Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = C(aryl)-O bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2682 KB  
Article
Analysis of the Reactivity of Z-2-Ar-1-EWG-1-Nitroethene Molecular Segment in the Hetero Diels–Alder Reaction: Experimental and MEDT Quantum Chemical Study
by Przemysław Woliński, Agnieszka Kącka-Zych, Ewelina Wielgus, Rafał Dolot and Radomir Jasiński
Molecules 2025, 30(18), 3768; https://doi.org/10.3390/molecules30183768 - 16 Sep 2025
Cited by 1 | Viewed by 1022
Abstract
The relative reactivity of the nitrovinyl molecular segment characterized by the “cis” orientation of nitro group and the aryl ring was evaluated based on the experimental and Density Functional Theory quantum chemical data. It was found that, on the contrary to E-R-nitroethenes, the [...] Read more.
The relative reactivity of the nitrovinyl molecular segment characterized by the “cis” orientation of nitro group and the aryl ring was evaluated based on the experimental and Density Functional Theory quantum chemical data. It was found that, on the contrary to E-R-nitroethenes, the Z-2-Ar-1-EWG-1-nitroethene molecular segment is not planar. This fact reduces the possibility of the conjugation of π-electron systems, and as a consequence, decreases the global reactivity. Due to these conditions, the reaction of the model ethyl 4,β-dinitrocinnamate and 2-methylenecyclopentane is realized as a very difficult process; however, with full regioselectivity, it leads to the expected (4 + 2) hetero Diels–Alder cycloadduct. Bonding Evolution Theory studies show that the first new C4-C5 single bond is formed in Phase VIII by merging two pseudoradical centers. In turn, the second C6-O1 single bond is formed in last phase of the reaction, by the depopulation of V(C6), V(O1) and V’(O1) monosynaptic basins. According to this, the title reaction was classified as a process carried out according to a “one-step two-stage” mechanism. Full article
Show Figures

Figure 1

15 pages, 3221 KB  
Article
Investigation on Pt-WO3 Catalytic Interface for the Hydrodeoxygenation of Anisole
by Wanru Yan, Jiating Li, Nan Ma, Zemin An, Yuanjie Xu, Lizhi Wu, Li Tan and Yu Tang
Catalysts 2025, 15(9), 859; https://doi.org/10.3390/catal15090859 - 5 Sep 2025
Cited by 1 | Viewed by 1134
Abstract
As a model compound for lignin derivatives, anisole and its conversion are crucial for the upgrading of biomass resources. Anisole molecule contains a characteristic aryl ether bond (Caryl-O-CH3); therefore, the selective cleavage of the C-O bond to efficiently produce [...] Read more.
As a model compound for lignin derivatives, anisole and its conversion are crucial for the upgrading of biomass resources. Anisole molecule contains a characteristic aryl ether bond (Caryl-O-CH3); therefore, the selective cleavage of the C-O bond to efficiently produce high-value chemicals poses a significant challenge. Constructing bimetallic synergistic active sites through tuning the metal-support interface is considered an effective strategy. In this work, the WO3-promoted Pt/SiO2 catalysts were investigated to enhance the performance of anisole hydrodeoxygenation (HDO) to hydrocarbons. Experimental results demonstrate that WO3 significantly promotes HDO selectivity, increasing from 37.8% to 86.8% at 250 °C. Moreover, moderate doping improves low-temperature (<250 °C) HDO activity, confirming the presence of synergistic effects. In contrast, excessive WO3 suppresses anisole conversion. Characterization results reveal that WO3 stabilizes metallic Pt and facilitates H2 dissociation. Concurrently, strong hydrogen spillover between Pt and WO3 promotes oxygen vacancy formation on WO3. This transforms disordered adsorption of anisole on SiO2 into directed adsorption of the anisole’s oxygen species onto WO3. This work achieves high anisole HDO selectivity through the Pt-WO3 interface tuning, offering novel insights for efficient lignin conversion. Full article
Show Figures

