoshan deposit is a [...] Read more.
The Southern Hunan area is located in the superposition of the Qin-Hang Cu-Pb-Zn polymetallic ore belt and the Nanling W-Sn-Mo polymetallic ore belt, which is an important window to study the mineralization of W-Sn-Mo and Cu-Pb-Zn polymetallic deposits. The Baoshan deposit is a large Cu-Pb-Zn polymetallic deposit in Southern Hunan Province with obvious zones of Cu mineralization and Pb-Zn mineralization: the central part of the Baoshan deposit demonstrates contact metasomatic (skarn) Cu mineralization, while the western, northern and eastern parts demonstrate hydrothermal vein Pb-Zn mineralization. However, the origin and evolution of the ore-forming fluid and mechanism of Cu and Pb-Zn mineral precipitation are still unclear. The metallogenic process of the Baoshan Cu-Pb-Zn deposit can be divided into four stages: (1) the early skarn stage (S1); (2) the late skarn stage (S2); (3) the Cu-Fe sulfide stage (S3); and (4) the Pb-Zn sulfide stage (S4). The results of microtemperature measurements and a Raman spectrometric analysis of fluid inclusions show that the ore-forming fluid was the H2O-NaCl (-CO2 ± N2 ± C2H6) system in the skarn stages (S1 + S2) and changed into the H2O-NaCl-CO2 (±N2 ± C2H6) system in the sulfide stages (S3 + S4). The temperature (S1: 436.6~548.2 °C; S2: 344.1~435.1 °C; S3: 134.1~413.1 °C; S4: 183.9~261.0 °C) and salinity (S1: 17.4~51.2 wt.%NaClequiv; S2: 13.6~41.7 wt.%NaClequiv; S3: 1.2~32.3 wt.%NaClequiv; S4: 1.8~9.6 wt.%NaClequiv) showed a downward trend from the early to late stages. From the skarn stages (S1 + S2) to the sulfide stages (S3 + S4), the ore-forming pressure results from the static rock pressure and the hydrostatic pressure, and the ore-forming depth is estimated to be about three to six km. The C-H-O isotopic compositions of hydrothermal minerals such as quartz and calcite indicate that the ore-forming fluid is predominately magmatic fluid, but a significant amount of meteoric water is added in the Pb-Zn sulfide stage (S4). The formation of the mineralization zonation of the Baoshan deposit is the result of many factors (e.g., stratigraphy, structure and metal precipitation mechanism): the Cu mineralization is controlled by the contact zone, and the Pb-Zn mineralization is controlled by the fault. In addition, the precipitation of Cu is mainly controlled by fluid boiling, while the precipitation of Pb and Zn is mainly controlled by the mixing of magmatic fluid and meteoric water. Full article
(This article belongs to the Special Issue Ag-Pb-Zn Deposits: Geology and Geochemistry)
Show Figures

