Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Brassica rapa var. chinensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2237 KiB  
Article
Metabolite Profiling and Antimicrobial Activities of Brassica rapa ssp. narinosa (Tatsoi), Brassica rapa var. narinosa × chinensis (Dacheongchae), and Brassica rapa ssp. chinensis (Pakchoi)
by Chang-Ha Park, Hyeon-Ji Yeo, Young-Jin Park, Haejin Kwon, Jongki Cho, Sun-Ok Chung, Geung-Joo Lee, Jae-Kwang Kim and Sang-Un Park
Molecules 2025, 30(8), 1693; https://doi.org/10.3390/molecules30081693 - 10 Apr 2025
Viewed by 714
Abstract
Pakchoi and Tatsoi are agriculturally and commercially important subspecies of Brassica rapa. Dacheongchae is a new crop generated via the hybridization of Tatsoi and Pakchoi. Metabolite profiles of carbohydrates, sugar alcohols, amines, amino acids, carotenoids, phenolics, organic acids, and glucosinolates were carried out [...] Read more.
Pakchoi and Tatsoi are agriculturally and commercially important subspecies of Brassica rapa. Dacheongchae is a new crop generated via the hybridization of Tatsoi and Pakchoi. Metabolite profiles of carbohydrates, sugar alcohols, amines, amino acids, carotenoids, phenolics, organic acids, and glucosinolates were carried out in the three B. rapa cultivars. The majority of amino acids were higher in Dacheongchae than in Pakchoi and Tatsoi. In addition to the amino acid content, higher contents of phenolic compounds and carotenoids were obtained in Dacheongchae. Similarly, Dacheongchae and Pakchoi contained higher amounts of glucosinolates compared with Tatsoi. Pakchoi, Tatsoi, and Dacheongchae showed marked antimicrobial activity against Bacillus cereus, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, Proteus mirabilis, and methicillin-resistant P. aeruginosa. Furthermore, Dacheongchae extracts exhibited only the inhibition activity of Salmonella paratyphi. Consistent with these higher amounts of bioactive compounds, Dacheongchae exhibited higher antimicrobial activities, suggesting synergistic antimicrobial properties from these bioactive compounds in Dacheongchae. Full article
(This article belongs to the Special Issue Active Ingredients in Functional Foods and Their Impact on Health)
Show Figures

Figure 1

19 pages, 3681 KiB  
Article
Effects of Dietary Ferric EDTA Levels on Vegetables and Mirror Carp (Cyprinus carpio var. specularis) in Aquaponics System
by Yu Liu, Zhipeng Dou, Chengwei Ji, Qingbo Zhou, Jun Zhao, Ke Wang, Chao Chen and Qing Liu
Animals 2025, 15(6), 792; https://doi.org/10.3390/ani15060792 - 11 Mar 2025
Viewed by 605
Abstract
This study investigated the effects of dietary iron supplementation on water quality, plant growth, and fish health in an aquaponic system over 90 days. Iron supplementation significantly improved plant growth, with increased plant height, stem diameter, leaf count, and fruit yield in tomatoes [...] Read more.
This study investigated the effects of dietary iron supplementation on water quality, plant growth, and fish health in an aquaponic system over 90 days. Iron supplementation significantly improved plant growth, with increased plant height, stem diameter, leaf count, and fruit yield in tomatoes (Solanum lycopersicum) and pak choi (Brassica rapa subsp. Chinensis) (p < 0.05). The water pH fluctuated with varying iron content, and higher iron levels promoted better plant growth by improving iron availability (p < 0.05). During the first 60 days, all red blood cell counts and hemoglobin levels increased, but the growth and nutritional composition of mirror carp (Cyprinus carpio var. specularis) showed no significant differences. By day 90, fish in the T3 group (800 mg/kg iron) exhibited significantly reduced growth and feed conversion rates (p < 0.05). Histological analysis of liver tissue indicated iron-induced liver damage; additionally, excessive iron intake suppressed erythropoiesis, leading to lower red blood cell counts and hemoglobin levels (p < 0.05). The results indicate that moderate iron supplementation improves plant growth, but excessive iron can negatively impact fish health, particularly liver function and blood formation. These findings provide valuable insights for optimizing iron levels in aquaponic systems. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

