Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Birnaviridae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4976 KiB  
Article
Characterization of the Virome Associated with the Ubiquitous Two-Spotted Spider Mite, Tetranychus urticae
by Lucas Yago Melo Ferreira, Anderson Gonçalves de Sousa, Joannan Lima Silva, João Pedro Nunes Santos, David Gabriel do Nascimento Souza, Lixsy Celeste Bernardez Orellana, Sabrina Ferreira de Santana, Lara Beatriz Correia Moreira de Vasconcelos, Anibal Ramadan Oliveira and Eric Roberto Guimarães Rocha Aguiar
Viruses 2024, 16(10), 1532; https://doi.org/10.3390/v16101532 - 27 Sep 2024
Viewed by 1400
Abstract
Agricultural pests can cause direct damage to crops, including chlorosis, loss of vigor, defoliation, and wilting. In addition, they can also indirectly damage plants, such as by transmitting pathogenic micro-organisms while feeding on plant tissues, affecting the productivity and quality of crops and [...] Read more.
Agricultural pests can cause direct damage to crops, including chlorosis, loss of vigor, defoliation, and wilting. In addition, they can also indirectly damage plants, such as by transmitting pathogenic micro-organisms while feeding on plant tissues, affecting the productivity and quality of crops and interfering with agricultural production. Among the known arthropod pests, mites are highly prevalent in global agriculture, particularly those from the Tetranychidae family. The two-spotted spider mite, Tetranychus urticae, is especially notorious, infesting about 1600 plant species and causing significant agricultural losses. Despite its impact on agriculture, the virome of T. urticae is poorly characterized in the literature. This lack of knowledge is concerning, as these mites could potentially transmit plant-infecting viral pathogens, compromising food security and complicating integrated pest management efforts. Our study aimed to characterize the virome of the mite T. urticae by taking advantage of publicly available RNA deep sequencing libraries. A total of 30 libraries were selected, covering a wide range of geographic and sampling conditions. The library selection step included selecting 1 control library from each project in the NCBI SRA database (16 in total), in addition to the 14 unique libraries from a project containing field-collected mites. The analysis was conducted using an integrated de novo virus discovery bioinformatics pipeline developed by our group. This approach revealed 20 viral sequences, including 11 related to new viruses. Through phylogenetic analysis, eight of these were classified into the Nodaviridae, Kitaviridae, Phenuiviridae, Rhabdoviridae, Birnaviridae, and Qinviridae viral families, while three were characterized only at the order level within Picornavirales and Reovirales. The remaining nine viral sequences showed high similarity at the nucleotide level with known viral species, likely representing new strains of previously characterized viruses. Notably, these include the known Bean common mosaic virus (BCMV) and Phaseolus vulgaris alphaendornavirus 1, both of which have significant impacts on bean agriculture. Altogether, our results expand the virome associated with the ubiquitous mite pest T. urticae and highlight its potential role as a transmitter of important plant pathogens. Our data emphasize the importance of continuous virus surveillance for help in the preparedness of future emerging threats. Full article
(This article belongs to the Special Issue Molecular Virus–Insect Interactions, 2nd Edition)
Show Figures

Figure 1

22 pages, 4765 KiB  
Article
Longitudinal Study of Viral Diversity Associated with Mosquito Species Circulating in Cambodia
by Souand Mohamed Ali, Antsa Rakotonirina, Kimly Heng, Elise Jacquemet, Stevenn Volant, Sarah Temmam, Sebastien Boyer and Marc Eloit
Viruses 2023, 15(9), 1831; https://doi.org/10.3390/v15091831 - 29 Aug 2023
Cited by 5 | Viewed by 2522
Abstract
Arthropod-borne viruses (arboviruses) pose a significant global health threat and are primarily transmitted by mosquitoes. In Cambodia, there are currently 290 recorded mosquito species, with at least 17 of them considered potential vectors of arboviruses to humans. Effective surveillance of virome profiles in [...] Read more.
Arthropod-borne viruses (arboviruses) pose a significant global health threat and are primarily transmitted by mosquitoes. In Cambodia, there are currently 290 recorded mosquito species, with at least 17 of them considered potential vectors of arboviruses to humans. Effective surveillance of virome profiles in mosquitoes from Cambodia is vital, as it could help prevent and control arbovirus diseases in a country where epidemics occur frequently. The objective of this study was to identify and characterize the viral diversity in mosquitoes collected during a one-year longitudinal study conducted in various habitats across Cambodia. For this purpose, we used a metatranscriptomics approach and detected the presence of chikungunya virus in the collected mosquitoes. Additionally, we identified viruses categorized into 26 taxa, including those known to harbor arboviruses such as Flaviviridae and Orthomyxoviridae, along with a group of viruses not yet taxonomically identified and provisionally named “unclassified viruses”. Interestingly, the taxa detected varied in abundance and composition depending on the mosquito genus, with no significant influence of the collection season. Furthermore, most of the identified viruses were either closely related to viruses found exclusively in insects or represented new viruses belonging to the Rhabdoviridae and Birnaviridae families. The transmission capabilities of these novel viruses to vertebrates remain unknown. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