Figure 1

19 pages, 5935 KiB  
Article
Genesis of Pb–Zn Mineralization in the Pulang Cu Polymetallic Deposit in Yunnan Province, China: Insights from Analyses of Geology, Fluid Inclusions and C–H–O–S Isotopes
by Jingwei Xu, Xiaoyu Zhao, Mingguo Deng, Wenchang Li and Yan Su
Minerals 2024, 14(2), 176; https://doi.org/10.3390/min14020176 - 6 Feb 2024
Cited by 1 | Viewed by 1634
Abstract
The Pulang super-large porphyry Cu polymetallic deposit, located in the Sanjiang area of Yunnan Province, is one of the largest Cu deposits in China. This deposit hosts Cu resources of ~5 × 106 t and other ore-forming elements, such as Mo, Au, [...] Read more.
The Pulang super-large porphyry Cu polymetallic deposit, located in the Sanjiang area of Yunnan Province, is one of the largest Cu deposits in China. This deposit hosts Cu resources of ~5 × 106 t and other ore-forming elements, such as Mo, Au, Ag, Pb, Zn, Pt and Pd. Recently, obvious hydrothermal vein-type Pb–Zn mineralization, with a Pb + Zn resource of ~0.4 × 106 t, has been detected in the North Ore Section of the deposit. However, the genesis of these Pb–Zn ore bodies, especially their relationship to the major Cu ore bodies in the South Ore Section, remains controversial. We conducted geologic description, fluid inclusion petrography and microthermometry, and C, H, O and S isotope studies to uncover the genesis of Pb–Zn vein-type mineralization in North Pulang. As a result, three types of Pb–Zn veins were identified: a quartz–pyrrhotite–chalcopyrite–sphalerite–galena vein, a quartz–pyrrhotite–sphalerite–galena vein, and a calcite–quartz–pyrrhotite–galena vein. All fluid inclusions in the quartz from different veins are liquid-rich inclusions, with homogenization temperatures in the range of 184 °C–235 °C and salinities between 10.4 wt.% and 17.8 wt.% NaCl eq., indicating that the Pb–Zn ore-forming fluid was a single-phase fluid with a low temperature and low-to-medium salinity. Hydrothermal quartz in different stages displays δDwater values ranging from −46.9‰ to −120.0‰ (V-SMOW), and the calculated δ18Owater values range from 2.4‰ to 4.3‰ (V-SMOW), implying that the mineralization fluids likely originated from magma, with a minor involvement of meteoric water. The δ13CCal values (−2.3‰ to −7.9‰ V-PDB) of calcite indicate that C likely originated from a deep-seated source. The δ34S values of chalcopyrite, pyrite, pyrrhotite and sphalerite reveal that S was possibly derived from magmatic rocks. Based on the above data, it is suggested that the Pb–Zn mineralization in North Pulang was the result of the northward migration of ore-forming fluids that originated from South Pulang along the NE-trending structural fractures. A strong water–rock interaction occurred during the migration process. However, the involvement of meteoric water and accompanied cooling of fluids were most likely responsible for the precipitation of galena and sphalerite. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

33 pages, 104359 KiB  
Article
Origin of Zn-Pb Mineralization of the Vein Bt23C, Bytíz Deposit, Příbram Uranium and Base-Metal Ore District, Czech Republic: Constraints from Occurrence of Immiscible Aqueous–Carbonic Fluids
by Jana Ulmanová, Zdeněk Dolníček, Pavel Škácha and Jiří Sejkora
Minerals 2024, 14(1), 87; https://doi.org/10.3390/min14010087 - 11 Jan 2024
Cited by 4 | Viewed by 2338
Abstract
The mineralogical, fluid inclusion, and stable isotope (C, O) study was conducted on a Late Variscan Zn-Pb vein Bt23C, Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The vein is hosted by folded Proterozoic clastic sediments in exo-contact of a Devonian-to-Lower-Carboniferous granitic [...] Read more.
The mineralogical, fluid inclusion, and stable isotope (C, O) study was conducted on a Late Variscan Zn-Pb vein Bt23C, Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The vein is hosted by folded Proterozoic clastic sediments in exo-contact of a Devonian-to-Lower-Carboniferous granitic pluton. Siderite, dolomite-ankerite, calcite, quartz, baryte, galena, sphalerite, V-rich mica (roscoelite to an unnamed V-analogue of illite), and chlorite (chamosite) form the studied vein samples. The banded texture of the vein was modified by the episodic dissolution of earlier carbonates and/or sphalerite. Petrographic, microthermometric, and Raman studies of fluid inclusions proved a complicated fluid evolution, related to the activity of aqueous fluids and to an episode involving an aqueous–carbonic fluid mixture. Homogenization temperatures of aqueous inclusions decreased from ~210 to ~50 °C during the evolution of the vein, and salinity varied significantly from pure water up to 27 wt.% NaCl eq. The aqueous–carbonic fluid inclusions hosted by late quartz show highly variable phase compositions caused by the entrapment of accidental mixtures of a carbonic and an aqueous phase. Carbonic fluid is dominated by CO2 with minor CH4 and N2, and the associated aqueous solution has a medium salinity (6–14 wt.% NaCl eq.). The low calculated fluid δ18O values (−4.7 to +3.6‰ V-SMOW) suggest a predominance of surface waters during the crystallization of dolomite-ankerite and calcite, combined with a well-mixed source of carbon with δ13C values ranging between −8.2 and −10.5‰ V-PDB. The participation of three fluid endmembers is probable: (i) early high-temperature high-salinity Na>Ca-Cl fluids from an unspecified “deep” source; (ii) late low-salinity low-temperature waters, likely infiltrating from overlying Permian freshwater partly evaporated piedmont basins; (iii) late high-salinity chloridic solutions with both high and low Ca/Na ratios, which can represent externally derived marine brines, and/or local shield brines. The source of volatiles can be (i) in deep crust, (ii) from interactions of fluids with sedimentary wall rocks and/or (iii) in overlying Permian piedmont basins containing, in places, coal seams. The event dealing with heterogeneous CO2-bearing fluids yielded constraints on pressure conditions of ore formation (100–270 bar) as well as on the clarification of some additional genetic aspects of the Příbram’s ores, including the reasons for the widespread dissolution of older vein fill, the possible re-cycling of some ore-forming components, pH changes, and occasionally observed carbon isotope shift due to CO2 degassing. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Graphical abstract

