Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Bio-C Sealer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 926 KiB  
Article
Comparison of Apical Microleakage in Bioceramic and Resin-Based Endodontic Sealers with Conventional and Bioceramic Surface-Impregnated Gutta-Percha Points
by Lucia Somolová, Yuliya Morozova, Iva Voborná, Matej Rosa, Barbora Novotná, Pavel Holík and Kateřina Langová
Ceramics 2025, 8(2), 65; https://doi.org/10.3390/ceramics8020065 - 26 May 2025
Viewed by 1175
Abstract
The aim of this study is to evaluate the apical sealing ability of novel bioceramic-based (BCB) and widely used resin-based (RB) root canal sealers in combination with traditional or bioceramic-coated gutta-percha points. A total of 92 human single-root extracted teeth were endodontically treated [...] Read more.
The aim of this study is to evaluate the apical sealing ability of novel bioceramic-based (BCB) and widely used resin-based (RB) root canal sealers in combination with traditional or bioceramic-coated gutta-percha points. A total of 92 human single-root extracted teeth were endodontically treated and divided into three groups (A, B, and C) of 30 samples based on the endodontic sealer/type of gutta-percha points/obturation method used. One tooth sample was used for the negative and positive controls (each). Group A: BCB sealer BioRoot RCS (Septodont, Saint-Maur-des-Fossés, France)/bioceramic-impregnated gutta-percha TotalFill BC points (FKG Dentaire, La Chaux-de-Fonds, Switzerland)/cold hydraulic single-cone. Group B: BioRoot RCS (Septodont, France)/traditional Protaper Gold Gutta-Percha Points (Dentsply Sirona, Charlotte, NC, USA)/cold hydraulic single-cone. Group C: RB sealer AdSeal (Meta Biomed, Cheongju, Republic of Korea)/traditional Protaper Gold Gutta-Percha Points (Dentsply Sirona, USA)/warm vertical condensation. A dye penetration method was applied, and the length of apicocoronal penetration was measured using a surgical microscope. The data were statistically analyzed to evaluate differences at the 0.05 significance level. A significant difference was found between groups A and C, p = 0.0003, and groups B and C, p = 0.003. The data analysis proved that the BCB sealer using the cold hydraulic single-cone method ensured a substantially better seal than the RB sealer using the warm vertical condensation method. The choice of the type of gutta-percha points (bioceramic-coated or regular) appeared to be unimportant. No statistical significance was found between groups A and B, which indicates that using bioceramic-coated gutta-percha points does not bring any considerable benefit in view of a no-gap root canal obturation. Full article
Show Figures

Graphical abstract

14 pages, 8379 KiB  
Article
Effects of Mechanized Irrigation Protocols on Endodontic Obturation Using Calcium Silicate-Based Sealer
by Lucas David Galvani, Antonia Patricia Oliveira Barros, Joatan Lucas de Sousa Gomes Costa, Eliane Cristina Gulin de Oliveira, Ester Alves Ferreira Bordini, Luís Geraldo Vaz and Milton Carlos Kuga
Appl. Sci. 2024, 14(22), 10317; https://doi.org/10.3390/app142210317 - 9 Nov 2024
Viewed by 2535
Abstract
The aim of this study was to evaluate the effects of mechanized final irrigation protocols (XPE, XP-Endo Finisher; XPC, XP-Clean; and ECL, Easy Clean) compared to PUI (passive ultrasonic irrigation) on the debris incidence and open dentinal tubules, and their effects on the [...] Read more.
The aim of this study was to evaluate the effects of mechanized final irrigation protocols (XPE, XP-Endo Finisher; XPC, XP-Clean; and ECL, Easy Clean) compared to PUI (passive ultrasonic irrigation) on the debris incidence and open dentinal tubules, and their effects on the adhesion interface after 48 h and 6 months. One hundred twenty maxillary central incisors were submitted to chemical–mechanical preparation using a rotary instrument and 2.5% sodium hypochlorite. Specimens were distributed in 4 groups (n = 30) in accordance with the mechanized final irrigation protocol: XPE, XPC, ECL, or PUI. Forty specimens (n = 10/group) were submitted to SEM analysis to evaluate the residue incidence and dentin open tubules. The other specimens were obturated using Bio-C Sealer and submitted to push-out bond strength and adhesive failure mode evaluations in the cervical, middle, and apical thirds after 48 h or 6 months (n = 10/group). Only in the apical third, ECL presented the highest residue incidence and fewer open dentinal tubules when compared to the XPE, XPC, and PUI groups (p < 0.05). In the cervical and middle root thirds, no significant differences were observed regardless of the group evaluated (p > 0.05). After 48 h, ECL resulted in the lowest bond strength only in the apical third (p < 0.05), while the XPE, XPC, and PUI groups remained similar in the cervical and middle thirds (p > 0.05). At 6 months, all groups showed lower bond strength values regardless of the root third evaluated, but ECL showed the lowest bond strength in the apical and middle root thirds when compared to the other groups (p < 0.05). The ECL protocol did not provide adequate residue removal on the apical radicular third and negatively affected the longevity of endodontic obturation using a calcium silicate-based sealer. Full article
Show Figures