25 pages, 27763 KiB  
Article
Improved Multi-Size, Multi-Target and 3D Position Detection Network for Flowering Chinese Cabbage Based on YOLOv8
by Yuanqing Shui, Kai Yuan, Mengcheng Wu and Zuoxi Zhao
Plants 2024, 13(19), 2808; https://doi.org/10.3390/plants13192808 - 7 Oct 2024
Cited by 4 | Viewed by 1886
Abstract
Accurately detecting the maturity and 3D position of flowering Chinese cabbage (Brassica rapa var. chinensis) in natural environments is vital for autonomous robot harvesting in unstructured farms. The challenge lies in dense planting, small flower buds, similar colors and occlusions. This study [...] Read more.
Accurately detecting the maturity and 3D position of flowering Chinese cabbage (Brassica rapa var. chinensis) in natural environments is vital for autonomous robot harvesting in unstructured farms. The challenge lies in dense planting, small flower buds, similar colors and occlusions. This study proposes a YOLOv8-Improved network integrated with the ByteTrack tracking algorithm to achieve multi-object detection and 3D positioning of flowering Chinese cabbage plants in fields. In this study, C2F-MLCA is created by adding a lightweight Mixed Local Channel Attention (MLCA) with spatial awareness capability to the C2F module of YOLOv8, which improves the extraction of spatial feature information in the backbone network. In addition, a P2 detection layer is added to the neck network, and BiFPN is used instead of PAN to enhance multi-scale feature fusion and small target detection. Wise-IoU in combination with Inner-IoU is adopted as a new loss function to optimize the network for different quality samples and different size bounding boxes. Lastly, ByteTrack is integrated for video tracking, and RGB-D camera depth data are used to estimate cabbage positions. The experimental results show that YOLOv8-Improve achieves a precision (P) of 86.5% and a recall (R) of 86.0% in detecting the maturity of flowering Chinese cabbage. Among them, mAP50 and mAP75 reach 91.8% and 61.6%, respectively, representing an improvement of 2.9% and 4.7% over the original network. Additionally, the number of parameters is reduced by 25.43%. In summary, the improved YOLOv8 algorithm demonstrates high robustness and real-time detection performance, thereby providing strong technical support for automated harvesting management. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

17 pages, 3993 KiB  
Article
Genome-Wide Identification of the Shaker Potassium Channel Family in Chinese Cabbage and Functional Studies of BrKAT1 in Yeast
by Jin-Yan Zhou, Ze-Chen Gu and Dong-Li Hao
Agronomy 2024, 14(9), 1954; https://doi.org/10.3390/agronomy14091954 - 29 Aug 2024
Cited by 1 | Viewed by 933
Abstract
Shaker potassium channels play a crucial role in potassium (K+) nutrition and stress resistance in plants. However, systematic research on Shaker K+ channels in Chinese cabbage [Brassica rapa var. chinensis (L.) Kitamura] remains scarce. This study identified 13 Shaker K+ channel members [...] Read more.
Shaker potassium channels play a crucial role in potassium (K+) nutrition and stress resistance in plants. However, systematic research on Shaker K+ channels in Chinese cabbage [Brassica rapa var. chinensis (L.) Kitamura] remains scarce. This study identified 13 Shaker K+ channel members within the cabbage genome, which are unevenly distributed across eight chromosomes. Notably, the number of Shaker K+ channel members in Chinese cabbage exceeds that found in the model plants Arabidopsis (9) and rice (10). This discrepancy is attributed to a higher number of homologous proteins in Groups II and V of Chinese cabbage, with gene segmental duplication in these two subgroups being a significant factor contributing to the expansion of the Shaker K+ channel gene family. Interspecies collinearity analysis revealed that the whole genome and the Shaker K+ channel family of Chinese cabbage show greater similarity to those of Arabidopsis than to those of rice, indicating that Shaker K+ channels from the Brassicaceae family have a closer relationship than that from the Poaceae family. Given that gene expansion occurs in Group II, we investigated whether a functional difference exists between BrKAT1.1 and BrKAT1.2 using yeast assays and promoter analysis. The expression of two BrKAT1 genes in the potassium uptake-deficient yeast mutant R5421 can restore growth under low potassium conditions, indicating their role in potassium absorption. Truncation of the N-terminal 63 amino acids of BrKAT1.2 resulted in the loss of potassium absorption capability, suggesting that the N-terminus is essential for maintaining the potassium absorption function of BrKAT1.2. Furthermore, the expression of the two BrKAT1 genes in the salt-sensitive yeast G19 enhances yeast tolerance to salt stress. These results demonstrate that BrKAT1.1 and BrKAT1.2 exhibit similar abilities in potassium uptake and salt tolerance. The difference between BrKAT1.1 and BrKAT1.2 lay in their promoter regulatory elements, suggesting that differences in transcriptional regulation contributed to the functional differentiation of BrKAT1.1 and BrKAT1.2. These findings provide a foundation for understanding the evolution and functional mechanisms of the Shaker K+ channel family in Chinese cabbage and for improving potassium nutrition and salt tolerance in this species through the manipulation of BrKAT1. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