Graphical abstract

25 pages, 5183 KB  
Article
A Comprehensive Study of the Synthesis, Spectral Characteristics, Quantum–Chemical Molecular Electron Density Theory, and In Silico Future Perspective of Novel CBr3-Functionalyzed Nitro-2-Isoxazolines Obtained via (3 + 2) Cycloaddition of (E)-3,3,3-Tribromo-1-Nitroprop-1-ene
by Karolina Zawadzińska-Wrochniak, Karolina Kula, Mar Ríos-Gutiérrez, Bartłomiej Gostyński, Tomasz Krawczyk and Radomir Jasiński
Molecules 2025, 30(10), 2149; https://doi.org/10.3390/molecules30102149 - 13 May 2025
Cited by 5 | Viewed by 1740
Abstract
The search for new heterocyclic compounds with biological potential is one of the current challenges in modern chemistry. Therefore, the comprehensive study of (3 + 2) cycloaddition (32CA) reactions between a series of aryl-substituted nitrile N-oxides (NOs) and (E)-3,3,3-tribromo-1-nitroprop-1-ene (TBNP) is [...] Read more.
The search for new heterocyclic compounds with biological potential is one of the current challenges in modern chemistry. Therefore, the comprehensive study of (3 + 2) cycloaddition (32CA) reactions between a series of aryl-substituted nitrile N-oxides (NOs) and (E)-3,3,3-tribromo-1-nitroprop-1-ene (TBNP) is carried out. According to the experimental research, in all tested 32CAs, the proper (4RS,5RS)-3-aryl-4-nitro-5-tribromomethyl-2-isoxazolines are obtained as only one reaction product. In turn, the quantum–chemical MEDT study shows that the creation of heterocycles occur via the polar attack of zwitterionic moderate-nucleophilic NOs to strong electrophilic TBNP. The reactions are realized according to a two-stage, one-step asynchronous mechanism, in which the formation of the O-C(CBr3) bond takes place once the C-C(NO2) bond is already formed. What is more, the computational analysis confirmed the experimental results. At the end, the obtained 2-isoxazolines were docked to three proteins: gelatinase B, cyclooxygenase COX-1, and Caspase-7. We hope that the presented study will be helpful for searching for the future direction of application for this class of organic compounds. Full article
(This article belongs to the Special Issue Methods and Applications of Cycloaddition Reactions)
Show Figures

Figure 1

14 pages, 1851 KB  
Article
Mechanochemical Sequential Deoxygenative Cross-Coupling Reactions of Phenols Under Ruthenium-Nickel Catalysis
by Satenik Mkrtchyan, Vishal B. Purohit, Michał Jakubczyk, Vaibhav D. Prajapati, Ronak V. Prajapati, Michael G. Garcia, Eugene Karpun, Vitaliy Yepishev, Manoj K. Saini, Sehrish Sarfaraz, Khurshid Ayub, Gabriela Addová, Juraj Filo and Viktor O. Iaroshenko
Molecules 2025, 30(8), 1835; https://doi.org/10.3390/molecules30081835 - 19 Apr 2025
Cited by 3 | Viewed by 3359
Abstract
Herein, we report the first mechanochemical strategy for the Ru-catalyzed deoxygenative borylation of free phenols via C–O bond cleavage. This Ru-catalyzed phenolic borylation approach has been successfully extended to the Suzuki–Miyaura-type cross-coupling of phenols with aryl bromides. The protocol accepts a wide scope [...] Read more.
Herein, we report the first mechanochemical strategy for the Ru-catalyzed deoxygenative borylation of free phenols via C–O bond cleavage. This Ru-catalyzed phenolic borylation approach has been successfully extended to the Suzuki–Miyaura-type cross-coupling of phenols with aryl bromides. The protocol accepts a wide scope of phenolic substrates, allowing the synthesis of aryl pinacolboranes and biphenyl structures in excellent yields and serving as a better alternative to classical cross-coupling reactions in the context of pot, atom, and step economy synthesis. Full article
Show Figures