14 pages, 2378 KiB  
Review
The Formation and Function of Birnaviridae Virus Factories
by Andrew J. Brodrick and Andrew J. Broadbent
Int. J. Mol. Sci. 2023, 24(10), 8471; https://doi.org/10.3390/ijms24108471 - 9 May 2023
Cited by 7 | Viewed by 3663
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid–liquid phase separation (LLPS). Although the VFs are not [...] Read more.
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid–liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes. Full article
Show Figures

Figure 1

14 pages, 1620 KiB  
Review
A Walk through Gumboro Disease
by Maria Pia Franciosini and Irit Davidson
Poultry 2022, 1(4), 229-242; https://doi.org/10.3390/poultry1040020 - 7 Oct 2022
Cited by 7 | Viewed by 12665
Abstract
Infectious bursal disease (IBD), caused by an Avibirnavirus, belonging to the family Birnaviridae, is an immunosuppressive disease that affects 3–6-week-old chickens, resulting in clinical or subclinical infection. Although clinical disease occurs in chickens, turkeys, ducks, guinea fowl, and ostriches can be [...] Read more.
Infectious bursal disease (IBD), caused by an Avibirnavirus, belonging to the family Birnaviridae, is an immunosuppressive disease that affects 3–6-week-old chickens, resulting in clinical or subclinical infection. Although clinical disease occurs in chickens, turkeys, ducks, guinea fowl, and ostriches can be also infected. IBD virus (IBDV) causes lymphoid depletion of the bursa, which is responsible for the severe depression of the humoral antibody response, primarily if this occurs within the first 2 weeks of life. IBD remains an issue in chicken meat production due to economic losses caused by the spread of variants or subtypes, resistant to the most common vaccines, responsible for a subclinical disease characterized by reduced growth performance and increased susceptibility to secondary infections. Very virulent strains of classical serotype 1 are also common in several countries and can cause severe disease with up to 90% mortality. This review mainly focuses on the immunosuppressive effect of the IBDV and potential vaccination strategies, capable of overcoming challenges associated with the optimal time for vaccination of offspring, which is dependent on maternal immunity and IBDV variant occurrence. Full article
Show Figures

Figure 1

13 pages, 2696 KiB  
Article
An Improved, Dual-Direction, Promoter-Driven, Reverse Genetics System for the Infectious Bursal Disease Virus (IBDV)
by Xifeng Hu, Zheng Chen, Xiangdong Wu, Zhen Ding, Qinghua Zeng and Huansheng Wu
Viruses 2022, 14(7), 1396; https://doi.org/10.3390/v14071396 - 27 Jun 2022
Cited by 10 | Viewed by 4485
Abstract
The infectious bursal disease virus (IBDV), one member of the Birnaviridae family, causes immunosuppression in young chickens by damaging the mature B cells of the bursa of Fabricius (BF), the central immune system of young chickens. The genome of IBDV is a bisegmented, [...] Read more.
The infectious bursal disease virus (IBDV), one member of the Birnaviridae family, causes immunosuppression in young chickens by damaging the mature B cells of the bursa of Fabricius (BF), the central immune system of young chickens. The genome of IBDV is a bisegmented, double-strand RNA (dsRNA). Reverse genetics systems for IBDV allow the generation of genetically manipulated infectious virus via transfected plasmid DNA, encoding the two genomic viral RNA segments as well as major viral proteins. For this purpose, the minus-sense of both segment A and segment B are inserted into vectors between the polymerase I promoter and the corresponding terminator I. These plasmids facilitate the transcription of the viral minus-sense genome but copy the plus-sense genome as well viral protein translation depends on the activity of VP1 and VP3, when transfected into 293T cells. To further improve rescue efficiency, dual-direction promoters were generated based on the polymerase II promoter in the reverse direction in the backbone of the pCDNA3.0 vector. Therefore, the polymerase I promoter transcribes the viral minus-sense genome in the forward direction and the polymerase II promoter transcribes viral mRNA, translated into viral proteins that produce infectious IBDV. We also found that the rescue efficiency of transfecting two plasmids is significantly higher than that of transfecting four plasmids. In addition, this dual-direction promoter rescue system was used to generate R186A mutant IBDV since Arg186 is the arginine monomer-methylation site identified by LC–MS. Our data furtherly showed that the Arg186 monomer methylation mutant was due to a reduction in VP1 polymerase activity as well as virus replication, suggesting that the Arg186 methylation site is essential for IBDV replication. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