32 pages, 7755 KiB  
Article
Ore Genesis of the Lower Urgen Porphyry Molybdenum Deposit in the Northern Great Xing’an Range, Northeast China: Constraints from Molybdenite Re-Os Dating, Fluid Inclusions, and H-O-S-Pb Isotopes
by Guangliang Zhang, Wei Xie, Shouqin Wen, Qingdong Zeng, Lingli Zhou, Hui Wang, Kailun Zhang, Tieqiao Tang and Pengcheng Ma
Minerals 2023, 13(9), 1189; https://doi.org/10.3390/min13091189 - 10 Sep 2023
Cited by 1 | Viewed by 1881
Abstract
The Lower Urgen molybdenum deposit (44,856 t Mo @ 0.141%), situated in the northern Great Xing’an Range, is a newly discovered porphyry molybdenum deposit. Mineralization is characterized by veinlet-disseminated- and vein-type quartz–sulfide orebodies primarily occurring in the cupola of the Early Cretaceous granite [...] Read more.
The Lower Urgen molybdenum deposit (44,856 t Mo @ 0.141%), situated in the northern Great Xing’an Range, is a newly discovered porphyry molybdenum deposit. Mineralization is characterized by veinlet-disseminated- and vein-type quartz–sulfide orebodies primarily occurring in the cupola of the Early Cretaceous granite porphyry stock. In this study, we present a detailed description of the ore geology, molybdenite Re-Os dating, H-O-S-Pb isotopic compositions, and fluid inclusion (FI) analyses including petrography, laser Raman, and microthermometry to precisely constrain the timing of ore formation, the origin of ore-forming fluids and materials, as well as the metal precipitation mechanism. Molybdenite Re-Os dating yielded two model ages of 141.2 ± 1.5 and 147.7 ± 1.7 Ma, coeval with the regional Late Jurassic–Early Cretaceous molybdenum metallogenesis. The hydrothermal process can be divided into three stages: the quartz–molybdenite(–pyrite) stage, quartz–polymetallic sulfide stage, and quartz–carbonate stage. Four types of FIs were distinguished for quartz, including two-phase liquid-rich (L-type), saline (S-type), CO2-rich (C1-type), and CO2-bearing (C2-type) FIs. Microthermometric data showed that the homogenization temperatures and salinities from the early to late stages were 240–430 °C, 5.0–11.9, and 30.1–50.8 wt% NaCl equiv.; 180–280 °C and 3.0–9.1 wt% NaCl equiv.; and 120–220 °C and 0.2–7.9 wt% NaCl equiv., respectively, suggesting a decreasing trend. H-O isotopic compositions indicate that the ore-forming fluids were initially of magmatic origin with the increasing incorporation of meteoric water. S-Pb isotopic compositions indicate that the ore-forming materials originated from granitic magmas, and the mineralization is genetically related to the ore-bearing granite porphyry stock in the deposit. Fluid immiscibility and fluid–rock interaction are collectively responsible for the massive deposition of molybdenite in stage 1, whereas fluid mixing and immiscibility played a critical role in the deposition of polymetallic sulfide in stage 2. Full article
Show Figures