Graphical abstract

28 pages, 7433 KB  
Review
N,N- and N,O-Bidentate-Chelation-Assisted Alkenyl C–H Functionalization
by Yawei Zhang, Chengxing Peng, Xiaoli Li, Xiuying Liu, Liyuan Ding, Guofu Zhong and Jian Zhang
Molecules 2025, 30(8), 1669; https://doi.org/10.3390/molecules30081669 - 8 Apr 2025
Cited by 1 | Viewed by 1523
Abstract
Chelation-assisted olefinic C–H functionalization has been demonstrated to be a powerful method of constructing multi-substituted alkenes from simpler ones. This strategy produces complex alkenes in a regio- and stereoselective manner, followed by C–H endo- and exo-cyclometallation. Among the various directing groups developed, N,N- [...] Read more.
Chelation-assisted olefinic C–H functionalization has been demonstrated to be a powerful method of constructing multi-substituted alkenes from simpler ones. This strategy produces complex alkenes in a regio- and stereoselective manner, followed by C–H endo- and exo-cyclometallation. Among the various directing groups developed, N,N- and N,O-bidentate directing groups are the most widely used to selectively promote C–H functionalization due to their fine, tunable, and reversible coordination with the metal center. In this review, we discuss various N,N- and N,O-bidentate directing group-assisted olefinic C–H bond functionalization reactions, including alkenylation, alkylation, arylation, thiolation, silylation, halogenation, and cyclization. Full article
(This article belongs to the Special Issue Organic Synthesis of Nitrogen-Containing Molecules)
Show Figures

Scheme 1

23 pages, 5961 KB  
Article
Bifunctional Azido(thio)ureas from an O-Protected 2-Amino-2-deoxy-d-glucopyranose: Synthesis and Structural Analyses
by Concepción Sosa-Gil, Esther Matamoros, Pedro Cintas and Juan C. Palacios
Molecules 2024, 29(23), 5687; https://doi.org/10.3390/molecules29235687 - 30 Nov 2024
Viewed by 1211
Abstract
This publication reports a facile and convenient preparation of tri-O-acetyl-glucopyranoses, derived from the corresponding 2-deoxyaminosugar, where the vicinal anomeric and C2 positions are decorated by azido and (thio)ureido groups, respectively. This double functionalization leads to an inherently chiral core incorporating the [...] Read more.
This publication reports a facile and convenient preparation of tri-O-acetyl-glucopyranoses, derived from the corresponding 2-deoxyaminosugar, where the vicinal anomeric and C2 positions are decorated by azido and (thio)ureido groups, respectively. This double functionalization leads to an inherently chiral core incorporating the versatile azido and (thio)ureido linkages prone to further manipulation. The latter also provides a structural element for hydrogen-bonded donor-acceptor (HB-DA) sites, which are of immense value in organocatalytic pursuits. A computation-aided conformational analysis unveils the landscape of available conformers and their relative stability. N-aryl (thio)ureas bearing substituents at ortho positions exist as mixtures of M- and P-atropisomeric conformers. Full article
Show Figures