Figure 1

13 pages, 2412 KiB  
Article
The Push-Out Bond Strength, Surface Roughness, and Antimicrobial Properties of Endodontic Bioceramic Sealers Supplemented with Silver Nanoparticles
by Karla Navarrete-Olvera, Nereyda Niño-Martínez, Idania De Alba-Montero, Nuria Patiño-Marín, Facundo Ruiz, Horacio Bach and Gabriel-Alejandro Martínez-Castañón
Molecules 2024, 29(18), 4422; https://doi.org/10.3390/molecules29184422 - 18 Sep 2024
Cited by 5 | Viewed by 2048
Abstract
This study evaluated push-out bond test (POBT), surface roughness, and antimicrobial properties against Enterococcus faecalis of bioceramic sealers supplemented with silver nanoparticles (AgNPs). The sealers tested were CeraSeal®, EndoSequence® BC SealerTM, and Bio-C® Sealer. The POBT was [...] Read more.
This study evaluated push-out bond test (POBT), surface roughness, and antimicrobial properties against Enterococcus faecalis of bioceramic sealers supplemented with silver nanoparticles (AgNPs). The sealers tested were CeraSeal®, EndoSequence® BC SealerTM, and Bio-C® Sealer. The POBT was measured with a Universal Testing Machine, and the type of failure was evaluated with a stereomicroscope. The roughness average (Sa) and peak–valley height (Sy) values were evaluated by atomic force microscopy. The bacterial growth inhibition was evaluated using a disk diffusion test, and antimicrobial activity was determined with the plate microdilution method. The POBT showed no significant difference between sealers with and those without NPs in cervical and apical thirds (p > 0.05). In the middle third, the adhesion force was significant for Endosequence BC Sealer® (p < 0.05). The results showed that the Sa and Sy parameters, when AgNPs were added, did not show a statistically significant difference compared to the groups without nanoparticles (p > 0.05). All tested sealers showed bacterial growth inhibition, but no significant difference was found. Their efficacy, in descending order of antibacterial activity when AgNPs were added, is as follows: EndoSequence® BC SealerTM > Bio-C® Sealer > CeraSeal®. The incorporation of AgNPs into bioceramics improves antimicrobial activity without affecting mechanical properties. Full article
(This article belongs to the Special Issue Metal-Based Nanoparticles Synthesis and Antimicrobial Applications)
Show Figures

Figure 1

15 pages, 3432 KiB  
Article
Physicochemical Changes in Root-Canal Sealers under Thermal Challenge: A Comparative Analysis of Calcium Silicate- and Epoxy-Resin-Based Sealers
by Hye-In Kim, Young-Eun Jang, Yemi Kim and Bom Sahn Kim
Materials 2024, 17(8), 1932; https://doi.org/10.3390/ma17081932 - 22 Apr 2024
Cited by 6 | Viewed by 1976
Abstract
Introduction: We compared the effects of heat on the physicochemical properties of recently developed calcium silicate-based sealers (CSBSs), including BioRoot Flow, BioRoot RCS, and AH Plus Bioceramic sealer, with those of the epoxy-resin-based sealer (ERBS) AH Plus. Methods: The flow, film thickness, setting [...] Read more.
Introduction: We compared the effects of heat on the physicochemical properties of recently developed calcium silicate-based sealers (CSBSs), including BioRoot Flow, BioRoot RCS, and AH Plus Bioceramic sealer, with those of the epoxy-resin-based sealer (ERBS) AH Plus. Methods: The flow, film thickness, setting time, and solubility of sealers were evaluated at 37 °C and 100 °C using ISO 6876/2012. Furthermore, pH and calcium ion release were evaluated at these temperatures. In addition, the mass change in sealers at a high temperature was assessed via thermogravimetric analysis. Then, the chemical composition and components of the sealers were analyzed using a scanning electron microscope and Fourier-transform infrared spectroscopy (FTIR). Results: BioRoot Flow, AH Plus Bioceramic, and AH Plus complied with ISO standards in terms of flow and film thickness, both before and after heat application. However, BioRoot RCS exhibited significantly increased film thickness at 100 °C. The setting times of all sealers were significantly reduced at 100 °C. The solubility of CSBS was >3%, exceeding the ISO 6876/2012 standard, both before and after heat exposure. Conversely, the solubility of AH Plus complied with the standard, regardless of the thermal condition. For 4 weeks, CSBS showed a significantly higher pH than AH Plus at both 37 °C and 100 °C. After heat treatment, calcium release decreased in Bioroot RCS and BioRoot Flow, while AH Plus showed no significant differences before and after treatment. However, CSBS consistently exhibited significantly higher calcium release than AH Plus at both temperatures. An FTIR analysis revealed that the chemical composition of the sealers did not change at the high temperature, whereas a thermogravimetric analysis demonstrated a >5% weight reduction in CSBS and a 0.005% weight reduction in AH Plus at 100 °C. Conclusions: BioRoot Flow, AH Plus Bioceramic, and AH Plus possess favorable physicochemical properties, which make them suitable for application under thermal conditions. At a high temperature, BioRoot RCS did not exhibit changes in its chemical composition. However, its film thickness was increased, and pH and solubility were reduced. Therefore, caution is needed when it is applied at high temperatures, such as during the warm obturation technique. Full article
(This article belongs to the Special Issue Biocompatibility of Restorative Dental Materials)
Show Figures