Figure 1

17 pages, 6412 KiB  
Article
Multi-Isotopic Compositions of Ores from the Shizishan Cu–Au–Mo Orefield in the Tongling Region, Eastern China: Implications for Ore Genesis
by Jinwei Li, Lichuan Pan, Yitong Guo and Shunfu Lu
Minerals 2023, 13(7), 985; https://doi.org/10.3390/min13070985 - 24 Jul 2023
Cited by 1 | Viewed by 1711
Abstract
The Middle–Lower Yangtze Metallogenic Belt (MLYMB) hosts abundant porphyry–skarn–stratabound-type Cu–Au–Mo deposits. Despite extensive research, the origin of the stratabound-type deposits, which developed at the unconformity interface between the Devonian and Carboniferous strata in the MLYMB, remains controversial. The primary debate centers on whether [...] Read more.
The Middle–Lower Yangtze Metallogenic Belt (MLYMB) hosts abundant porphyry–skarn–stratabound-type Cu–Au–Mo deposits. Despite extensive research, the origin of the stratabound-type deposits, which developed at the unconformity interface between the Devonian and Carboniferous strata in the MLYMB, remains controversial. The primary debate centers on whether these deposits are the result of Carboniferous sedimentary exhalative mineralization or Mesozoic magmatic–hydrothermal mineralization. In this paper, we examine three representative deposits in the Shizishan orefield: the Chaoshan skarn-type Au deposit, the Hucun porphyry–skarn-type Cu–Mo deposit, and the Dongguashan Cu–(Au) deposit, which has a disputed genesis of its stratiform orebodies. Economically important ore minerals, such as chalcopyrite, molybdenite, and pyrrhotite, and their associated quartz and calcite, were focused on, rather than the extensively studied pyrite in the Tongling region. The ore genesis and sources of mineralized elements in the Shizishan orefield were investigated using H, O, C, S, Pb, and Cu isotopes. The H–O isotopic compositions of hydrothermal quartz from the Chaoshan, Dongguashan, and Hucun deposits indicate that the ore-forming fluids were mainly magmatic water with some meteoric water input. The C–O isotopic compositions of calcite show a large difference from the local sedimentary carbonates. The S isotopic compositions of sulfides reveal a magmatic sulfur signature. The Pb isotopic compositions in the three deposits are similar to those of the Shizishan intrusions, suggesting a magmatic source for Pb. The Cu isotopic compositions of chalcopyrite and pyrrhotite demonstrate that Cu, the primary ore-forming element, was mainly derived from magmatic–hydrothermal fluids. The stratiform orebodies display H–O–C–S–Pb–Cu isotopes consistent with the porphyry orebodies in the Dongguashan deposit, as well as in the Chaoshan and Hucun deposits, indicating a common ore genesis. From these, we conclude that the porphyry–skarn–stratabound-type Cu–Au–Mo deposits in the Shizishan orefield can be classified as a unified Mesozoic magmatic–hydrothermal metallogenic system. The stratabound-type copper sulfide deposits and the porphyry–skarn-type copper deposits in the MLYMB have a strong similarity in the source and genesis of their ore-forming elements. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