14 pages, 7008 KiB  
Article
A Physiological and Molecular Docking Insight on Quercetin Mediated Salinity Stress Tolerance in Chinese Flowering Cabbage and Increase in Glucosinolate Contents
by Waheed Akram, Imran Khan, Areeba Rehman, Bareera Munir, Juxian Guo and Guihua Li
Plants 2024, 13(12), 1698; https://doi.org/10.3390/plants13121698 - 19 Jun 2024
Cited by 3 | Viewed by 1483
Abstract
The present study was performed to investigate the negative impact of salinity on the growth of Chinese flowering cabbage (Brassica rapa ssp. chinensis var. parachinensis) and the ameliorative effects of quercetin dihydrate on the plant along with the elucidation of underlying [...] Read more.
The present study was performed to investigate the negative impact of salinity on the growth of Chinese flowering cabbage (Brassica rapa ssp. chinensis var. parachinensis) and the ameliorative effects of quercetin dihydrate on the plant along with the elucidation of underlying mechanisms. The tolerable NaCl stress level was initially screened for the Chinese flowering cabbage plants during a preliminary pot trial by exposing the plants to salinity levels (0, 50, 100, 150, 200, 250, 300, 350, and 400 mM) and 250 mM was adopted for further experimentation based on the findings. The greenhouse experiment was performed by adopting a completely randomized design using three different doses of quercetin dihydrate (50, 100, 150 µM) applied as a foliar treatment. The findings showed that the exposure salinity significantly reduced shoot length (46.5%), root length (21.2%), and dry biomass (32.1%) of Chinese flowering cabbage plants. Whereas, quercetin dihydrate applied at concentrations of 100, and 150 µM significantly diminished the effect of salinity stress by increasing shoot length (36.8- and 71.3%), root length (36.57- and 56.19%), dry biomass production (51.4- and 78.6%), Chl a (69.8- and 95.7%), Chl b (35.2- and 87.2%), and carotenoid contents (21.4- and 40.3%), respectively, compared to the plants cultivated in salinized conditions. The data of physiological parameters showed a significant effect of quercetin dihydrate on the activities of peroxidase, superoxide dismutase, and catalase enzymes. Interestingly, quercetin dihydrate increased the production of medicinally important glucosinolate compounds in Chinese flowering cabbage plants. Molecular docking analysis showed a strong affinity of quercetin dihydrate with three different stress-related proteins of B. rapa plants. Based on the findings, it could be concluded that quercetin dihydrate can increase the growth of Chinese flowering cabbage under both salinity and normal conditions, along with an increase in the medicinal quality of the plants. Further investigations are recommended as future perspectives using other abiotic stresses to declare quercetin dihydrate as an effective remedy to rescue plant growth under prevailing stress conditions. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Salinity Stress and Tolerance)
Show Figures