Figure 1

11 pages, 10579 KiB  
Article
The Impact of Citric Acid Solution on Hydraulic Calcium Silicate-Based Sealers and Root Dentin: A Preliminary Assessment
by Saulius Drukteinis, Goda Bilvinaite and Simas Sakirzanovas
Materials 2024, 17(6), 1351; https://doi.org/10.3390/ma17061351 - 15 Mar 2024
Cited by 7 | Viewed by 1912
Abstract
Hydraulic calcium silicate-based (HCS) sealers have recently gained tremendous popularity due to their unique properties. However, their removal during endodontic retreatment is challenging. The solvent, which could chemically deteriorate the material, would be highly desirable for endodontic retreatment procedures. This preliminary study assessed [...] Read more.
Hydraulic calcium silicate-based (HCS) sealers have recently gained tremendous popularity due to their unique properties. However, their removal during endodontic retreatment is challenging. The solvent, which could chemically deteriorate the material, would be highly desirable for endodontic retreatment procedures. This preliminary study assessed the interplay and dissolving capability of 10% and 20% citric acid, compared to 17% EDTA, on commonly used HCS sealers (AH Plus Bioceramic Sealer, Bio-C Sealer, BioRoot RCS, TotalFill BC Sealer), and evaluated the potential impact of these solutions on root dentin structure. The interaction between tested sealers and irrigating solutions was photographed, and solubility-related mass changes were determined. The surface morphology of treated filling materials and dentin was evaluated using a scanning electron microscope (SEM). One-way analysis of variance (ANOVA) along with Tukey’s test were used to detect the statistically significant differences among groups at the confidence level of 0.95. Intense gas release was observed during the interaction of HCS materials and citric acid, with no evidently visible “bubbling” after the immersion in EDTA. The mass loss of HCS sealers equally confirmed the significantly higher dissolving characteristics of 10% and 20% citric acid solutions compared to EDTA. The surface structural changes, associated with pore and crack formation, were mainly seen for HCS sealers exposed to citric acid. Meanwhile, no severe erosion was detected for dentin after root canal preparation with 10% and 20% citric acid solutions. These findings demonstrate that citric acid has the potential to dissolve HCS sealers with minimal or no negative impact on root dentin, suggesting citric acid as a solvent for HCS sealers in endodontic retreatment procedures. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (Volume II))
Show Figures

Figure 1

11 pages, 4694 KiB  
Article
Evaluation of Cytotoxicity, Cell Attachment, and Elemental Characterization of Three Calcium Silicate-Based Sealers
by Anahi de Paula Melo, Camila Maria Peres de Rosatto, Danilo Cassiano Ferraz, Gabriela Leite de Souza and Camilla Christian Gomes Moura
Materials 2023, 16(20), 6705; https://doi.org/10.3390/ma16206705 - 16 Oct 2023
Cited by 5 | Viewed by 1631
Abstract
We investigated three calcium silicate-based sealers with respect to their chemical characterization, cytotoxicity, and attachment to RAW264.7 cells. BioRoot RCS (BR), Bio-C Sealer (BC), and Sealer Plus BC (SPBC) were assessed using Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), and energy-dispersive [...] Read more.
We investigated three calcium silicate-based sealers with respect to their chemical characterization, cytotoxicity, and attachment to RAW264.7 cells. BioRoot RCS (BR), Bio-C Sealer (BC), and Sealer Plus BC (SPBC) were assessed using Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), and energy-dispersive X-ray spectroscopy (EDX) (n = 4) for elemental characterization, and using scanning electron microscopy (SEM) to evaluate cell morphology and adhesion. Cytotoxicity was determined at different dilutions (1:1, 1:2, and 1:5) using the succinate dehydrogenase activity (MTT assay). Statistical analysis was performed for normal distribution using the Shapiro–Wilk test and for homoscedasticity using Levene’s test, and one-way ANOVA, Tukey’s/Dunnett’s post hoc tests for cell viability and XRF (α = 0.05). Calcium silicate hydrate and calcium hydroxide were detected by FTIR in all groups. EDX detected a higher calcium content for BR and SPBC and aluminum only in the premixed sealers. XRF detected the highest calcium release in BR (p < 0.05). The surface morphology showed irregular precipitates for all the sealers. SPBC at a 1:2 dilution resulted in the lowest cell viability compared to BR (p < 0.05) and BC (p < 0.05). The calcium silicate-based sealers produced a statistically significant reduction in cellular viability at a 1:1 dilution compared to the control group (p < 0.0001). All the sealers maintained viability above 70%. Full article
(This article belongs to the Special Issue Bioceramics: Materials, Properties and Applications (Second Volume))
Show Figures