30 pages, 20578 KiB  
Article
Geology, Fluid Inclusions, and C–H–O–S–Pb Isotope Geochemistry of Pb–Zn Deposits within the Tuotuohe Region of the Tibetan Plateau: Implications for Ore Genesis
by Ye Qian, Lixiang Zhao and Jinlei Sun
Minerals 2023, 13(6), 762; https://doi.org/10.3390/min13060762 - 31 May 2023
Cited by 1 | Viewed by 2130
Abstract
The Tuotuohe region is a highly prospective area for Pb and Zn mineral exploration. This paper contributes to our comprehension of the ore-controlling structures, fluid inclusions, and C–H–O–S–Pb isotope geochemistry of Pb–Zn deposits in this region. These deposits are generally hosted by carbonates [...] Read more.
The Tuotuohe region is a highly prospective area for Pb and Zn mineral exploration. This paper contributes to our comprehension of the ore-controlling structures, fluid inclusions, and C–H–O–S–Pb isotope geochemistry of Pb–Zn deposits in this region. These deposits are generally hosted by carbonates and controlled by fractures. The principal homogenization temperatures of quart- and calcite-hosted inclusions ranged predominantly between 120 and 220 °C, with salinities varying from 6 to 16 wt.% NaCl equivalent. The Pb isotope compositions of the ore deposits are comparable to those of Cenozoic volcanic rocks in the region but differ significantly from those of the host rocks, indicating that the Pb within these deposits was derived from the mantle. The C, O, and S isotope compositions of samples exhibit a bimodal distribution based on whether they were derived from magma or host rocks, implying that magma-derived fluids underwent an isotopic exchange with the host rocks. The H-O isotope compositions of samples also indicate that ore-forming fluids were originally magmatic but were depleted by combining with meteoric water. These findings are also supported by variations in fluid inclusion homogenization temperatures and salinities. Taken together, these findings suggest that the Pb–Zn deposits of the Tuotuohe region developed from magma to hydrothermal fluids at medium–low temperatures. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

26 pages, 23305 KiB  
Article
Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics
by Qi Yu, Keyong Wang, Xuebing Zhang, Qingfei Sun, Wenqiang Bai, Chao Ma and Yongchun Xiao
Minerals 2023, 13(5), 652; https://doi.org/10.3390/min13050652 - 9 May 2023
Cited by 6 | Viewed by 2541
Abstract
The medium-sized Songjianghe Au deposit is located in the southeastern part of the Jiapigou-Haigou gold belt (JHGB) in central eastern Jilin Province, NE China. The gold mineralization is primarily characterized by disseminated-style ores and hosted in the low-/medium-grade metamorphic rocks of the Seluohe [...] Read more.
The medium-sized Songjianghe Au deposit is located in the southeastern part of the Jiapigou-Haigou gold belt (JHGB) in central eastern Jilin Province, NE China. The gold mineralization is primarily characterized by disseminated-style ores and hosted in the low-/medium-grade metamorphic rocks of the Seluohe Group. The ore bodies are governed by NNW-striking brittle-ductile structures and spatially correlated with silicic and sericitic alterations. Four alteration/mineralization stages have been distinguished: (I) Quartz-pyrrhotite-pyrite, (II) quartz-polymetallic sulfides, (III) quartz-pyrite, and (IV) quartz-calcite. The fluid inclusion (FI) assemblage in quartz from Stage I comprises C1-type, C2-type, C3-type, and VL-type FIs, with total homogenization temperatures (Th-total) of 292.8 to 405.6 °C and salinities of 2.8 to 9.3 wt% NaCl eqv. Quartz from Stage II (main ore stage) developed C2-, C3-, and VL-type FIs, with a Th-total of 278.5 to 338.9 °C and salinities of 2.8 to 8.1 wt% NaCl eqv. Stage III is characterized by coexisting C3- and VL-type FIs in quartz, with a Th-total of 215.9 to 307.3 °C and salinities of 2.4 to 7.2 wt% NaCl eqv. Only VL-type FIs are observed in Stage IV, with a Th-total of 189.5 to 240.4 °C and salinities of 3.7 to 5.7 wt% NaCl eqv. The Laser Raman spectroscopic results demonstrated minor CH4 in the C-type FIs from Stages I and II. The results suggest that ore fluids may have evolved from a medium-high temperature, low-salinity immiscible CO2-NaCl-H2O ± CH4 system to a low temperature, low-salinity homogeneous NaCl-H2O system. Fluid immiscibility caused by the rapid drop in pressure may have been the main trigger for gold-polymetallic sulfide precipitation. The Songjianghe Au deposit may have been formed under 352–448 °C and 850–1380 bar pressure, based on the isochore intersection for Stage II fluid inclusions. The H-O isotopic compositions (Stage I: δ18Ofluid = 5.6 to 5.8‰, δD = −96.2 to −95.7‰; Stage II: δ18Ofluid = 3.7 to 4.2‰, δD = −98.7 to −89.8‰; Stage III: δ18Ofluid = 1.2 to 1.4‰, δD = −103.5 to −101.2‰) indicate that the hydrothermal fluids are dominated by magmatic water in the early stages (Stages I and II) and mixed with meteoric water since Stage III. The pyrite S-Pb isotope data (δ34S: −2.91 to 3.40‰; 206Pb/204Pb: 16.3270 to 16.4874; 207Pb/204Pb: 15.2258 to 15.3489; 208Pb/204Pb: 36.6088 to 36.7174), combined with Pb isotopic compositions of the intrusive rocks and wall rocks (the Seluohe Group) in the ore district, indicate that the ore-forming materials at Songjianghe are predominantly from a magmatic source and may have been affected by the contamination of the Seluohe Group. In accordance with the features of ore geology, ore-forming fluids and metals, and geodynamic setting, the Songjianghe Au deposit belongs to a mesothermal magmatic hydrothermal vein gold deposit, which formed in the intermittent stage of Paleo-Pacific plate subduction during the Late Jurassic. Full article
(This article belongs to the Special Issue Genesis and Metallogeny of Non-ferrous and Precious Metal Deposits)
Show Figures