16 pages, 6101 KiB  
Article
Snapshots of a Non-Canonical RdRP in Action
by Diego S. Ferrero, Michela Falqui and Nuria Verdaguer
Viruses 2021, 13(7), 1260; https://doi.org/10.3390/v13071260 - 28 Jun 2021
Cited by 3 | Viewed by 3562
Abstract
RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication and transcription. The closed “right hand” architecture of RdRPs encircles seven conserved structural motifs (A to G) that regulate the polymerization activity. The four palm motifs, arranged in the [...] Read more.
RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication and transcription. The closed “right hand” architecture of RdRPs encircles seven conserved structural motifs (A to G) that regulate the polymerization activity. The four palm motifs, arranged in the sequential order A to D, are common to all known template dependent polynucleotide polymerases, with motifs A and C containing the catalytic aspartic acid residues. Exceptions to this design have been reported in members of the Permutotetraviridae and Birnaviridae families of positive single stranded (+ss) and double-stranded (ds) RNA viruses, respectively. In these enzymes, motif C is located upstream of motif A, displaying a permuted C–A–B–D connectivity. Here we study the details of the replication elongation process in the non-canonical RdRP of the Thosea asigna virus (TaV), an insect virus from the Permutatetraviridae family. We report the X-ray structures of three replicative complexes of the TaV polymerase obtained with an RNA template-primer in the absence and in the presence of incoming rNTPs. The structures captured different replication events and allowed to define the critical interactions involved in: (i) the positioning of the acceptor base of the template strand, (ii) the positioning of the 3’-OH group of the primer nucleotide during RNA replication and (iii) the recognition and positioning of the incoming nucleotide. Structural comparisons unveiled a closure of the active site on the RNA template-primer binding, before rNTP entry. This conformational rearrangement that also includes the repositioning of the motif A aspartate for the catalytic reaction to take place is maintained on rNTP and metal ion binding and after nucleotide incorporation, before translocation. Full article
(This article belongs to the Special Issue Viral Replication Complexes)
Show Figures

Figure 1

11 pages, 1206 KiB  
Article
Transmissible Viral Proventriculitis Caused by Chicken Proventricular Necrosis Virus Displaying Serological Cross-Reactivity with IBDV
by Marcin Śmiałek, Michał Gesek, Daria Dziewulska, Jowita Samanta Niczyporuk and Andrzej Koncicki
Animals 2021, 11(1), 8; https://doi.org/10.3390/ani11010008 - 23 Dec 2020
Cited by 6 | Viewed by 4287
Abstract
Transmissible viral proventriculitis (TVP) of chickens is manifested in decreased body weight gains, poor feed conversion and weight diversity. Although TVP etiology has not been defined, a Birnaviridae family member, named chicken proventricular necrosis virus (CPNV) is considered as a potential factor of [...] Read more.
Transmissible viral proventriculitis (TVP) of chickens is manifested in decreased body weight gains, poor feed conversion and weight diversity. Although TVP etiology has not been defined, a Birnaviridae family member, named chicken proventricular necrosis virus (CPNV) is considered as a potential factor of a disease. This study was undertaken in order to reproduce TVP and to evaluate its etiology. Broiler chickens of the TVP-infected group were inoculated with TVP positive proventriculi homogenate on the 24th day of life. Samples were collected, on infection day and 14 days post-infection (dpi). The 14 dpi anatomo- and histopathological evaluation, revealed that we have succeeded to reproduce TVP. TVP-infected birds gained 30.38% less body weight. In the TVP-infected group a seroconversion against picornaviruses, fowl adenoviruses (FAdV) and infectious bursal disease viruses (IBDV) was recorded with an ELISA test. Using RT-PCR and PCR, CPNV was detected in proventriculi and FAdV in spleens and livers of infected birds, 14 dpi. Our study supports that CPNV is involved in the development of TVP. We did not record the presence of IBDV in TVP or control birds, despite our recording of a seroconversion against IBDV in TVP infected birds. CPNV and IBDV belong to the same family, which allows us to assume serological cross-reactivity between them. The role of FAdV needs further evaluation. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