Figure 1

11 pages, 2049 KiB  
Article
Human Gingival Fibroblasts Response to Different Endodontic Sealers: An In Vitro Study
by Rita Noites, Inês Tavares, Miguel Cardoso, Isabel M. Carreira, Maria Bartolomeu, Ana S. Duarte and Ilda P. Ribeiro
Appl. Sci. 2023, 13(19), 10976; https://doi.org/10.3390/app131910976 - 5 Oct 2023
Cited by 1 | Viewed by 1743
Abstract
Endodontic treatment aims to eliminate infection of the root canals and fill the dental pulp space. The biocompatibility studies of the sealers used in root canals obturation are crucial since they are applied in direct contact with periradicular tissues. Objective: The aim of [...] Read more.
Endodontic treatment aims to eliminate infection of the root canals and fill the dental pulp space. The biocompatibility studies of the sealers used in root canals obturation are crucial since they are applied in direct contact with periradicular tissues. Objective: The aim of this study was to evaluate the cytotoxicity of three root canal sealers—AH Plus, Bio MTA+, and Bio C sealer—on immortalized human gingival fibroblasts. Methods: AH Plus, Bio MTA+, and Bio C sealers were evaluated through incubation in real-time and material-conditioned media. Cells were incubated for 24 h and 72 h, at three different concentrations (1, 10, and 100 mg/mL) of each sealer. The cytotoxic activity of the sealers was assessed by Methyl tetrazolium (MTT) and Sulforhodamine B (SRB) assays. Cell morphology and cytogenetic alterations were studied microscopically. Results: MTT and SRB assays revealed similar results within both approaches. Cell culture exposed to sealers through incubation in real-time revealed a cytotoxic effect of AH Plus at 100 mg/mL. Material-conditioned media study revealed a cytotoxic effect of Bio MTA+ and Bio C, increasing with higher compound concentration and reaching 50% with 100 mg/mL. Regarding the cell’s morphology, Bio C sealer revealed a decrease in cell confluence and several morphological changes. AH Plus and Bio MTA+ did not seem to affect the cell confluence however morphology alterations were observed. In the cytogenetic study, a severe decrease of the mitotic index and a large number of chromosomal aberrations were observed. The present study represents an advance in the understanding of the biocompatibility of AH Plus, Bio MTA+, and Bio C sealers. These sealers demonstrated some cytotoxicity, depending on the concentration used. Although more validation studies are still needed, this study brings very relevant results in terms of cytotoxicity, cell morphology, and cytogenetic alterations. Conclusions: These results could help in the selection of the most appropriate compounds to be used in clinical practice as well as to determine the maximum recommended amounts of each sealer. Clinical Relevance: This study highlights the potential cytotoxic effects of three commonly used root canal sealers on human gingival fibroblasts, with varying degrees of impact depending on the concentration used. The results emphasize the importance of careful consideration when selecting and applying these materials in clinical practice. Full article
Show Figures