Graphical abstract

12 pages, 4207 KB  
Article
The Synthesis and Crystallographic Characterization of Emissive Pt(II) and Au(I) Compounds Exploiting the 2-Ethynylpyrimidine Ligand
by Sarah L. McDarmont, Mary Jo McCormick, Paul S. Wagenknecht, Lily E. Duplooy, Jared A. Pienkos and Colin D. McMillen
Crystals 2024, 14(7), 587; https://doi.org/10.3390/cryst14070587 - 26 Jun 2024
Cited by 1 | Viewed by 1799
Abstract
The luminescent properties of Au(I) and Pt(II) compounds are commonly tuned by exploiting the alkynyl ligand with varying electron density. Herein, we describe the synthesis of three new emissive transition metal compounds, tbpyPt(C2pym)2, Ph3PAuC2pym, [...] Read more.
The luminescent properties of Au(I) and Pt(II) compounds are commonly tuned by exploiting the alkynyl ligand with varying electron density. Herein, we describe the synthesis of three new emissive transition metal compounds, tbpyPt(C2pym)2, Ph3PAuC2pym, and Cy3PAuC2pym (where HC2pym = 2-ethynylpyrimidine), verified by 1H-NMR, EA, and a single-crystal X-ray diffraction analysis. The tbpyPt(C2pym)2 complex crystallized as an Et2O solvate in the orthorhombic space group Pbca with Z = 24 with three unique Pt(II) species within the unit cell. The Cy3PAuC2pym species crystallizes in a monoclinic space group with one unique complex in the asymmetric unit. Changing the identity of the phosphine from Cy3P to Ph3P influences interactions within the unit cell. Ph3PAuC2pym, which also crystalizes in a monoclinic space group, has an aurophilic bonding interaction Au–Au distance of 3.0722(2) Å, which is not present in crystalline Cy3PAuC2pym. Regarding optical properties, the use of an electron-deficient heterocycle provides an alternate approach to blue-shifting the emission of Pt(II) transition metals’ compounds, where the aryl moiety is made more electron-deficient by exploiting nitrogen within this moiety instead of the typical strategy of decorating the aryl ring with electron withdrawing substituents (e.g., fluorines). This is indicated by the blue-shift in emission that occurs in tbpyPt(C2pym)2max, emission = 512 nm) compared to the previously reported tbpyPt(C22-py)2 (where HC22-py = 2-ethynylpyridine) complex (λmax, emission = 520 nm). Full article
Show Figures

Figure 1

21 pages, 5476 KB  
Article
Synthesis, In Silico and Kinetics Evaluation of N-(β-d-glucopyranosyl)-2-arylimidazole-4(5)-carboxamides and N-(β-d-glucopyranosyl)-4(5)-arylimidazole-2-carboxamides as Glycogen Phosphorylase Inhibitors
by Levente Homolya, Rachel T. Mathomes, Luca Varga, Tibor Docsa, László Juhász, Joseph M. Hayes and László Somsák
Int. J. Mol. Sci. 2024, 25(9), 4591; https://doi.org/10.3390/ijms25094591 - 23 Apr 2024
Cited by 3 | Viewed by 1592
Abstract
Recently studied N-(β-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 diabetes mellitus. Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted [...] Read more.
Recently studied N-(β-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 diabetes mellitus. Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted in significantly more efficient GP inhibitors, in silico calculations using Glide molecular docking along with unbound state DFT calculations were performed on N-(β-d-glucopyranosyl)-arylimidazole-carboxamides, revealing their potential for strong GP inhibition. The syntheses of the target compounds involved the formation of an amide bond between per-O-acetylated β-d-glucopyranosylamine and the corresponding arylimidazole-carboxylic acids. Kinetics experiments on rabbit muscle GPb revealed low micromolar inhibitors, with the best inhibition constants (Kis) of ~3–4 µM obtained for 1- and 2-naphthyl-substituted N-(β-d-glucopyranosyl)-imidazolecarboxamides, 2bc. The predicted protein–ligand interactions responsible for the observed potencies are discussed and will facilitate the structure-based design of other inhibitors targeting this important therapeutic target. Meanwhile, the importance of the careful consideration of ligand tautomeric states in binding calculations is highlighted, with the usefulness of DFT calculations in this regard proposed. Full article
Show Figures

Figure 1

12 pages, 2293 KB  
Article
Density Functional Theory Studies on the Chemical Reactivity of Allyl Mercaptan and Its Derivatives
by Marcin Molski
Molecules 2024, 29(3), 668; https://doi.org/10.3390/molecules29030668 - 31 Jan 2024
Cited by 7 | Viewed by 3611
Abstract
On the basis of density functional theory (DFT) at the B3LYP/cc-pVQZ level with the C-PCM solvation model, a comparative analysis of the reactivity of the garlic metabolites 2-propenesulfenic acid (PSA) and allyl mercaptan (AM, 2-propene-1-thiol) was performed. In particular, the thermodynamic descriptors (BDE, [...] Read more.
On the basis of density functional theory (DFT) at the B3LYP/cc-pVQZ level with the C-PCM solvation model, a comparative analysis of the reactivity of the garlic metabolites 2-propenesulfenic acid (PSA) and allyl mercaptan (AM, 2-propene-1-thiol) was performed. In particular, the thermodynamic descriptors (BDE, PA, ETE, AIP, PDE, and Gacidity) and global descriptors of chemical activity (ionization potential (IP), electron affinity (EA), chemical potential (μ), absolute electronegativity (χ), molecular hardness (η) and softness (S), electrophilicity index (ω), electro-donating (ω) and electro-accepting (ω+) powers, and Ra and Rd indexes) were determined. The calculations revealed that PSA is more reactive than AM, but the latter may play a crucial role in the deactivation of free radicals due to its greater chemical stability and longer lifetime. The presence of a double bond in AM enables its polymerization, preserving the antiradical activity of the S-H group. This activity can be amplified by aryl-substituent-containing hydroxyl groups. The results of the calculations for the simplest phenol–AM derivative indicate that both the O-H and S-H moieties show greater antiradical activity in a vacuum and aqueous medium than the parent molecules. The results obtained prove that AM and its derivatives can be used not only as flavoring food additives but also as potent radical scavengers, protecting food, supplements, cosmetics, and drug ingredients from physicochemical decomposition caused by exogenous radicals. Full article
(This article belongs to the Special Issue Multiconfigurational and DFT Methods Applied to Chemical Systems)
Show Figures

Graphical abstract

9 pages, 2227 KB  
Brief Report
Preparation of Dibenzofurotropones via Pd-Catalyzed Cyclization
by Yu-Wei Lin and Shiuh-Tzung Liu
Reactions 2024, 5(1), 111-119; https://doi.org/10.3390/reactions5010005 - 22 Jan 2024
Cited by 2 | Viewed by 2230
Abstract
A synthetic approach to dibenzofurotropone derivatives 1 has been developed through the palladium-catalyzed cyclization of (2-bromoaryl)(3-arylfuran-2-yl)methanones 2 via the activation of arylic C–H bonds. Compounds 2 were easily prepared from the palladium-promoted acyl migration and cyclization of (Z)-pent-2-en-4-yn-1-yl acetates 3 in [...] Read more.
A synthetic approach to dibenzofurotropone derivatives 1 has been developed through the palladium-catalyzed cyclization of (2-bromoaryl)(3-arylfuran-2-yl)methanones 2 via the activation of arylic C–H bonds. Compounds 2 were easily prepared from the palladium-promoted acyl migration and cyclization of (Z)-pent-2-en-4-yn-1-yl acetates 3 in the presence of 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU), followed by oxidative decarbonylation and oxidation with O2. Ten new tropone compounds are reported and these compounds show absorption in the UV-vis region and emission in the visible region. Full article
Show Figures

Figure 1

15 pages, 3672 KB  
Article
Synthesis of an Aryl-Semicarbazone-Based Cu(II) Complex for DNA and BSA Interaction and Anti-Cancer Activity against Human Cervix Uteri Carcinoma
by Ribhu Maity, Biplab Manna, Swapan Maity, Kalyanmoy Jana, Tithi Maity, Mohd Afzal, Nayim Sepay and Bidhan Chandra Samanta
Inorganics 2024, 12(1), 19; https://doi.org/10.3390/inorganics12010019 - 1 Jan 2024
Cited by 8 | Viewed by 3255
Abstract
The current study provides an in-depth analysis of the biological properties of a Cu(II) complex (C22H24Cu2N6O10) obtained from an aryl-semicarbazone ligand derived (L) from the condensation of 2,4-dihydroxy acetophenone and semicarbazide. The binding [...] Read more.
The current study provides an in-depth analysis of the biological properties of a Cu(II) complex (C22H24Cu2N6O10) obtained from an aryl-semicarbazone ligand derived (L) from the condensation of 2,4-dihydroxy acetophenone and semicarbazide. The binding behavior of this complex with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) protein was explored using a combination of experimental and theoretical approaches. The results suggest that the complex binds with CT-DNA via a partial intercalation, and hydrophobic interaction. However, the complex binds to BSA protein predominantly through hydrogen bonding or van der Waals interactions rather than hydrophobic interactions. The molecular docking methodology was carried out to substantiate the experimental finding. Furthermore, the in vitro cytotoxicity study was conducted on human cervix uteri carcinoma (SiHa cancerous cell) lines upon exposure to the complex, and the findings reveal a considerable decrease in cell viability, when compared to the control. Overall, this study provides a comprehensive understanding of the biological potential of the Cu(II) complex and its potential as an anti-cancer agent. Full article
(This article belongs to the Special Issue Rational Design of Pharmacologically Active Metal-Based Compounds)
Show Figures

Graphical abstract

11 pages, 1623 KB  
Communication
Efficient Metal-Free Oxidative C–H Amination for Accessing Dibenzoxazepinones via μ-Oxo Hypervalent Iodine Catalysis
by Hirotaka Sasa, Syotaro Hamatani, Mayu Hirashima, Naoko Takenaga, Tomonori Hanasaki and Toshifumi Dohi
Chemistry 2023, 5(4), 2155-2165; https://doi.org/10.3390/chemistry5040145 - 12 Oct 2023
Cited by 2 | Viewed by 2540
Abstract
Dibenzoxazepinones exhibit unique biological activities and serve as building blocks for synthesizing pharmaceutical compounds. Despite remarkable advancements in organic chemistry and recent developments in synthetic approaches to dibenzoxazepinone motifs, there is a strong demand for more streamlined synthesis methods. The application of the [...] Read more.
Dibenzoxazepinones exhibit unique biological activities and serve as building blocks for synthesizing pharmaceutical compounds. Despite remarkable advancements in organic chemistry and recent developments in synthetic approaches to dibenzoxazepinone motifs, there is a strong demand for more streamlined synthesis methods. The application of the catalytic C–H amination strategy, which enables the direct transformation of inert aromatic C–H bonds into C–N bonds, offers a rapid route to access dibenzoxazepinone frameworks. Hypervalent-iodine-catalyzed oxidative C–H amination has the potential to become an effective approach for synthesizing dibenzoxazepinones. In this study, we present our method of employing μ-oxo hypervalent iodine catalysis for intramolecular oxidative C–H amination of O-aryl salicylamides, facilitating the synthesis of target dibenzoxazepinone derivatives bearing various functional groups in a highly efficient manner. Full article
Show Figures