18 pages, 3311 KiB  
Article
The Unexplored Virome of Two Atlantic Coast Fish: Contribution of Next-Generation Sequencing to Fish Virology
by Andreia Filipa-Silva, Ricardo Parreira, Sandra Martínez-Puchol, Sílvia Bofill-Mas, Maria Teresa Barreto Crespo and Mónica Nunes
Foods 2020, 9(11), 1634; https://doi.org/10.3390/foods9111634 - 9 Nov 2020
Cited by 21 | Viewed by 5478
Abstract
Much of the knowledge on viruses is focused on those that can be propagated using cell-cultures or that can cause disease in humans or in economically important animals and plants. However, this only reflects a small portion of the virosphere. Therefore, in this [...] Read more.
Much of the knowledge on viruses is focused on those that can be propagated using cell-cultures or that can cause disease in humans or in economically important animals and plants. However, this only reflects a small portion of the virosphere. Therefore, in this study, we explore by targeted next-generation sequencing, how the virome varies between Atlantic horse mackerels and gilthead seabreams from fisheries and aquaculture from the center and south regions of Portugal. Viral genomes potentially pathogenic to fish and crustaceans, as well as to humans, were identified, namely Astroviridae, Nodaviridae, Hepadnaviridae, Birnaviridae, Caliciviridae, and Picornaviridae families. Also bacteriophages sequences were identified corresponding to the majority of sequences detected, with Myoviridae, Podoviridae, and Siphoviridae, the most widespread families in both fish species. However, these findings can also be due to the presence of bacteria in fish tissues, or even to contamination. Overall, seabreams harbored viruses from a smaller number of families in comparison with mackerels. Therefore, the obtained data show that fish sold for consumption can harbor a high diversity of viruses, many of which are unknown, reflecting the overall uncharacterized virome of fish. While cross-species transmission of bonafide fish viruses to humans is unlikely, the finding of human pathogenic viruses in fish suggest that fish virome can be a potential threat regarding food safety. Full article
Show Figures

Figure 1

23 pages, 7699 KiB  
Article
A Unique Relative of Rotifer Birnavirus Isolated from Australian Mosquitoes
by Caitlin A. O’Brien, Cassandra L. Pegg, Amanda S. Nouwens, Helle Bielefeldt-Ohmann, Bixing Huang, David Warrilow, Jessica J. Harrison, John Haniotis, Benjamin L. Schulz, Devina Paramitha, Agathe M. G. Colmant, Natalee D. Newton, Stephen L. Doggett, Daniel Watterson, Jody Hobson-Peters and Roy A. Hall
Viruses 2020, 12(9), 1056; https://doi.org/10.3390/v12091056 - 22 Sep 2020
Cited by 9 | Viewed by 4434
Abstract
The family Birnaviridae are a group of non-enveloped double-stranded RNA viruses which infect poultry, aquatic animals and insects. This family includes agriculturally important pathogens of poultry and fish. Recently, next-generation sequencing technologies have identified closely related birnaviruses in Culex, Aedes and Anopheles mosquitoes. [...] Read more.
The family Birnaviridae are a group of non-enveloped double-stranded RNA viruses which infect poultry, aquatic animals and insects. This family includes agriculturally important pathogens of poultry and fish. Recently, next-generation sequencing technologies have identified closely related birnaviruses in Culex, Aedes and Anopheles mosquitoes. Using a broad-spectrum system based on detection of long double-stranded RNA, we have discovered and isolated a birnavirus from Aedes notoscriptus mosquitoes collected in northern New South Wales, Australia. Phylogenetic analysis of Aedes birnavirus (ABV) showed that it is related to Rotifer birnavirus, a pathogen of microscopic aquatic animals. In vitro cell infection assays revealed that while ABV can replicate in Aedes-derived cell lines, the virus does not replicate in vertebrate cells and displays only limited replication in Culex- and Anopheles-derived cells. A combination of SDS-PAGE and mass spectrometry analysis suggested that the ABV capsid precursor protein (pVP2) is larger than that of other birnaviruses and is partially resistant to trypsin digestion. Reactivity patterns of ABV-specific polyclonal and monoclonal antibodies indicate that the neutralizing epitopes of ABV are SDS sensitive. Our characterization shows that ABV displays a number of properties making it a unique member of the Birnaviridae and represents the first birnavirus to be isolated from Australian mosquitoes. Full article
Show Figures

