Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = Brassica oleracea var. capitata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4162 KiB  
Article
Silver Nanoparticles Embedded in Sodium Alginate: Antibacterial Efficacy and Effects on Red Cabbage Seedling Performance
by Miłosz Rutkowski, Wojciech Makowski, Lidia Krzemińska-Fiedorowicz, Karen Khachatryan, Andrzej Kalisz, Dagmara Malina, Jarosław Chwastowski, Zbigniew Wzorek, Gohar Khachatryan, Agnieszka Sękara and Anna Kołton
Agronomy 2025, 15(7), 1640; https://doi.org/10.3390/agronomy15071640 - 5 Jul 2025
Viewed by 410
Abstract
Innovative plant protection solutions are increasingly sought in modern agriculture. Rapid advances in nanotechnology offer promising opportunities to develop biodegradable, cost-effective composites containing silver nanoparticles (AgNPs) with well-documented antimicrobial properties. The aim of this study was to synthesize sodium alginate gels containing AgNPs, [...] Read more.
Innovative plant protection solutions are increasingly sought in modern agriculture. Rapid advances in nanotechnology offer promising opportunities to develop biodegradable, cost-effective composites containing silver nanoparticles (AgNPs) with well-documented antimicrobial properties. The aim of this study was to synthesize sodium alginate gels containing AgNPs, evaluate their physicochemical and antibacterial properties, and assess their effect on the growth of red cabbage (Brassica oleracea var. capitata f. rubra) seedlings. In accordance with the principles of green chemistry, AgNPs were chemically synthesized using sodium alginate as a stabilizer and fructose as a non-toxic reducing agent. The final composite contained 150 mg/L AgNPs and was diluted to 20 and 60 mg/L for biological tests. Antibacterial activity against Bacillus cereus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa was tested using agar diffusion assays. Seedling growth parameters and phytochemical content were assessed after 10 days of seedlings exposure to AgNPs. The results showed significant antibacterial activity in all tested strains. Crucially, neither AgNPs concentration negatively affected seedling development or phytochemical concentration. Application of AgNPs at concentration of 60 mg/L increased ascorbic acid and carotenoids content in comparison to control (deionized water). These results suggest that AgNPs-alginate composites may serve as sustainable antimicrobial agents in agriculture, inhibiting pathogens without compromising crop quality. Full article
Show Figures

Figure 1

13 pages, 1827 KiB  
Article
Exploring the Impact of Different Fertilization Practices and Regional Climate Variables on Cabbage (Brassica oleracea L. Var. Capitata) Yield
by Ping-Fu Hou and Yao-Tsung Chang
Sustainability 2025, 17(13), 6086; https://doi.org/10.3390/su17136086 - 2 Jul 2025
Viewed by 351
Abstract
Maintaining stable crop yields is crucial for sustainable agriculture. This study investigated the impact of various fertilization regimes, combined with regional climate variables, on the yield stability of cabbage (Brassica oleracea L. var. capitata) in southern Taiwan. Conducted from 2011 to 2023 [...] Read more.
Maintaining stable crop yields is crucial for sustainable agriculture. This study investigated the impact of various fertilization regimes, combined with regional climate variables, on the yield stability of cabbage (Brassica oleracea L. var. capitata) in southern Taiwan. Conducted from 2011 to 2023 on well-maintained soils that were established in 1988, the study examined two crop rotation systems (R1 and R2) and three fertilization treatments: chemical fertilizer, integrated fertilizer, and organic fertilizer. Despite the consistent annual application of fertilizers, the regression analysis revealed a significant decline in cabbage yields across all six treatment combinations, mainly due to reduced weights of single cabbages. To identify contributing factors, the yield data were analyzed alongside weather and soil data, collected over more than a decade. A Pearson correlation analysis showed that increased sunshine duration, solar radiation, and higher relative humidity were significantly negatively correlated with cabbage yields in both the R1 and R2 rotation systems. Additionally, the regression tree analysis indicated that solar radiation exceeding 16.917 MJ m−2 per day was associated with lower yields. A further analysis of the total nitrogen accumulation revealed increasing nitrogen concentrations in the outer leaves of cabbages during this period, potentially contributing to the reduced head yields. These findings highlight that fertilization had a minimal influence on yield, even in well-established soils. Mitigating the effects of weather variables is, therefore, critical to reducing their adverse impact on crop yields. Full article
(This article belongs to the Special Issue Achieving Sustainable Agriculture Practices and Crop Production)
Show Figures

Figure 1

16 pages, 4352 KiB  
Article
Multi-Time Point Transcriptome Analysis and Functional Validation Revealed Bol4CL41 Negatively Regulates Black Rot Resistance in Cabbage
by Hongxue Ma, Siping Deng, Congcong Kong, Yulun Zhang, Tong Zhao, Jialei Ji, Yong Wang, Yangyong Zhang, Mu Zhuang, Limei Yang, Marina Lebedeva, Vasiliy Taranov, Anna M. Artemyeva, Zhiyuan Fang, Jingquan Yu, Zhangjian Hu and Honghao Lv
Int. J. Mol. Sci. 2025, 26(13), 6179; https://doi.org/10.3390/ijms26136179 - 26 Jun 2025
Viewed by 309
Abstract
4-coumarate-CoA ligase (4CL) plays a crucial role in the phenylpropanoid metabolic pathway and is a key enzyme involved in plant growth and stress responses. Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is a major bacterial disease affecting the production [...] Read more.
4-coumarate-CoA ligase (4CL) plays a crucial role in the phenylpropanoid metabolic pathway and is a key enzyme involved in plant growth and stress responses. Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is a major bacterial disease affecting the production of global cruciferous crop-like cabbage (Brassica oleracea var. capitata). However, the role of 4CL genes in cabbage resistance to black rot remains unclear. In this study, transcriptome sequencing was conducted using resistant cabbage MY and susceptible cabbage LY at 0, 6, 24, and 48 h post-inoculation. KEGG analysis identified the enrichment of the phenylpropanoid biosynthesis pathway, and significant expression changes of 4CL genes were determined through the expression heat map. Further genome-wide analysis revealed 43 Bol4CL gene family members on the cabbage genome distributed across nine chromosomes. Gene structure and protein motif analysis revealed similarities in motifs within the same evolutionary branch, but variations in gene structure. A combination of Bol4CL gene expression profiles and differentially expressed genes (DEGs) from the transcriptome identified Bol4CL41 as a key gene for further study. Inoculation of overexpressed Bol4CL41 T2 generation stably expressed cabbage seedlings demonstrated significantly larger lesion areas compared to wild type cabbage, indicating that Bol4CL41 negatively regulates resistance to black rot in cabbage. The analysis of multi-time point transcriptomes in cabbage and the functional study of the Bol4CL gene family enhance our understanding of the mechanisms underlying plant disease resistance. This provides compelling evidence and experimental support for elucidating the mechanisms of black rot resistance in cabbage. Full article
(This article belongs to the Special Issue New Insights into Plant Pathology and Abiotic Stress)
Show Figures

Figure 1

17 pages, 12645 KiB  
Article
Transcriptome Analysis of Cabbage Near-Isogenic Lines Reveals the Involvement of the Plant Defensin Gene PDF1.2 in Fusarium Wilt Resistance
by Cunbao Zhao, Xing Liu, Ailing Zhou, Jialei Ji, Yong Wang, Mu Zhuang, Yangyong Zhang, Limei Yang, Lisong Ma, Biju V. Chellappan, Anna M. Artemyeva and Honghao Lv
Int. J. Mol. Sci. 2025, 26(8), 3770; https://doi.org/10.3390/ijms26083770 - 16 Apr 2025
Cited by 2 | Viewed by 1308
Abstract
Fusarium wilt of cabbage (Brassica oleracea var. capitata), caused by Fusarium oxysporum f. sp. conglutinans (Foc), poses a significant threat to global cabbage production. Although resistance screening and the initial cloning of resistance genes in cabbage have been previously [...] Read more.
Fusarium wilt of cabbage (Brassica oleracea var. capitata), caused by Fusarium oxysporum f. sp. conglutinans (Foc), poses a significant threat to global cabbage production. Although resistance screening and the initial cloning of resistance genes in cabbage have been previously reported, the specific molecular mechanisms underlying cabbage resistance to Foc remain largely unknown. To elucidate the underlying mechanisms, we performed RNA sequencing analysis on a near-isogenic resistant line YR01_20 and a susceptible NIL line S01_20 by comparing both Foc-inoculated and mock-inoculated conditions. A total of 508.6 million sequencing raw reads (76.8 Gb data volume) were generated across all samples. Bioinformatics analysis of differentially expressed genes (DEGs) between S01_20 and YR01_20 revealed significant enrichment in plant hormone signaling and mitogen-activated protein kinase (MAPK) pathways. Notably, BolC06g030650.2J, encoding the plant defensin protein PDF1.2, was significantly upregulated in both pathways. Real-time quantitative PCR (RT-qPCR) analysis confirmed that PDF1.2 was significantly upregulated in the resistant line at 12 h post-inoculation and remained elevated for up to 144 h. Furthermore, transgenic cabbage overexpressing PDF1.2 exhibited significantly enhanced resistance to Foc. Taken together, these findings advance our understanding of the molecular mechanisms governing cabbage resistance to Fusarium wilt and identify PDF1.2 as a genetic target for breeding Foc-resistant cabbage cultivars through molecular approaches. Full article
(This article belongs to the Special Issue Advances in Brassica Crop Metabolism and Genetics)
Show Figures

Figure 1

20 pages, 2526 KiB  
Article
Leucaena-Based Alley Cropping System: An Approach for Reclaiming Degraded Land, Reducing the Use of Inorganic Nitrogen Fertilizer, and Improving Crop Productivity
by Md. Suhag, Tofayel Ahamed, Ashim Kumar Das, Md. Abiar Rahman, Md. Mizanur Rahman and Md. Giashuddin Miah
Nitrogen 2025, 6(2), 25; https://doi.org/10.3390/nitrogen6020025 - 11 Apr 2025
Viewed by 755
Abstract
Alley cropping, an agroforestry system that integrates trees and arable crops, holds the potential to improve both crop yields and soil health. It has been found to be effective for upland crops in many countries of the world. However, the utilization of alley [...] Read more.
Alley cropping, an agroforestry system that integrates trees and arable crops, holds the potential to improve both crop yields and soil health. It has been found to be effective for upland crops in many countries of the world. However, the utilization of alley cropping to improve soil health in the terrace ecosystem of Bangladesh is poorly understood. Therefore, this study was undertaken to assess the changes in soil biochemical properties and quantify the cabbage yield under three alley widths of Leucaena leucocephala (3.0, 4.5, and 6.0 m size) and five nitrogen (N) levels [0, 40, 80, 120, and 160 kg N ha−1 (0, 25, 50, 75, and 100% of recommended N rates, respectively) with the addition of pruned materials of L. leucocephala (Ipil-ipil)]. The field experiment was conducted following a split-plot design, where alley width was considered as the main-plot factor and N rate as the sub-plot factor. Within each main plot, the five N rates were replicated thrice. Control plots with similar N doses were applied accordingly without addition of pruned materials to compare the results with alley cropping. Data were collected on the biochemical properties of the soil [soil pH, organic carbon (C), total N, available phosphorus (P), exchangeable potassium (K), microbial biomass C, and biomass N] and the yield of cabbage quantified [edible head weight (kg plant−1) and head yield (t ha−1)] under different alley widths and control. Findings revealed that organic C, total N, available P, exchangeable K, microbial biomass C, and biomass N in the topsoil exhibited maximum values in the L. leucocephala-based alley plot, which is proved to be a possible solution of restoration of degradable land. Additionally, L. leucocephala-based alley cropping improved the soil pH, indicating a potential avenue for more-sustainable land management practices. Results also showed that alley widths and N rates have significant effects on cabbage (Brassica oleracea L. var. capitata) yield. Alley width of 6.0 m along with 100% N provided the highest cabbage yield followed by 75% N in 6.0 m alley, and the control with 100%. The wider alley minimizes tree–crop competition, allowing for optimal cabbage production. These aforementioned results suggest that alley cropping with L. leucocephala is a promising approach to enhance soil fertility and crop productivity in the terrace ecosystem of Bangladesh. Full article
Show Figures

Figure 1

14 pages, 12384 KiB  
Article
Genome-Wide Characterization of CaM/CML Gene Family in Cabbage (Brassica oleracea var. capitata): Expression Profiling and Functional Implications During Hyaloperonospora parasitica Infection
by Yuankang Wu, Bin Zhang, Xuehui Yao, Limei Yang, Mu Zhuang, Honghao Lv, Yong Wang, Jialei Ji, Xilin Hou and Yangyong Zhang
Int. J. Mol. Sci. 2025, 26(7), 3208; https://doi.org/10.3390/ijms26073208 - 30 Mar 2025
Cited by 1 | Viewed by 439
Abstract
Calmodulin (CaM) and calmodulin-like proteins (CMLs) are crucial for calcium signal transduction in plants. Although CaM/CML genes have been extensively studied in various plant species, research on these genes in Brassica oleracea is still limited. In this study, 14 BoCaM and [...] Read more.
Calmodulin (CaM) and calmodulin-like proteins (CMLs) are crucial for calcium signal transduction in plants. Although CaM/CML genes have been extensively studied in various plant species, research on these genes in Brassica oleracea is still limited. In this study, 14 BoCaM and 75 BoCML genes were identified in the B. oleracea genome through a genome-wide search. Phylogenetic analysis categorized these genes, along with their homologs in Arabidopsis and rice, into six distinct groups. All BoCaM/BoCML genes were unevenly distributed across the nine chromosomes of B. oleracea, with 52 of them lacking introns. Collinearity analysis revealed that CaM/CML genes in Arabidopsis are present in multiple copies in the B. oleracea genome. Moreover, the majority of BoCaM/BoCML genes exhibited distinct expression patterns across the different tissues, indicating their role in the growth and development of B. oleracea. A clustering heatmap of BoCaM/BoCML gene expression showed distinct patterns before and four days after Hyaloperonospora parasitica infection, dividing the genes into five groups based on their expression patterns. Notably, BoCML46-2 is significantly downregulated in both susceptible and resistant materials, suggesting that it plays an important role in responding to H. parasitica infection. This study conducted a comprehensive survey of the BoCaM/BoCML gene family in B. oleracea. It could serve as a theoretical foundation for further functional identification and utilization of family members and their role in the interaction between B. oleracea and H. parasitica. Full article
Show Figures

Figure 1

25 pages, 5398 KiB  
Article
Integrated Transcriptomics and Metabolomics Analysis Reveals Convergent and Divergent Key Molecular Networks of Dominant Genic Male Sterility and Cytoplasmic Male Sterility in Cabbage
by Nan Zhang, Linqian Kuang, Limei Yang, Yong Wang, Fengqing Han, Yangyong Zhang, Shaohui Wang, Honghao Lv and Jialei Ji
Int. J. Mol. Sci. 2025, 26(3), 1259; https://doi.org/10.3390/ijms26031259 - 31 Jan 2025
Viewed by 1032
Abstract
Cytoplasmic male sterility (CMS) and dominant genic male sterility (DGMS) both result in the inability to produce or release functional pollen, making them pivotal systems in the hybridization breeding programs of Brassica crops such as cabbage (B. oleracea var. capitata). However, [...] Read more.
Cytoplasmic male sterility (CMS) and dominant genic male sterility (DGMS) both result in the inability to produce or release functional pollen, making them pivotal systems in the hybridization breeding programs of Brassica crops such as cabbage (B. oleracea var. capitata). However, the underling molecular mechanisms are still largely unexplored. This study integrated transcriptomic and metabolomic analyses of cabbage DGMS line, Ogura CMS line, and the maintainer line to uncover the molecular mechanisms underlying these sterility types. The joint analysis predominantly identified significantly enriched pathways, including carbohydrate metabolism, flavonoid biosynthesis, and phenylpropanoid pathways between the MS lines and the maintainer. Especially, the CMS line exhibited a broader range of metabolic perturbations, with a total of 3556 significantly differentially expressed genes (DEGs) and 439 differentially accumulated metabolites (DAMs) detected, particularly in the vitamin B6 metabolism pathway, which showed significant alterations. Given the differences in the inactivation period of microspores in CMS and DGMS lines, we found that DEGs unique to DGMS and maintainer line, such as BoGRPs and BoLTPs, primarily regulate fertility development before the unicellular stage. The DEGs shared between CMS_vs_maintainer and DGMS_vs_maintainer mainly govern microspore development after release from the tetrad, such as BoHXK1 and BoIDH. Additionally, the DEGs unique to CMS_vs_maintainer may contribute to other damage in floral organs beyond male fertility, potentially leading to severe bud abortion, such as BoPNPO. These findings provide a comprehensive framework for understanding the molecular mechanisms of male sterility and offer valuable insights into future breeding strategies in cruciferous vegetables. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics, 3rd Edition)
Show Figures

Figure 1

22 pages, 3519 KiB  
Article
Optimizing Cabbage Cultivation in Paddy-Converted Fields Using Discarded Coir Substrates and Controlled Irrigation
by Xin Wang, Yongjae Lee, To Kang and Jongseok Park
Agronomy 2025, 15(1), 8; https://doi.org/10.3390/agronomy15010008 - 24 Dec 2024
Viewed by 845
Abstract
This study aimed to reuse discarded coir substrates and optimize irrigation as a low-cost solution for addressing waterlogging in paddy-converted farmland. We employed a 2 × 4 factorial design, with two cultivation methods consisting of paddy soil (PS) and coir substrates (CS), and [...] Read more.
This study aimed to reuse discarded coir substrates and optimize irrigation as a low-cost solution for addressing waterlogging in paddy-converted farmland. We employed a 2 × 4 factorial design, with two cultivation methods consisting of paddy soil (PS) and coir substrates (CS), and four irrigation levels (IL) set as 140% crop evapotranspiration (ETc140), 100% ETc (ETc100), 60% ETc (ETc60), and non-irrigated control (ETc0). We evaluated the growth and physiological characteristics of cabbage (Brassica oleracea L. var. Capitata), including the outer leaf growth, yield components, water use efficiency (WUE), photosynthetic parameters, chlorophyll content, proline content, malondialdehyde (MDA) content, and glucosinolates (GLs) content. The results indicated that the interaction between the CS and IL significantly improved cabbage growth, photosynthetic activity, and stress resistance compared with PS. Notably, when CS was combined with ETc100 and ETc60 irrigation levels, cabbage exhibited optimal growth parameters, and CS-ETc60 achieved the highest WUE. This study indicated that using discarded coir substrates combined with appropriate irrigation levels offers an effective and low-cost solution for mitigating waterlogging problems. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

11 pages, 1208 KiB  
Article
Development of High-Glucosinolate-Retaining Lactic-Acid-Bacteria-Co-Fermented Cabbage Products
by Chen-Che Hsieh, Yuan-Heng Liu, Shin-Ping Lin, Shella Permatasari Santoso, Kaemwich Jantama, Tsung-Yu Tsai, Chang-Wei Hsieh and Kuan-Chen Cheng
Fermentation 2024, 10(12), 635; https://doi.org/10.3390/fermentation10120635 - 12 Dec 2024
Cited by 2 | Viewed by 1727
Abstract
Cabbage (Brassica oleracea var. capitata) is rich in dietary fiber, vitamins, trace elements, and functional components like glucosinolates, which are essential for promoting health. This study aims to enhance the health benefits and nutritional content of cabbage through lactic acid fermentation [...] Read more.
Cabbage (Brassica oleracea var. capitata) is rich in dietary fiber, vitamins, trace elements, and functional components like glucosinolates, which are essential for promoting health. This study aims to enhance the health benefits and nutritional content of cabbage through lactic acid fermentation using a bioreactor, with a particular focus on glucosinolate retention. The fermentation utilized a consortium of Lactiplantibacillus plantarum, known for its robust acidifying capabilities, and antioxidant-rich strains Lactobacillus acidophilus and Bifidobacterium longum. A 5 L bioreactor facilitated the controlled fermentation process (35 °C, 24 h of fermentation at 5 rpm). The efficacy of glucosinolate retention was quantitatively assessed alongside the analysis of antioxidant properties via 1,1-diphenyl-2-picrylhydrazil (DPPH) and 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The results indicated a notable enhancement in antioxidant capacity with a 16.32% increase in the DPPH radical scavenging rate compared to non-fermented cabbage. Glucosinolate retention was impressively sustained at 82.02% in bioreactor conditions. Storage stability tests conducted at 4 °C revealed minimal degradation of glucosinolates, maintaining significant levels up to 14 days (from 90.34% to 66.49%). This study underscores the potential of bioreactor-facilitated lactic acid fermentation in preserving and enhancing the nutritional and functional qualities of cabbage, thereby extending its market value and promoting sustainable agricultural practices. Full article
(This article belongs to the Special Issue Application of Lactic Acid Bacteria in Fermented Food: 2nd Edition)
Show Figures

Figure 1

14 pages, 4544 KiB  
Article
Iberverin Downregulates GPX4 and SLC7A11 to Induce Ferroptotic Cell Death in Hepatocellular Carcinoma Cells
by Haoying Yang, Bolei Dai, Liangjie Chen, Yingping Li, Xiaorui Jin, Chengchang Gao, Linfen Han and Xueli Bian
Biomolecules 2024, 14(11), 1407; https://doi.org/10.3390/biom14111407 - 5 Nov 2024
Cited by 4 | Viewed by 2618
Abstract
Ferroptosis, a recently elucidated style of regulated cell death, has emerged as a significant area of investigation in cancer biology. Natural active compounds that have anti-cancer effects are promising candidates for cancer prevention. Iberverin, a natural compound derived from Brassica oleracea var. capitata [...] Read more.
Ferroptosis, a recently elucidated style of regulated cell death, has emerged as a significant area of investigation in cancer biology. Natural active compounds that have anti-cancer effects are promising candidates for cancer prevention. Iberverin, a natural compound derived from Brassica oleracea var. capitata, has been shown to exert anti-tumor activities in some cancers. However, its role in hepatocellular carcinoma (HCC) cells and the molecular mechanisms are still poorly understood. In this study, we proved that iberverin can induce intracellular reactive oxygen species (ROS) generation to inhibit cell proliferation and initiate ferroptotic cell death in HCC cells, which can be eradicated by the ferroptosis inhibitor ferrostatin-1 (Fer-1) or deferoxamine mesylate (DFO) and ROS scavenger (GSH or NAC). Mechanistically, iberverin treatment can simultaneously downregulate SLC7A11 mRNA level and degrade GPX4 through the ubiquitination pathway, leading to lipid peroxidation and ferroptotic cell death in HCC cells. Significantly, a low dose of iberverin can remarkably increase the sensitivity of HCC cells to ferroptosis induced by canonical ferroptosis inducers RSL3 and imidazole ketone erastin (IKE). This study uncovers a critical function of iberverin in preventing HCC through ferroptosis and provides a promising strategy for HCC treatment either via iberverin alone or in combination with canonical ferroptosis inducers in the future. Full article
(This article belongs to the Special Issue Antitumor Agents from Natural Sources 2024–2025)
Show Figures

Figure 1

14 pages, 1309 KiB  
Review
Overview of Phytochemical Composition of Brassica oleraceae var. capitata Cultivars
by Olga Statilko, Thalia Tsiaka, Vassilia J. Sinanoglou and Irini F. Strati
Foods 2024, 13(21), 3395; https://doi.org/10.3390/foods13213395 - 25 Oct 2024
Cited by 4 | Viewed by 2722
Abstract
The Brassicaceae family includes a wide range of horticultural crops of economic and traditional importance, consumed either fresh, cooked, or fermented. Cabbage (Brassica oleraceae var. capitata) is one of the most important crops of the family. The present review analyzes the [...] Read more.
The Brassicaceae family includes a wide range of horticultural crops of economic and traditional importance, consumed either fresh, cooked, or fermented. Cabbage (Brassica oleraceae var. capitata) is one of the most important crops of the family. The present review analyzes the most important phytochemicals present in cabbage, focusing on variation of phytochemical composition between cultivars of B. oleraceae var. capitata f. alba, B. oleraceae var. capitata f. rubra, B. oleraceae var. capitata f. acuta, and B. oleraceae var. capitata f. sabauda. Cabbage form and cultivars significantly affect phytochemical compositions. B. oleraceae var. capitata f. rubra cultivars are generally great sources of phenolic compounds, especially anthocyanins, whereas B. oleraceae var. capitata f. alba cultivars display the highest concentration of glucosinolates; nevertheless, their levels are also dependent on the specific cultivar. B. oleraceae var. capitata f. acuta cultivars may be considered advantageous due to their high glucosinolate content and consistent phytochemical composition. Recognizing the benefits of specific cultivars can be valuable for consumers seeking a healthier lifestyle, as well as for scientists aiming to enhance cultivars through breeding programs or use plants’ extracts to produce high quality pigments and dietary supplements. Full article
(This article belongs to the Special Issue Feature Review on Plant Foods)
Show Figures

Figure 1

10 pages, 407 KiB  
Article
The Effect of Chosen Biostimulants on the Yield of White Cabbage
by Edward Kunicki, Ewa Capecka and Elżbieta Wojciechowicz-Żytko
Agriculture 2024, 14(10), 1700; https://doi.org/10.3390/agriculture14101700 - 28 Sep 2024
Cited by 1 | Viewed by 1399
Abstract
An open-field study evaluated the effects of four biostimulants (Asahi, Optysil, Optycal, and Tytanit) on the yield and chemical composition of two white cabbage cultivars (‘Caraflex’ and ‘Alfredo’). Although the biostimulants did not significantly impact the marketable yield, all treatments led to a [...] Read more.
An open-field study evaluated the effects of four biostimulants (Asahi, Optysil, Optycal, and Tytanit) on the yield and chemical composition of two white cabbage cultivars (‘Caraflex’ and ‘Alfredo’). Although the biostimulants did not significantly impact the marketable yield, all treatments led to a significant increase in ascorbic acid content. The influence on dry matter, sugars, phenols, and antioxidant activity varied by cultivar but generally did not result in inferior outcomes compared to the control. The effect on nitrate levels also varied, with Optysil and Asahi showing some adverse effects depending on the cultivar. Full article
Show Figures

Graphical abstract

18 pages, 1795 KiB  
Article
Nanoagrochemicals versus Conventional Fertilizers: A Field Case Study with Tailor-Made Nanofertilizers for Sustainable Crop Efficiency of Brassica oleracea L. convar. Capitata var. Sabauda
by Rocío González-Feijoo, Cecilia Martinez-Castillo, Andrés Rodríguez-Seijo, Paula Pérez-Rodríguez and Daniel Arenas-Lago
Agronomy 2024, 14(9), 1885; https://doi.org/10.3390/agronomy14091885 - 23 Aug 2024
Cited by 1 | Viewed by 2116
Abstract
Excessive use of conventional fertilizers in agricultural soils can lead to environmental contamination, particularly affecting aquifers and surface waters. Nanofertilizers, with smaller particles and greater nutrient efficiency, offer a promising alternative. This study evaluates the application of nanofertilizers by reducing NPK-doses compared to [...] Read more.
Excessive use of conventional fertilizers in agricultural soils can lead to environmental contamination, particularly affecting aquifers and surface waters. Nanofertilizers, with smaller particles and greater nutrient efficiency, offer a promising alternative. This study evaluates the application of nanofertilizers by reducing NPK-doses compared to conventional fertilizers in the cultivation of Brassica oleracea L. convar. capitata var. sabauda (Savoy cabbage). Field assays were conducted in experimental plots with different NPK doses and treatments using urea-hydroxyapatite and potassium sulfate nanoparticles (optimum dose: 80 N, 100 P2O5, 250 K2O kg ha−1; and half optimum dosage). The assay was monitored throughout the crop cycle, and cabbages were harvested to determine biometric parameters, yield, and nutrient contents. The results indicated that nanofertilizers at half the recommended dosage yielded similar results to conventional fertilization in terms of cabbage growth and yield. Specifically, soil pH and available P increased by the end of the crop cycle, while total N, C, CEC, and soil texture remained unchanged, regardless of the fertilizer dose applied. Cabbage plants treated with nanofertilizers showed no significant differences in nutrient content compared to those treated with conventional fertilizers. This study supports the potential of nanofertilizers as an environmentally sustainable alternative that can reduce nutrient inputs in agriculture without compromising crop yield and quality. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

15 pages, 2063 KiB  
Article
The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents
by Octavia Sabin, Raluca Maria Pop, Ioana Corina Bocșan, Veronica Sanda Chedea, Floricuța Ranga, Adriana Grozav, Antonia-Mihaela Levai and Anca Dana Buzoianu
Molecules 2024, 29(15), 3448; https://doi.org/10.3390/molecules29153448 - 23 Jul 2024
Cited by 3 | Viewed by 2322
Abstract
This study investigates the anti-inflammatory, analgesic, and antioxidant properties of polyphenols extracted from Brassica oleracea var. capitata (cabbage) ethanolic extract (BOE). Given the historical use of cabbage in traditional medicine for treating various ailments, this research aims to validate these effects scientifically. The [...] Read more.
This study investigates the anti-inflammatory, analgesic, and antioxidant properties of polyphenols extracted from Brassica oleracea var. capitata (cabbage) ethanolic extract (BOE). Given the historical use of cabbage in traditional medicine for treating various ailments, this research aims to validate these effects scientifically. The study involved the characterization of BOE’s bioactive compounds using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography–Diode Array Detection–Electro-Spray Ionization Mass Spectrometry (HPLC-DAD-ESI MS) analysis. We assessed the anti-inflammatory and analgesic effects of topical and oral BOE administration on rodent models with acute and subacute inflammation. Additionally, the antioxidant capacity of orally administered BOE was evaluated. The results showed that BOE possesses significant levels of phenolic compounds with a potent antioxidant activity. The topical administration of BOE demonstrated notable anti-inflammatory effects in the tested rodent models, which were comparable with nonsteroidal anti-inflammatory drugs. These findings suggest that BOE could be a valuable natural remedy for inflammation-related conditions, supporting its traditional uses and highlighting its potential for further pharmacological development. Full article
Show Figures

Figure 1

14 pages, 3682 KiB  
Article
Integrated Analysis of Transcriptome and Metabolome Reveals Differential Responses to Alternaria brassicicola Infection in Cabbage (Brassica oleracea var. capitata)
by Jinzhou Lei, Wei Zhang, Fangwei Yu, Meng Ni, Zhigang Liu, Cheng Wang, Jianbin Li, Jianghua Song and Shenyun Wang
Genes 2024, 15(5), 545; https://doi.org/10.3390/genes15050545 - 25 Apr 2024
Viewed by 1801
Abstract
Black spot, caused by Alternaria brassicicola (Ab), poses a serious threat to crucifer production, and knowledge of how plants respond to Ab infection is essential for black spot management. In the current study, combined transcriptomic and metabolic analysis was employed to [...] Read more.
Black spot, caused by Alternaria brassicicola (Ab), poses a serious threat to crucifer production, and knowledge of how plants respond to Ab infection is essential for black spot management. In the current study, combined transcriptomic and metabolic analysis was employed to investigate the response to Ab infection in two cabbage (Brassica oleracea var. capitata) genotypes, Bo257 (resistant to Ab) and Bo190 (susceptible to Ab). A total of 1100 and 7490 differentially expressed genes were identified in Bo257 (R_mock vs. R_Ab) and Bo190 (S_mock vs. S_Ab), respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that “metabolic pathways”, “biosynthesis of secondary metabolites”, and “glucosinolate biosynthesis” were the top three enriched KEGG pathways in Bo257, while “metabolic pathways”, “biosynthesis of secondary metabolites”, and “carbon metabolism” were the top three enriched KEGG pathways in Bo190. Further analysis showed that genes involved in extracellular reactive oxygen species (ROS) production, jasmonic acid signaling pathway, and indolic glucosinolate biosynthesis pathway were differentially expressed in response to Ab infection. Notably, when infected with Ab, genes involved in extracellular ROS production were largely unchanged in Bo257, whereas most of these genes were upregulated in Bo190. Metabolic profiling revealed 24 and 56 differentially accumulated metabolites in Bo257 and Bo190, respectively, with the majority being primary metabolites. Further analysis revealed that dramatic accumulation of succinate was observed in Bo257 and Bo190, which may provide energy for resistance responses against Ab infection via the tricarboxylic acid cycle pathway. Collectively, this study provides comprehensive insights into the Ab–cabbage interactions and helps uncover targets for breeding Ab-resistant varieties in cabbage. Full article
(This article belongs to the Special Issue Vegetable Genetic Breeding)
Show Figures

Figure 1

Back to TopTop