Figure 1

30 pages, 14891 KiB  
Article
Genesis and Fluid Evolution of the Hongqiling Sn-W Polymetallic Deposit in Hunan, South China: Constraints from Geology, Fluid Inclusion, and Stable Isotopes
by Wenqi Ren, Lei Wang, Shenjin Guan, Jiajin Xu, Hao He and Enyi Zhu
Minerals 2023, 13(3), 395; https://doi.org/10.3390/min13030395 - 12 Mar 2023
Cited by 5 | Viewed by 2642
Abstract
The Hongqiling is a vein-type Sn-W polymetallic deposit in southern Hunan (South China). It is geologically located on the northern margin of the Nanling metallogenic belt. Based on the mineral assemblage and vein crosscutting relationship, three mineralization stages were identified: Sn-W mineralization (S1: [...] Read more.
The Hongqiling is a vein-type Sn-W polymetallic deposit in southern Hunan (South China). It is geologically located on the northern margin of the Nanling metallogenic belt. Based on the mineral assemblage and vein crosscutting relationship, three mineralization stages were identified: Sn-W mineralization (S1: cassiterite, wolframite, scheelite, arsenopyrite, molybdenite, pyrite, chalcopyrite, and quartz), Pb-Zn mineralization (S2: chalcopyrite, pyrrhotite, galena, sphalerite, pyrite, quartz, and fluorite), and late mineralization (S3: quartz, fluorite, calcite, galena, sphalerite, and pyrite). According to laser Raman probe analysis, H2O dominates the fluid inclusions in the S1 and S2 stage quartz, with CO2 and trace N2 following close behind. The ore fluid has low salinity, low density, and a wide temperature range, as per our microthermometric data: the S1 stage has homogenization temperatures (Th) of 236–377.6 °C (average 305.3 °C) and salinity of 3.5–10.7 wt.% NaCleqv; the S2 stage has Th of 206.5–332 °C (average 280.7 °C) and salinity of 1.6–5.1 wt.% NaCleqv; and the S3 stage has Th of 170.9–328.7 °C (average 246 °C) and salinity of 0.2–5.9 wt.% NaCleqv. Based on the results of the aforementioned investigation, the fluid inclusions in quartz, fluorite, and calcite are mainly H2O-NaCl vapor-liquid two-phase. Additionally, examinations of inclusions in S1 wolframite and coexisting quartz using infrared and microthermometry show that the mineralizing fluid likewise belongs to the NaCl-H2O system. The Th of inclusions in wolframite is ~40 °C higher than that of coexisting quartz. Moreover, the fluid experienced a decrease in temperature accompanied by nearly constant salinity, which indicates that wolframite precipitation is due to fluid mixing and simple cooling, and the precipitation is earlier than quartz. In situ S and H-O isotope data show that the samples have δ34S = −2.58‰ to 1.84‰, and the ore fluids have δD = −76.6 to −51.5‰ (S1 and S2), and δ18Ofluid = −6.6 to −0.9‰ (S1) and −12.9 to −10.2‰ (S2). All these indicate that the mineralizing fluid was derived from the granitic magma at Qianlishan, with substantial meteoric water incursion during the ore stage. Such fluid mixing and subsequent cooling are most likely the primary controls for ore deposition. Full article
(This article belongs to the Special Issue Granite-Related Li-Sn-W Deposits—New Achievements, Ongoing Issue)
Show Figures