Figure 1

11 pages, 3374 KiB  
Article
Outcomes of Endodontic-Treated Teeth Obturated with Bioceramic Sealers in Combination with Warm Gutta-Percha Obturation Techniques: A Prospective Clinical Study
by Denise Irene Karin Pontoriero, Edoardo Ferrari Cagidiaco, Valerio Maccagnola, Daniele Manfredini and Marco Ferrari
J. Clin. Med. 2023, 12(8), 2867; https://doi.org/10.3390/jcm12082867 - 14 Apr 2023
Cited by 21 | Viewed by 7065
Abstract
The objective of this clinical study was to collect short-term endodontic outcomes of endodontic-treated teeth (ETT) obturated with different kinds of bioceramic sealers used in combination with warm gutta-percha obturation techniques. Methods: A total of 210 endodontic treatments in 168 patients were performed. [...] Read more.
The objective of this clinical study was to collect short-term endodontic outcomes of endodontic-treated teeth (ETT) obturated with different kinds of bioceramic sealers used in combination with warm gutta-percha obturation techniques. Methods: A total of 210 endodontic treatments in 168 patients were performed. At baseline, 155 sample teeth (73.8%) showed symptoms (tenderness or pain to percussion) and 125 (59.5%) showed periapical radiolucency. Periapical radiolucency was present in 125 cases (59.5%); of these, 79 showed a lesion of 5 mm or bigger (63.2%) while lower than 5 mm in 46 cases (36.8%). Regarding ETT with radiolucency, 105 of them (84%) were in coincidence with their need for retreatment and the other 20 (16%) were necrotic teeth. The obturation techniques that were used in this study were: the continuous wave of condensation technique in 75% of cases, and carrier-based technique in 25%. Four bioceramic sealers were used: CeraSeal in 115 cases, BioRoot in 35 cases, AH Plus Bio in 40 cases, and in 20 cases, BIO-C SEALER ION. Preoperative and recall radiographs of the roots were each assigned a periapical index (PAI) score by 2 blinded, independent, and calibrated examiners. The teeth were divided into outcome categories based on the following classification: healed, unhealed, and healing. The healed and healing categories were classified as success, and the unhealed category was classified as failure on the basis of loose criteria. Minimum follow-up period was 18 months. Results: The overall success rate was 99%, with 73.3% healed, 25.7% healing, and 0.95% not healed. The success rate was 100% for initial treatment and 98.2% for retreatment. Fifty-four (N = 54) teeth showed ongoing healing. All of them were retreatment cases with periapical lesions. Regarding the success (healed and healing) versus not healed, no significant difference was found between teeth with or without periapical lesions (p < 0.05). A statistically significant difference in the distribution of healed, healing, and not-healed teeth was found between the groups of teeth with baseline lesions < 5 mm and >5 mm in diameter (p < 0.01) and those with sealer groups (p < 0.01). The success rate of used bioceramic sealers was not statistically significant different (99.1%, 100%, 97.5% and 100%, respectively, for CeraSeal, BioRoot, AH Plus Bio, and BIO-C SEALER ION). Nonetheless, the distribution of healed, healing, and not-healed teeth was different between teeth sealed with different materials (p < 0.01). From the findings of this clinical study, the following conclusion can be drawn: a correct filling of root canals made with warm gutta-percha technique combined with a bioceramic sealer allows a high success rate in endodontically treated teeth. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

12 pages, 4768 KiB  
Article
Microstructural and Elemental Characterization of Root Canal Sealers Using FTIR, SEM, and EDS Analysis
by Ali A. Assiry, Mohmed Isaqali Karobari, Galvin Sim Siang Lin, Rumesa Batul, Niher Tabassum Snigdha, Alexander Maniangat Luke, Krishna Prasad Shetty, Giuseppe Alessandro Scardina and Tahir Yusuf Noorani
Appl. Sci. 2023, 13(7), 4517; https://doi.org/10.3390/app13074517 - 2 Apr 2023
Cited by 14 | Viewed by 3515
Abstract
Background: Root canal sealers and repair materials should have the desirable physical, chemical, and biological characteristics, and an antibacterial effect if possible. There is little information available on the biocompatibility of new sealers on the market. Fourier transform infrared spectroscopy (FTIR) can offer [...] Read more.
Background: Root canal sealers and repair materials should have the desirable physical, chemical, and biological characteristics, and an antibacterial effect if possible. There is little information available on the biocompatibility of new sealers on the market. Fourier transform infrared spectroscopy (FTIR) can offer trustworthy data to examine chemical structures; another technique for revealing the elements in the constituents that may contribute to the cytotoxicity of these sealers is scanning electron microscopy (SEM), with the goal of elemental mapping utilizing energy-dispersive X-ray spectroscopy (EDX). Methodology: All the root canal sealers were mixed as per the manufacturers’ instructions and allowed to set in molds for 24 h. Then, the samples were placed into an incubator (Memmert GmbH + Co. KG, Schwabach, Germany for 72 h, in a moist environment to allow complete chemical setting of the sealers. The organic and inorganic components of the sample were identified using FTIR with the wavelength length in the infra-red region measuring 400–450 nm. The finely crushed samples were coated with gold metal; following that, the sealer samples were examined under a scanning electron microscope (SEM) at 5000×, 10,000×, and 20,000× magnification, followed by energy-dispersive X-ray spectroscopy. Results: The surfaces of BioRoot and DiaRoot sealers revealed a relatively uniform distribution of irregular micro-sized particles aggregated in clusters, with the particle size ranging from 1 to 65 µm and 0.4 to 55 µm, respectively. OneFill, iRoot, and CeraSeal demonstrated irregularly shaped particles with particle sizes of 0.5 to 105 µm, 0.5 to 195 µm, and 0.3 to 68 µm, respectively. The EDX microanalysis revealed that oxygen, calcium, and carbon were found in all the tested sealer materials. Silicone and zirconium were absent in DiaRoot, but DiaRoot contained fluoride and ytterbium. Moreover, aluminum was noted in DiaRoot, One Fill, and CeraSeal, and chloride was only observed in BioRoot. FTIR analysis revealed strong absorption bands at 666 cm−1 and 709 cm−1 in BioRoot. Bands at 739 cm−1, 804 cm−1, 863 cm−1, 898 cm−1, and 1455 cm−1 were observed in DiaRoot. Bands at 736 cm−1 and 873 cm−1 in OneFill suggested the presence of C-H bending. Similarly, bands were observed at 937 cm−1, 885 cm−1, 743 cm−1, and 1455 cm−1 in iRoot, representing C-H stretching. Conclusions: All root canal sealers had diverse surface morphologies that contained irregular, micro-sized particles that were uniformly distributed, and they lacked heavy metals. All the experimental sealers comprised mainly calcium, oxygen, and carbon. Full article
(This article belongs to the Special Issue New Trends in Endodontic Materials and Clinical Endodontics)
Show Figures

Figure 1

12 pages, 1569 KiB  
Article
Influence of Thermal and Mechanical Load Cycling on Fracture Resistance of Premolars Filled with Calcium Silicate Sealer
by Ahlam Smran, Mariam Abdullah, Norasmatul Akma Ahmad, Nassr AL-Maflehi and Abdulaziz Samran
Appl. Sci. 2023, 13(7), 4388; https://doi.org/10.3390/app13074388 - 30 Mar 2023
Cited by 3 | Viewed by 2181
Abstract
The aim of this study was to evaluate the aging effect of thermomechanical cyclic load on fracture resistance of lower premolars obturated with AH Plus and BioRoot RCS root canal sealers. Forty-eight single-rooted premolars teeth were instrumented with REVO-S files up to SU/0.06 [...] Read more.
The aim of this study was to evaluate the aging effect of thermomechanical cyclic load on fracture resistance of lower premolars obturated with AH Plus and BioRoot RCS root canal sealers. Forty-eight single-rooted premolars teeth were instrumented with REVO-S files up to SU/0.06 taper. The teeth were randomly assigned into 2 main groups (n = 24) according to the selected two root canal sealers (AH Plus or BioRoot RCS). All teeth were obturated using matching gutta-percha. Each main group were further divided into 3 subgroups (A, B and C) (n = 8). Group A acted as the negative control group (non-Thermomechanical aging). Whereas Group B and C were subjected first to thermal variations in a thermal cycling machine (7500 and 15,000 thermal cycles), then two different dynamic loading periods namely 3 × 105 and 6 × 105 in a masticatory simulator with a nominal load of 5 kg at 1.2 Hz which simulate approximately 1 ½ and 3 years of clinical function respectively. The roots were decoronated and fracture resistance were measured using a universal testing machine. After thermal-mechanical aging, BioRoot RCS showed significantly higher fracture resistance (p < 0.05) than AH Plus. As the thermal-mechanical cycles increased both AH Plus and BioRoot RCS exhibited a significant decrease in fracture resistance (p < 0.05). It could be concluded that thermomechanical aging had a significant impact on the outcome of the fracture resistance of AH Plus and BioRoot RCS. Full article
(This article belongs to the Special Issue Dental Biomaterials: Evaluation and Clinical Applications)
Show Figures

Figure 1

12 pages, 3274 KiB  
Article
Immediate and Long-Term Radiopacity and Surface Morphology of Hydraulic Calcium Silicate-Based Materials
by Goda Bilvinaite, Saulius Drukteinis, Vilma Brukiene and Sivaprakash Rajasekharan
Materials 2022, 15(19), 6635; https://doi.org/10.3390/ma15196635 - 24 Sep 2022
Cited by 8 | Viewed by 2425
Abstract
The present study aimed to evaluate and compare the radiopacity and surface morphology of AH Plus Bioceramic Sealer (AHPB), Bio-C Sealer (BIOC), Biodentine (BD), BioRoot RCS (BR), Grey-MTAFlow (GMF), White-MTAFlow (WMF), TotalFill BC Sealer (TF), and TotalFill BC Sealer HiFlow (TFHF) at different [...] Read more.
The present study aimed to evaluate and compare the radiopacity and surface morphology of AH Plus Bioceramic Sealer (AHPB), Bio-C Sealer (BIOC), Biodentine (BD), BioRoot RCS (BR), Grey-MTAFlow (GMF), White-MTAFlow (WMF), TotalFill BC Sealer (TF), and TotalFill BC Sealer HiFlow (TFHF) at different time moments—30 min, 24 h, and 28 days. Ten specimens of each material were prepared according to the ISO-6876:2012 standard and radiographed next to an aluminum step wedge using a digital sensor. The specimens were stored in a gelatinized Hank’s balanced salt solution at 37 °C between assessments. The mean grayscale values of each specimen were converted into equivalent aluminum thickness by a linear regression model. Characterization of the surface morphology was performed by using a scanning electron microscope at ×4.0k and ×10.0k magnifications. The radiographic analysis revealed that all the tested materials exceeded the ISO-specified limit of 3 mm Al, with the highest radiopacity presented by AHPB and the lowest by BD. None of the tested materials demonstrated considerable variances between the 30 min and the 24 h radiopacity level (p < 0.05), and statistically significant long-term radiopacity changes were exhibited by BR, TFHF, and TF (p > 0.05). All the specimens demonstrated a common feature of limited precipitate formation, with numerous unreacted particles still presented on the surface after 24 h, whereas the particle rearrangement and the deposition of precipitates were clearly observed after 28 days. Full article
(This article belongs to the Special Issue Biomaterials for Medical and Dental Application)
Show Figures

Figure 1

11 pages, 787 KiB  
Article
The Effect of Sealer Application Methods on Voids Volume after Aging of Three Calcium Silicate-Based Sealers: A Micro-Computed Tomography Study
by Amre R. Atmeh, Rakan Alharbi, Ibrahim Aljamaan, Abdulrahman Alahmari, Ashwin C. Shetty, Ahmed Jamleh and Imran Farooq
Tomography 2022, 8(2), 778-788; https://doi.org/10.3390/tomography8020064 - 14 Mar 2022
Cited by 14 | Viewed by 3377
Abstract
During obturation, air voids are undesirable as they may provide shelter for microorganisms or passage for fluids. This study aimed to compare the occurrence of voids between three calcium silicate-based sealers (CSBSs) (MTA-Fillapex, BioRoot-RCS, Bio-C) and the change in their volume after aging. [...] Read more.
During obturation, air voids are undesirable as they may provide shelter for microorganisms or passage for fluids. This study aimed to compare the occurrence of voids between three calcium silicate-based sealers (CSBSs) (MTA-Fillapex, BioRoot-RCS, Bio-C) and the change in their volume after aging. In addition, we aimed to compare voids when using two sealer application methods: lentulo-spiral (LS) and gutta-percha (GP) cone. Thirty extracted mandibular premolars (n = 30) were endodontically prepared and obturated using single GP cone (SGPC) technique. Each sealer was applied to 10 teeth (n = 10) using LS or GP. Micro-computed tomography (micro-CT) was used to quantify the volume of root filling and voids before and after 8-week storage in a phosphate-rich medium. The percentage of root filling and voids were compared between the groups using a Mann–Whitney U test and Kruskal–Wallis test with a Bonferroni correction. Before aging, the percentages of root filling volume after obturation were comparable with no significant differences between sealers (p = 0.325) or application methods (p = 0.950). After aging, the voids’ volume increased significantly in all sealers (p ≤ 0.05). However, no significant differences were found between sealers (p = 0.302). In conclusion, voids in CSBSs may not reduce in size with aging; hence, SGPC should be carefully selected for suitable cases. Full article
Show Figures

Figure 1

11 pages, 2109 KiB  
Article
Physico-Chemical Investigation of Endodontic Sealers Exposed to Simulated Intracanal Heat Application: Hydraulic Calcium Silicate-Based Sealers
by David Donnermeyer, Magdalena Ibing, Sebastian Bürklein, Iris Weber, Maximilian P. Reitze and Edgar Schäfer
Materials 2021, 14(4), 728; https://doi.org/10.3390/ma14040728 - 4 Feb 2021
Cited by 27 | Viewed by 3318
Abstract
The aim of this study was to gain information about the effect of thermal treatment of calcium silicate-based sealers. BioRoot RCS (BR), Total Fill BC Sealer (TFBC), and Total Fill BC Sealer HiFlow (TFHF) were exposed to thermal treatment at 37 °C, 47 [...] Read more.
The aim of this study was to gain information about the effect of thermal treatment of calcium silicate-based sealers. BioRoot RCS (BR), Total Fill BC Sealer (TFBC), and Total Fill BC Sealer HiFlow (TFHF) were exposed to thermal treatment at 37 °C, 47 °C, 57 °C, 67 °C, 77 °C, 87 °C and 97 °C for 30 s. Heat treatment at 97 °C was performed for 60 and 180 s to simulate inappropriate application of warm obturation techniques. Thereafter, specimens were cooled to 37 °C and physical properties (setting time/flow/film thickness according to ISO 6876) were evaluated. Chemical properties (Fourier-transform infrared spectroscopy) were assessed after incubation of the specimens in an incubator at 37 °C and 100% humidity for 8 weeks. Statistical analysis of physical properties was performed using the Kruskal-Wallis-Test (P = 0.05). The setting time, flow, and film thickness of TFBC and TFHF were not relevantly influenced by thermal treatment. Setting time of BR decreased slightly when temperature of heat application increased from 37 °C to 77 °C (P < 0.05). Further heat treatment of BR above 77 °C led to an immediate setting. FT-IR spectroscopy did not reveal any chemical changes for either sealers. Thermal treatment did not lead to any substantial chemical changes at all temperature levels, while physical properties of BR were compromised by heating. TFBC and TFHF can be considered suitable for warm obturation techniques. Full article
(This article belongs to the Special Issue Endodontics)
Show Figures

Figure 1

8 pages, 10663 KiB  
Article
Impact of Warm Vertical Compaction on the Sealing Ability of Calcium Silicate-Based Sealers: A Confocal Microscopic Evaluation
by Diana Eid, Etienne Medioni, Gustavo De-Deus, Issam Khalil, Alfred Naaman and Carla Zogheib
Materials 2021, 14(2), 372; https://doi.org/10.3390/ma14020372 - 14 Jan 2021
Cited by 21 | Viewed by 3721
Abstract
The aim of this in vitro study was to evaluate the dentinal tubule penetration of two calcium silicate-based sealers used in warm vertical compaction (WVC) obturation technique in comparison with the single cone (SC) technique by confocal laser scanning microscopy (CLSM). The null [...] Read more.
The aim of this in vitro study was to evaluate the dentinal tubule penetration of two calcium silicate-based sealers used in warm vertical compaction (WVC) obturation technique in comparison with the single cone (SC) technique by confocal laser scanning microscopy (CLSM). The null hypothesis was that both obturation techniques produced similar sealer penetration depths at 1 and 5 mm from the apex. Forty-four mandibular single-rooted premolars were randomly divided into four equally experimental groups (n = 10) and two control groups (n = 2) according to the type of sealer (Bio-C Angelus, Londrína, PR, Brazil or HiFlow Brasseler, Savannah, GA, USA) with either SC or WVC. The sealers were mixed with a fluorescent dye Rhodamine B (0.1%) to enable the assessment under the CLSM. All the specimens were sectioned horizontally at 1 and 5 mm from the apex. The maximum penetration depth was calculated using the ImageJ Software (ImageJ, NIH). Data were analyzed by Mann–Whitney U and Kruskal–Wallis tests (p < 0.05). A significant difference was shown between the four groups at 1 mm (p = 0.0116), whereas similar results were observed at 5 mm (p = 0.20). WVC allowed better diffusion for both sealers at 1 mm (p = 0.01) and 5 mm (p = 0.034). The maximum penetration of the Bio-C and HiFlow sealers was more important at 5 mm with the two obturation techniques. Within the limitations of this study, WVC enhanced the penetration of calcium silicate-based sealers into the dentinal tubules in comparison with the SC technique at both levels. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application)
Show Figures

Figure 1

12 pages, 3479 KiB  
Article
Biocompatibility of a High-Plasticity, Calcium Silicate-Based, Ready-to-Use Material
by Tomoharu Okamura, Liji Chen, Nobuhito Tsumano, Chihoko Ikeda, Satoshi Komasa, Kazuya Tominaga and Yoshiya Hashimoto
Materials 2020, 13(21), 4770; https://doi.org/10.3390/ma13214770 - 26 Oct 2020
Cited by 25 | Viewed by 3373
Abstract
The Bio-C Sealer is a recently developed high-plasticity, calcium-silicate-based, ready-to-use material. In the present study, chemical elements of the materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the Bio-C Sealer was [...] Read more.
The Bio-C Sealer is a recently developed high-plasticity, calcium-silicate-based, ready-to-use material. In the present study, chemical elements of the materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the Bio-C Sealer was investigated using cytotoxicity tests and histological responses in the roots of dogs’ teeth. XRD, SEM, and FTIR produced hydrated calcium silicate in the presence of water molecules. In addition, FTIR showed the formation of calcium hydroxide and polyethylene glycol, a dispersing agent. The 1:4 dilutions of Bio-C Sealer presented weaker cytotoxicity than the Calcipex II in an in vitro system using the V-79 cell line. After 90 d, the periradicular tissue response of beagle dog roots was histologically evaluated. Absence of periradicular inflammation was reported in 17 of the 18 roots assessed with the Bio-C Sealer, whereas mature vertical periodontal ligament fibers were observed in the apical root ends filled with the Bio-C Sealer. Based on these results and previous investigations, the Bio-C Sealer is recommended as an effective root-end filling material. These results are relevant for clinicians considering the use of Bio-C Sealer for treating their patients. Full article
(This article belongs to the Special Issue Advances in Dental Bio-Nanomaterials)
Show Figures

Figure 1

Back to TopTop