Figure 1

16 pages, 2992 KiB  
Article
Rapid Discrimination of Organic and Non-Organic Leafy Vegetables (Water Spinach, Amaranth, Lettuce, and Pakchoi) Using VIS-NIR Spectroscopy, Selective Wavelengths, and Linear Discriminant Analysis
by Yinggeng Wu, Bing Wu, Yao Ma, Meizhu Wang, Qi Feng and Zhiping He
Appl. Sci. 2023, 13(21), 11830; https://doi.org/10.3390/app132111830 - 29 Oct 2023
Cited by 2 | Viewed by 1947
Abstract
Organic leafy vegetables face challenges related to potential substitution with non-organic products and vulnerability to dehydration and deterioration. To address these concerns, visible and near-infrared spectroscopy (VIS-NIR) combined with linear discriminant analysis (LDA) was employed in this study to rapidly distinguish between organic [...] Read more.
Organic leafy vegetables face challenges related to potential substitution with non-organic products and vulnerability to dehydration and deterioration. To address these concerns, visible and near-infrared spectroscopy (VIS-NIR) combined with linear discriminant analysis (LDA) was employed in this study to rapidly distinguish between organic and non-organic leafy vegetables. The organic category includes organic water spinach (Ipomoea aquatica Forsskal), amaranth (Amaranthus tricolor L.), lettuce (Lactuca sativa var. ramosa Hort.), and pakchoi (Brassica rapa var. chinensis (Linnaeus) Kitamura), while the non-organic category consists of their four non-organic counterparts. Binary classification was performed on the reflectance spectra of these vegetables’ leaves and stems, respectively. Given the broad range of the VIS-NIR spectrum, stability selection (SS), random forest (RF), and analysis of variance (ANOVA) were used to evaluate the importance of the wavelengths selected by genetic algorithm (GA). According to the GA-selected wavelengths and their SS-evaluated values and locations, the significant bands for leaf spectra classification were identified as 550–910 nm and 1380–1500 nm, while 750–900 nm and 1700–1820 nm were important for stem spectra classification. Using these selected bands in the LDA classification, classification accuracies of over 95% were achieved, showcasing the effectiveness of utilizing the proposed method to rapidly identify organic leafy vegetables and the feasibility and potential of using a cost-effective spectrometer that only contains necessary bands for authenticating. Full article
(This article belongs to the Special Issue Spectroscopy Applications in Plant and Plant-Based Foods)
Show Figures

Figure 1

13 pages, 2249 KiB  
Article
Glucosinolate Diversity Analysis in Choy Sum (Brassica rapa subsp. chinensis var. parachinensis) Germplasms for Functional Food Breeding
by Seong-Hoon Kim, Parthiban Subramanian and Bum-Soo Hahn
Foods 2023, 12(12), 2400; https://doi.org/10.3390/foods12122400 - 16 Jun 2023
Cited by 7 | Viewed by 2889
Abstract
The aim of this study was to analyze glucosinolates (GSLs) in germplasm that are currently conserved at the RDA-Genebank. The analysis focused on the glucosinolate diversity among the analyzed germplasms, with the goal of identifying those that would be most useful for future [...] Read more.
The aim of this study was to analyze glucosinolates (GSLs) in germplasm that are currently conserved at the RDA-Genebank. The analysis focused on the glucosinolate diversity among the analyzed germplasms, with the goal of identifying those that would be most useful for future breeding efforts to produce nutritionally rich Choy sum plants. In total, 23 accessions of Choy sums that possessed ample background passport information were selected. On analyzing the glucosinolate content for 17 different glucosinolates, we observed aliphatic GSLs to be the most common (89.45%) and aromatic GSLs to be the least common (6.94%) of the total glucosinolates detected. Among the highly represented aliphatic GSLs, gluconapin and glucobrassicanapin were found to contribute the most (>20%), and sinalbin, glucoraphanin, glucoraphasatin, and glucoiberin were detected the least (less than 0.05%). We identified one of the accessions, IT228140, to synthesize high quantities of glucobrassicanapin and progoitrin, which have been reported to contain several therapeutic applications. These conserved germplasms are potential bioresources for breeders, and the availability of information, including therapeutically important glucosinolate content, can help produce plant varieties that can naturally impact public health. Full article
Show Figures

Figure 1

16 pages, 1402 KiB  
Article
Growth and Biochemical Composition of Microgreens Grown in Different Formulated Soilless Media
by Roksana Saleh, Lokanadha R. Gunupuru, Rajasekaran Lada, Vilis Nams, Raymond H. Thomas and Lord Abbey
Plants 2022, 11(24), 3546; https://doi.org/10.3390/plants11243546 - 15 Dec 2022
Cited by 24 | Viewed by 6788
Abstract
Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard [...] Read more.
Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard (Beta vulgaris var. cicla), arugula (Eruca vesicaria ssp. sativa), and pak choi (Brassica rapa var. chinensis). The growing media were T1.1 (30% vermicast + 30% sawdust + 10% perlite + 30% PittMoss (PM)); T2.1 (30% vermicast + 20% sawdust + 20% perlite + 30% PM); PM was replaced with mushroom compost in the respective media to form T1.2 and T2.2. Positive control (PC) was Pro-mix BX™ potting medium alone. Root length was the highest in T1.1 while the shoot length, root volume, and yield were highest in T2.2. Chlorophyll and carotenoid contents of Swiss chard grown in T1.1 was the highest, followed by T2.2 and T1.1. Pak choi and kale had the highest sugar and protein contents in T2.2, respectively. Consistently, total phenolics and flavonoids of the microgreens were increased by 1.5-fold in T1.1 and T2.2 compared to PC. Antioxidant enzyme activities were increased in all the four microgreens grown in T1.1 and T2.2. Overall, T2.2 was the most effective growing media to increase microgreens plant growth, yield, and biochemical composition. Full article
(This article belongs to the Special Issue Vegetable and Fruit Production)
Show Figures

Figure 1

24 pages, 4655 KiB  
Article
Techno-Economic Assessment of an Office-Based Indoor Farming Unit
by Jedrzej Cichocki, Moritz von Cossel and Bastian Winkler
Agronomy 2022, 12(12), 3182; https://doi.org/10.3390/agronomy12123182 - 15 Dec 2022
Cited by 6 | Viewed by 2945
Abstract
Decentralized, smart indoor cultivation systems can produce herbs and vegetables for fresh and healthy daily nutrition of the urban population. This study assesses technical and resource requirements, productivity, and economic viability of the “Smart Office Farm” (SOF), based on a 5-week production cycle [...] Read more.
Decentralized, smart indoor cultivation systems can produce herbs and vegetables for fresh and healthy daily nutrition of the urban population. This study assesses technical and resource requirements, productivity, and economic viability of the “Smart Office Farm” (SOF), based on a 5-week production cycle of curled lettuce, lolo rosso, pak choi and basil at three photosynthetic photon flux density (PPFD) levels using a randomized block design. The total fresh matter yield of consumable biomass of all crops was 2.5 kg m−2 with operating expenses (without labor costs) of EUR 53.14 kg−1; more than twice as expensive compared to large-scale vertical farm and open-field cultivation. However, there is no need to add trade margins and transportation costs. The electricity supply to SOF is 73%, by far the largest contributor to operational costs of office-based crop production. Energetic optimizations such as a more homogeneous PPFD distribution at the plant level, as well as adaptation of light quality and quantity to crop needs can increase the economic viability of such small indoor farms. With reduced production costs, urban indoor growing systems such as SOF can become a viable option for supporting fresh and healthy daily nutrition in urban environments. Full article
(This article belongs to the Special Issue Social-Ecologically More Sustainable Agricultural Production)
Show Figures

Figure 1

19 pages, 3203 KiB  
Article
Transcriptome and Metabolome Profiling to Explore the Causes of Purple Leaves Formation in Non-Heading Chinese Cabbage (Brassica rapa L. ssp. chinensis Makino var. mutliceps Hort.)
by Ying Zhao, Xinghua Qi, Zeji Liu, Wenfeng Zheng, Jian Guan, Zhiyong Liu, Jie Ren, Hui Feng and Yun Zhang
Foods 2022, 11(12), 1787; https://doi.org/10.3390/foods11121787 - 17 Jun 2022
Cited by 25 | Viewed by 2871
Abstract
Purple non-heading Chinese cabbage is one of the most popular vegetables, and is rich in various health-beneficial anthocyanins. Research related to genes associated with anthocyanin biosynthesis in non-heading Chinese cabbage is important. This study performed integrative transcriptome and metabolome analysis in the purple [...] Read more.
Purple non-heading Chinese cabbage is one of the most popular vegetables, and is rich in various health-beneficial anthocyanins. Research related to genes associated with anthocyanin biosynthesis in non-heading Chinese cabbage is important. This study performed integrative transcriptome and metabolome analysis in the purple non-heading Chinese cabbage wild type (WT) and its green mutant to elucidate the formation of purple leaves. The anthocyanin level was higher in purple than in green plants, while the contents of chlorophyll and carotenoid were higher in the green mutant than in the purple WT. Twenty-five anthocyanins were identified in purple and green cultivars; eleven anthocyanin metabolites were identified specifically in the purple plants. RNA-seq analysis indicated that 27 anthocyanin biosynthetic genes and 83 transcription factors were significantly differentially expressed between the WT and its mutant, most of them with higher expression in the purple than green non-heading Chinese cabbage. Transcriptome and metabolome analyses showed that UGT75C1 catalyzing the formation of pelargonidin-3,5-O-diglucoside and cyanidin-3,5-O-diglucoside may play a critical role in purple leaf formation in non-heading Chinese cabbage. Therefore, these results provide crucial information for elucidating the formation of purple leaves in non-heading Chinese cabbage. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

18 pages, 12828 KiB  
Article
Influence of Various Composted Organic Amendments and Their Rates of Application on Nitrogen Mineralization and Soil Productivity Using Chinese Cabbage (Brassica rapa. L. var. Chinensis) as an Indicator Crop
by Charlie Suruban, Md. Abdul Kader and Zakaria M. Solaiman
Agriculture 2022, 12(2), 201; https://doi.org/10.3390/agriculture12020201 - 31 Jan 2022
Cited by 8 | Viewed by 4920
Abstract
There is a diversity of locally available nitrogen (N)-rich organic materials in Samoa. However, none of them was evaluated for their N supplying capacity after composting in Samoan Inceptisols for vegetable cultivation. Thus, N-releasing capacity of five composted organic amendments (OAs) namely macuna, [...] Read more.
There is a diversity of locally available nitrogen (N)-rich organic materials in Samoa. However, none of them was evaluated for their N supplying capacity after composting in Samoan Inceptisols for vegetable cultivation. Thus, N-releasing capacity of five composted organic amendments (OAs) namely macuna, gliricidia, erythrina, lawn grass and giant taro, and their two application rates (10 and 20 t ha−1) were assessed through a laboratory incubation and a crop response study using Chinese cabbage as a test crop. Among the OAs, composted mucuna was characterized by a higher total N (2.91%), organic C (63.6%) and NO3N content (341 mg N kg−1). A significant difference in N mineralization was observed among the OAs as well as application rates. The highest N mineralization was recorded in composted mucuna followed by gliricidia, erythrina, lawn grass, and giant taro. A crop response study also showed a similar trend. Mucuna treatment had the highest biomass yield and N uptake followed by gliricidia, erythrina, lawn grass, and giant taro. Leguminous composted OAs @ 20 t ha−1 performed substantially better in all the plant growth and yield parameters, and N uptake compared to 10 t ha−1 that was not the case for non-leguminous OAs. Thus, non-leguminous OAs should be applied at 10 t ha−1. All the composted leguminous OAs showed promising results while mucuna was the best in both the application rates. Therefore, mucuna can be promoted to supply N for crop cultivation in Samoa, other Pacific Islands and tropical countries where N fertilizer is costly and not easily available. Full article
(This article belongs to the Special Issue Effects of Biochar and Compost Amendments on Soil Fertility)
Show Figures

Figure 1

13 pages, 269 KiB  
Article
Winter Production of Asian Leafy Greens in High Tunnels Using Biodegradable Mulches
by Tongyin Li, Geoffrey T. Lalk, Qianwen Zhang, Zhiheng Xing and Guihong Bi
Horticulturae 2021, 7(11), 454; https://doi.org/10.3390/horticulturae7110454 - 3 Nov 2021
Cited by 2 | Viewed by 2300
Abstract
Use of season extension tools such as high tunnels and diverse vegetable crops have been crucial in improving competitiveness of vegetable growers in Mississippi who operate on small- to medium-sized farms. Chinese cabbage, also known as pak choy or bok choy, has become [...] Read more.
Use of season extension tools such as high tunnels and diverse vegetable crops have been crucial in improving competitiveness of vegetable growers in Mississippi who operate on small- to medium-sized farms. Chinese cabbage, also known as pak choy or bok choy, has become increasingly popular due to numerous cultivar choices, fast maturity, high productivity, tolerance for frost, and its potential use for winter production in high tunnels in a subtropical climate. Five Chinese cabbage cultivars including ‘Asian Delight’, ‘Black Summer’, ‘Red Pac’, ‘Rosie’, and ‘Tokyo Bekana’ were evaluated for plant growth, yield, and mineral nutrient concentrations when grown with three types of biodegradable plastic mulches (BDMs) and one polyethylene (PE, or plastic) mulch in a high tunnel in two experiments from 30 October 2019 to 18 March 2020. The five tested cultivars varied in plant height, widths, leaf SPAD, fresh and dry plant weights, marketable yield, and macro- and micro-nutrient concentrations. ‘Tokyo Bekana’ produced the highest marketable yield and fresh and dry plant weights in both experiments. The three BDMs resulted in similar marketable yield and mineral nutrients in tested cultivars and similar temperatures of leaf, mulch, and substrate compared to the PE mulch. The high tunnel provides a viable way for the winter production of selected Chinese cabbage cultivars in a subtropical climate with possible different yields between production cycles due to varying microenvironment in those months. Full article
(This article belongs to the Section Protected Culture)
17 pages, 1947 KiB  
Article
Effects of Organic Fertilizer on Bok Choy Growth and Quality in Hydroponic Cultures
by Kazuki Kano, Hiroaki Kitazawa, Keitaro Suzuki, Ani Widiastuti, Hiromitsu Odani, Songying Zhou, Yufita Dwi Chinta, Yumi Eguchi, Makoto Shinohara and Tatsuo Sato
Agronomy 2021, 11(3), 491; https://doi.org/10.3390/agronomy11030491 - 6 Mar 2021
Cited by 27 | Viewed by 17519
Abstract
Effects of corn steep liquor (organic fertilizer, OF) and conventional chemical fertilizer (CF) on the growth and yield of bok choy (Brassica rapa var. chinensis) in summer and autumn hydroponic growing systems were compared. When OF and CF were applied with [...] Read more.
Effects of corn steep liquor (organic fertilizer, OF) and conventional chemical fertilizer (CF) on the growth and yield of bok choy (Brassica rapa var. chinensis) in summer and autumn hydroponic growing systems were compared. When OF and CF were applied with the same amount of total nitrogen in summer cultivation, there was no significant difference between yields; however, the growth rate in OF was slower than in CF. When OF was applied with twice the amount of nitrogen in CF (OF2), bok choy growth and yield were significantly inhibited in summer cultivation, likely owing to dissolved oxygen deficiency and different rates of nitrification and nitrogen absorbance by the plant root. Although the contents of potassium, calcium, and magnesium in bok choy showed no difference among the three treatments in both cultivation seasons, the carbon/nitrogen ratio tended to be higher in OF and OF2 than in CF. Lower nitric acid and higher ascorbic acid content was found in OF and OF2 than in CF. Overall, our results suggest that a comparable yield is expected by using the same nitrogen amount with a conventional recipe of chemical fertilization in autumn cultivation. However, further improvement of hydroponic management is needed in summer cultivation. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

15 pages, 3112 KiB  
Article
Flavonoid Glycosides in Brassica Species Respond to UV-B Depending on Exposure Time and Adaptation Time
by Susanne Neugart and Christiane Bumke-Vogt
Molecules 2021, 26(2), 494; https://doi.org/10.3390/molecules26020494 - 18 Jan 2021
Cited by 22 | Viewed by 4062
Abstract
Recently, there have been efforts to use ultraviolet-B radiation (UV-B) as a biotechnological tool in greenhouses. Leafy Brassica species are mainly considered for their ability to synthesize glucosinolates and are valued as baby salads. They also have a remarkable concentration of chemically diverse [...] Read more.
Recently, there have been efforts to use ultraviolet-B radiation (UV-B) as a biotechnological tool in greenhouses. Leafy Brassica species are mainly considered for their ability to synthesize glucosinolates and are valued as baby salads. They also have a remarkable concentration of chemically diverse flavonoid glycosides. In this study, the effect of short-term UV-B radiation at the end of the production cycle was investigated without affecting plant growth. The aim was to verify which exposure and adaptation time was suitable and needs to be further investigated to use UV as a biotechnological tool in greenhouse production of Brassica species. It is possible to modify the flavonoid glycoside profile of leafy Brassica species by increasing compounds that appear to have potentially high antioxidant activity. Exemplarily, the present experiment shows that kaempferol glycosides may be preferred over quercetin glycosides in response to UV-B in Brassica rapa ssp. chinensis, for example, whereas other species appear to prefer quercetin glycosides over kaempferol glycosides, such as Brassica oleracea var. sabellica or Brassica carinata. However, the response to short-term UV-B treatment is species-specific and conclusions on exposure and adaptation time cannot be unified but must be drawn separately for each species. Full article
(This article belongs to the Special Issue Assessment of Food Quality and Nutrition)
Show Figures

Figure 1

16 pages, 7632 KiB  
Article
Characterization of Nutrient Disorders and Impacts on Chlorophyll and Anthocyanin Concentration of Brassica rapa var. Chinensis
by Patrick Veazie, Paul Cockson, Josh Henry, Penelope Perkins-Veazie and Brian Whipker
Agriculture 2020, 10(10), 461; https://doi.org/10.3390/agriculture10100461 - 8 Oct 2020
Cited by 27 | Viewed by 13338
Abstract
Essential plant nutrients are needed at crop-specific concentrations to obtain optimal growth and yield. Foliar tissue analysis is the standard method for assessing nutrient levels in plants. Symptoms of nutrient deficiency or toxicity occur when the foliar tissue values become too low or [...] Read more.
Essential plant nutrients are needed at crop-specific concentrations to obtain optimal growth and yield. Foliar tissue analysis is the standard method for assessing nutrient levels in plants. Symptoms of nutrient deficiency or toxicity occur when the foliar tissue values become too low or high. Diagnostic nutrient deficiency criteria for Brassica rapa var. Chinensis (bok choy) is lacking in the current literature. In this study, green (‘Black Summer’) and purple (‘Red Pac’) bok choy plants were grown in silica sand culture, with control plants receiving a complete modified Hoagland’s all-nitrate solution, and nutrient-deficient plants induced by using a complete nutrient formula withholding a single nutrient. Tissue samples were collected at the first sign of visual disorder symptoms and analyzed for dry weight and nutrient concentrations of all plant essential elements. Six weeks into the experiment, the newest matured leaves were sampled for chlorophyll a, b, and total carotenoids concentrations for both cultivars, and total anthocyanin concentration in ‘Red Pac’. Compared to control plants, the dry weight of ‘Black Summer’ green bok choy was significantly lower for nitrogen (N), phosphorus (P), calcium (Ca), or boron (B) deficiency treatments, and nutrient concentrations were lower for all variables except iron (Fe) deficiency. Dry weight was less in ‘Red Pac’ plants grown without N, potassium (K), Ca, B, or molybdenum (Mo), and nutrient concentrations were lower for all except Mo-deficiency compared to controls. Total chlorophyll and total carotenoid concentrations were lower in leaves from N−, Fe-, and manganese- (Mn) deficient plants of both cultivars. Leaf anthocyanin concentration was lower only for K-, Ca-, and B-deficiencies in ‘Red Pac’. Our results indicate that visual symptoms of nutrient deficiency are well correlated with nutrient disorders. In contrast, changes in dry weight, chlorophyll, and anthocyanin did not show consistent changes across nutrient disorders. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

Back to TopTop