Figure 1

23 pages, 37842 KB  
Article
Peculiarities of the Spatial and Electronic Structure of 2-Aryl-1,2,3-Triazol-5-Carboxylic Acids and Their Salts on the Basis of Spectral Studies and DFT Calculations
by Mauricio Alcolea Palafox, Nataliya P. Belskaya and Irena P. Kostova
Int. J. Mol. Sci. 2023, 24(18), 14001; https://doi.org/10.3390/ijms241814001 - 12 Sep 2023
Cited by 5 | Viewed by 2203
Abstract
The molecular structure and vibrational spectra of six 1,2,3-triazoles-containing molecules with possible anticancer activity were investigated. For two of them, the optimized geometry was determined in the monomer, cyclic dimer and stacking forms using the B3LYP, M06-2X and MP2 methods implemented in the [...] Read more.
The molecular structure and vibrational spectra of six 1,2,3-triazoles-containing molecules with possible anticancer activity were investigated. For two of them, the optimized geometry was determined in the monomer, cyclic dimer and stacking forms using the B3LYP, M06-2X and MP2 methods implemented in the GAUSSIAN-16 program package. The effect of the para-substitution on the aryl ring was evaluated based on changes in the molecular structure and atomic charge distribution of the triazole ring. An increment in the positive N4 charge was linearly related to a decrease in both the aryl ring and the carboxylic group rotation, with respect to the triazole ring, and by contrast, to an increment in the pyrrolidine ring rotation. Anionic formation had a larger effect on the triazole ring structure than the electronic nature of the different substituents on the aryl ring. Several relationships were obtained that could facilitate the selection of substituents on the triazole ring for their further synthesis. The observed IR and Raman bands in the solid state of two of these compounds were accurately assigned according to monomer and dimer form calculations, together with the polynomic scaling equation procedure (PSE). The large red-shift of the C=O stretching mode indicates that strong H-bonds in the dimer form appear in the solid state through this group. Full article
(This article belongs to the Special Issue Rational Design and Synthesis of Bioactive Molecules)
Show Figures

Figure 1

14 pages, 1458 KB  
Article
A Chiral Relay Race: Stereoselective Synthesis of Axially Chiral Biaryl Diketones through Ring-Opening of Optical Dihydrophenan-threne-9,10-diols
by Lei Shi, Jiawei Zhu, Biqiong Hong and Zhenhua Gu
Molecules 2023, 28(16), 5956; https://doi.org/10.3390/molecules28165956 - 8 Aug 2023
Cited by 1 | Viewed by 1995
Abstract
We report herein a point-to-axial chirality transfer reaction of optical dihydrophenanthrene-9,10-diols for the synthesis of axially chiral diketones. Two sets of conditions, namely a basic tBuOK/air atmosphere and an acidic NaClO/n-Bu4NHSO4, were developed to oxidatively cleave [...] Read more.
We report herein a point-to-axial chirality transfer reaction of optical dihydrophenanthrene-9,10-diols for the synthesis of axially chiral diketones. Two sets of conditions, namely a basic tBuOK/air atmosphere and an acidic NaClO/n-Bu4NHSO4, were developed to oxidatively cleave the C-C bond, resulting in the formation of axially chiral biaryl diketones. Finally, brief synthetic applications of the obtained chiral aryl diketones were demonstrated. Full article
Show Figures

Scheme 1

12 pages, 1432 KB  
Article
Rhodium-Catalyzed Alkylation of Aromatic Ketones with Allylic Alcohols and α,β-Unsaturated Ketones
by Wan-Di Li, Jia-Shuo Zhang, Lin-Yan Zhang, Zhong-Wen Liu, Juan Fan and Xian-Ying Shi
Catalysts 2023, 13(8), 1157; https://doi.org/10.3390/catal13081157 - 26 Jul 2023
Cited by 5 | Viewed by 2719
Abstract
The direct transition-metal-catalyzed addition of C–H bonds to unsaturated C=X (X=C, O, and N) bonds via C–H bond activation has been recognized as a powerful tool for the construction of C–C bonds (in terms of atom and step economy). Herein, the direct rhodium-catalyzed [...] Read more.
The direct transition-metal-catalyzed addition of C–H bonds to unsaturated C=X (X=C, O, and N) bonds via C–H bond activation has been recognized as a powerful tool for the construction of C–C bonds (in terms of atom and step economy). Herein, the direct rhodium-catalyzed C–H bond addition of aromatic ketones to allylic alcohols and α,β-unsaturated ketones that affords β-aryl carbonyl compounds is described, in which a ketone carbonyl acts as a weakly coordinating directing group. It was found that the type of alkyl in aromatic ketones is crucial for the success of the reaction. This transformation provides a convenient and efficient methodology for the synthesis of 2-alkyl aromatic ketones in moderate-to-excellent yields. Full article
Show Figures

Graphical abstract

Back to TopTop