Figure 1

19 pages, 15251 KiB  
Article
Fluid Inclusions and C–H–O–S–Pb Isotopes of the Huoluotai Porphyry Cu (Mo) Deposit in the Northern Great Xing’an Range, NE China: Implications for Ore Genesis
by Yonggang Sun, Bile Li, Xusheng Chen, Fanbo Meng, Qingfeng Ding, Ye Qian and Linlin Wang
Minerals 2022, 12(9), 1072; https://doi.org/10.3390/min12091072 - 25 Aug 2022
Cited by 2 | Viewed by 1992
Abstract
The Huoluotai Cu (Mo) deposit is a recently discovered porphyry Cu deposit in the northern Great Xing’an Range, NE China. Fluid inclusion (FI) micro-thermometry results and the C–H–O–S–Pb isotope compositions of the Huoluotai Cu (Mo) deposit are presented in this study. The ore-forming [...] Read more.
The Huoluotai Cu (Mo) deposit is a recently discovered porphyry Cu deposit in the northern Great Xing’an Range, NE China. Fluid inclusion (FI) micro-thermometry results and the C–H–O–S–Pb isotope compositions of the Huoluotai Cu (Mo) deposit are presented in this study. The ore-forming process consists of the sulfide-barren quartz stage (I), the quartz + chalcopyrite ± pyrite ± molybdenite stage (II), the quartz + polymetallic sulfide stage (III), and the quartz + calcite ± pyrite ± fluorite stage (IV). Cu mineralization occurred mainly in stage II. Four types of FIs were recognized: liquid-rich two-phase FIs (L-type), vapor-rich two-phase FIs (V-type), daughter-mineral-bearing three-phase FIs (S-type), and CO2-bearing FIs (C-type). In stage I, the ore-forming fluids belong to an H2O−NaCl−CO2 system. In stages II, III, and IV, the ore-forming fluids belong to an H2O−NaCl system. The results of the FI micro-thermometry and H–O isotope analysis show that the ore-forming fluids originated from a magmatic origin in stage I and mixed with meteoric water from stages II to IV. The S–Pb isotope results suggest that the source of the ore-forming materials has the characteristics of a crust–mantle-mixing origin. Fluid boiling occurred in stages I and II. The FI micro-thermometric data further show that Cu was mainly deposited below 400 °C in stage II, suggesting that fluid boiling occurring below 400 °C may be the primary factor for Cu precipitation in the Huoluotai Cu (Mo) deposit. Full article
(This article belongs to the Special Issue Genesis and Metallogeny of Non-ferrous and Precious Metal Deposits)
Show Figures

Figure 1

Back to TopTop