Figure 1

11 pages, 2708 KiB  
Article
Characterization of Port Bolivar Virus, a Novel Entomobirnavirus (Birnaviridae) Isolated from Mosquitoes Collected in East Texas, USA
by Robert B. Tesh, Bethany G. Bolling, Hilda Guzman, Vsevolod L. Popov, Ashley Wilson, Steven G. Widen, Thomas G. Wood, Peter J. Walker and Nikos Vasilakis
Viruses 2020, 12(4), 390; https://doi.org/10.3390/v12040390 - 31 Mar 2020
Cited by 7 | Viewed by 3465
Abstract
This report describes and characterizes a novel entomobirnavirus, designated Port Bolivar virus (PTBV), that was isolated from a pool of Aedes sollicitans mosquitoes collected in a saltwater marsh in East Texas, USA. Full genome sequencing and phylogenetic analyses indicate that PTBV is distinct [...] Read more.
This report describes and characterizes a novel entomobirnavirus, designated Port Bolivar virus (PTBV), that was isolated from a pool of Aedes sollicitans mosquitoes collected in a saltwater marsh in East Texas, USA. Full genome sequencing and phylogenetic analyses indicate that PTBV is distinct but genetically related to Drosophila X virus and mosquito X virus, which are assigned to species in the genus Entomobirnavirus, family Birnaviridae. PTBV produced cytopathic effect (CPE) in cultures of mosquito (C6/36) cells, but not in Vero cell cultures. Ultrastructural studies of PTBV in infected C6/36 cells demonstrated unenveloped virus particles about 55 nm in diameter. Full article
Show Figures

Figure 1

19 pages, 1521 KiB  
Article
A Piscine Birnavirus Induces Inhibition of Protein Synthesis in CHSE-214 Cells Primarily through the Induction of eIF2α Phosphorylation
by Amr A.A. Gamil, Stephen Mutoloki and Øystein Evensen
Viruses 2015, 7(4), 1987-2005; https://doi.org/10.3390/v7041987 - 15 Apr 2015
Cited by 14 | Viewed by 8273
Abstract
Inhibition of protein synthesis represents one of the antiviral mechanisms employed by cells and it is also used by viruses for their own propagation. To what extent members of the Birnaviridae family employ such strategies is not well understood. Here we use a [...] Read more.
Inhibition of protein synthesis represents one of the antiviral mechanisms employed by cells and it is also used by viruses for their own propagation. To what extent members of the Birnaviridae family employ such strategies is not well understood. Here we use a type-strain of the Aquabirnavirus, infectious pancreatic necrosis virus (IPNV), to investigate this phenomenon in vitro. CHSE-214 cells were infected with IPNV and at 3, 12, 24, and 48 hours post infection (hpi) before the cells were harvested and labeled with S35 methionine to assess protein synthesis. eIF2α phosphorylation was examined by Western blot while RT-qPCR was used to assess virus replication and the expression levels of IFN-α, Mx1 and PKR. Cellular responses to IPNV infection were assessed by DNA laddering, Caspase-3 assays and flow cytometry. The results show that the onset and kinetics of eIF2α phosphorylation was similar to that of protein synthesis inhibition as shown by metabolic labeling. Increased virus replication and virus protein formation was observed by 12 hpi, peaking at 24 hpi. Apoptosis was induced in a small fraction (1−2%) of IPNV-infected CHSE cells from 24 hpi while necrotic/late apoptotic cells increased from 10% by 24 hpi to 59% at 48 hpi, as shown by flow cytometry. These results were in accordance with a small decline in cell viability by 24hpi, dropping below 50% by 48 hpi. IPNV induced IFN-α mRNA upregulation by 24 hpi while no change was observed in the expression of Mx1 and PKR mRNA. Collectively, these findings show that IPNV induces inhibition of protein synthesis in CHSE cells through phosphorylation of eIF2α with minimal involvement of apoptosis. The anticipation is that protein inhibition is used by the virus to evade the host innate antiviral responses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop