Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Bardet–Biedl syndrome (BBS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 26577 KiB  
Article
Loss of C-Terminal Coiled-Coil Domains in SDCCAG8 Impairs Centriolar Satellites and Causes Defective Sperm Flagellum Biogenesis and Male Fertility
by Kecheng Li, Xiaoli Zhou, Wenna Liu, Yange Wang, Zilong Zhang, Houbin Zhang and Li Jiang
Cells 2025, 14(15), 1135; https://doi.org/10.3390/cells14151135 - 23 Jul 2025
Viewed by 403
Abstract
Sperm flagellum defects are tightly associated with male infertility. Centriolar satellites are small multiprotein complexes that recruit satellite proteins to the centrosome and play an essential role in sperm flagellum biogenesis, but the precise mechanisms underlying this role remain unclear. Serologically defined colon [...] Read more.
Sperm flagellum defects are tightly associated with male infertility. Centriolar satellites are small multiprotein complexes that recruit satellite proteins to the centrosome and play an essential role in sperm flagellum biogenesis, but the precise mechanisms underlying this role remain unclear. Serologically defined colon cancer autoantigen protein 8 (SDCCAG8), which encodes a protein containing eight coiled-coil (CC) domains, has been associated with syndromic ciliopathies and male infertility. However, its exact role in male infertility remains undefined. Here, we used an Sdccag8 mutant mouse carrying a CC domains 5–8 truncated mutation (c.1351–1352insG p.E451GfsX467) that models the mutation causing Senior–Løken syndrome (c.1339–1340insG p.E447GfsX463) in humans. The homozygous Sdccag8 mutant mice exhibit male infertility characterized by multiple morphological abnormalities of the flagella (MMAF) and dysmorphic structures in the sperm manchette. A mechanistic study revealed that the SDCCAG8 protein is localized to the manchette and centrosomal region and interacts with PCM1, the scaffold protein of centriolar satellites, through its CC domains 5–7. The absence of the CC domains 5–7 in mutant spermatids destabilizes PCM1, which fails to recruit satellite components such as Bardet–Biedl syndrome 4 (BBS4) and centrosomal protein of 131 kDa (CEP131) to satellites, resulting in defective sperm flagellum biogenesis, as BBS4 and CEP131 are essential to flagellum biogenesis. In conclusion, this study reveals the central role of SDCCAG8 in maintaining centriolar satellite integrity during sperm flagellum biogenesis. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis)
Show Figures

Figure 1

18 pages, 348 KiB  
Review
Ophthalmologic Manifestations in Bardet–Biedl Syndrome: Emerging Therapeutic Approaches
by Amaris Rosado, Ediel Rodriguez and Natalio Izquierdo
Medicina 2025, 61(7), 1135; https://doi.org/10.3390/medicina61071135 - 24 Jun 2025
Viewed by 360
Abstract
Bardet–Biedl syndrome (BBS) is a rare multisystem ciliopathy characterized by early-onset retinal degeneration and other vision-threatening ophthalmologic manifestations. This review synthesizes current knowledge on the ocular phenotype of BBS as well as emerging therapeutic approaches aimed at preserving visual function. Retinal degeneration, particularly [...] Read more.
Bardet–Biedl syndrome (BBS) is a rare multisystem ciliopathy characterized by early-onset retinal degeneration and other vision-threatening ophthalmologic manifestations. This review synthesizes current knowledge on the ocular phenotype of BBS as well as emerging therapeutic approaches aimed at preserving visual function. Retinal degeneration, particularly early macular involvement and rod–cone dystrophy, remains the hallmark of BBS-related vision loss. Additional ocular manifestations, such as refractive errors, nystagmus, optic nerve abnormalities, and cataracts further contribute to visual morbidity. Experimental therapies—including gene-based interventions and pharmacologic strategies such as nonsense suppression and antioxidant approaches—have shown promise in preclinical models but require further validation. Early ophthalmologic care, including routine visual assessments, refractive correction, and low-vision rehabilitation, remains the standard of management. However, there are currently no effective therapies to halt or reverse retinal degeneration, which underscores the importance of emerging molecular and genetic interventions. Timely recognition and comprehensive ophthalmologic evaluation are essential to mitigate visual decline in BBS. Future efforts should focus on translating these approaches into clinical practice, enhancing early diagnosis, and promoting multidisciplinary collaboration to improve long-term outcomes for patients with BBS. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
36 pages, 10348 KiB  
Review
The Role of Visual Electrophysiology in Systemic Hereditary Syndromes
by Minzhong Yu, Emile R. Vieta-Ferrer, Anas Bakdalieh and Travis Tsai
Int. J. Mol. Sci. 2025, 26(3), 957; https://doi.org/10.3390/ijms26030957 - 23 Jan 2025
Cited by 1 | Viewed by 1904
Abstract
Visual electrophysiology is a valuable tool for evaluating the visual system in various systemic syndromes. This review highlights its clinical application in a selection of syndromes associated with hearing loss, mitochondrial dysfunction, obesity, and other multisystem disorders. Techniques such as full-field electroretinography (ffERG), [...] Read more.
Visual electrophysiology is a valuable tool for evaluating the visual system in various systemic syndromes. This review highlights its clinical application in a selection of syndromes associated with hearing loss, mitochondrial dysfunction, obesity, and other multisystem disorders. Techniques such as full-field electroretinography (ffERG), multifocal electroretinography (mfERG), pattern electroretinography (PERG), visual evoked potentials (VEP), and electrooculography (EOG) offer insights into retinal and optic nerve function, often detecting abnormalities before clinical symptoms manifest. In hearing loss syndromes like Refsum disease, Usher syndrome (USH), and Wolfram syndrome (WS), electrophysiology facilitates the detection of early retinal changes that precede the onset of visual symptoms. For mitochondrial disorders such as maternally-inherited diabetes and deafness (MIDD), Kearns–Sayre syndrome (KSS), and neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome, these tests can be useful in characterizing retinal degeneration and optic neuropathy. In obesity syndromes, including Bardet-Biedl syndrome (BBS), Alström syndrome, and Cohen syndrome, progressive retinal degeneration is a hallmark feature. Electrophysiological techniques aid in pinpointing retinal dysfunction and tracking disease progression. Other syndromes, such as Alagille syndrome (AGS), abetalipoproteinemia (ABL), Cockayne syndrome (CS), Joubert syndrome (JS), mucopolysaccharidosis (MPS), Neuronal ceroid lipofuscinoses (NCLs), and Senior–Løken syndrome (SLS), exhibit significant ocular involvement that can be evaluated using these methods. This review underscores the role of visual electrophysiology in diagnosing and monitoring visual system abnormalities across a range of syndromes, potentially offering valuable insights for early diagnosis, monitoring of progression, and management. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

5 pages, 1378 KiB  
Case Report
Recurrent Nasal Polyposis and Bifid Epiglottis in a Child with Bardet–Biedl Syndrome Ciliopathy
by Natalia Fourla, Nikolaos Drimalas and Ioannis Michael Vlastos
Sinusitis 2024, 8(2), 63-67; https://doi.org/10.3390/sinusitis8020008 - 14 Nov 2024
Viewed by 3213
Abstract
Bardet–Biedl syndrome (BBS) is a genetic disease caused by mutations of the BBS genes that encode proteins involved in cilia functioning. It can present with major and/or minor clinical manifestations, such as rod–cone dystrophy, polydactyly, obesity, speech delay, anosmia, congenital heart disease and [...] Read more.
Bardet–Biedl syndrome (BBS) is a genetic disease caused by mutations of the BBS genes that encode proteins involved in cilia functioning. It can present with major and/or minor clinical manifestations, such as rod–cone dystrophy, polydactyly, obesity, speech delay, anosmia, congenital heart disease and genital and renal abnormalities. Diagnosis of this rare disease is based on clinical criteria and can be confirmed with molecular genetic testing. Although BBS is a ciliopathy, nasal polyposis has never before been reported in patients with this condition. This article presents the case of a 12-year-old male patient admitted with symptoms of retinopathy, development delay, anosmia, bifid epiglottis and recurrent nasal polyposis. After several clinical, imaging and genetic examinations, the patient was diagnosed with BBS. His nasal symptoms were treated with functional endoscopic sinus surgery and long-term antibiotic therapy, whereas courses of topical antibiotics as well as topical and systemic corticosteroids had no effect. As a conclusion, it is a rare case that presents new clinical manifestations (nasal polyps) that can be related to BBS and possible effective treatments. Full article
Show Figures

Figure 1

13 pages, 4021 KiB  
Article
Whole Genome Sequencing Solves an Atypical Form of Bardet–Biedl Syndrome: Identification of Novel Pathogenic Variants of BBS9
by Emilia Stellacci, Marcello Niceta, Alessandro Bruselles, Emilio Straface, Massimo Tatti, Mattia Carvetta, Cecilia Mancini, Serena Cecchetti, Mariacristina Parravano, Lucilla Barbano, Monica Varano, Marco Tartaglia, Lucia Ziccardi and Viviana Cordeddu
Int. J. Mol. Sci. 2024, 25(15), 8313; https://doi.org/10.3390/ijms25158313 - 30 Jul 2024
Viewed by 1265
Abstract
Bardet–Biedl syndrome (BBS) is a rare recessive multisystem disorder characterized by retinitis pigmentosa, obesity, postaxial polydactyly, cognitive deficits, and genitourinary defects. BBS is clinically variable and genetically heterogeneous, with 26 genes identified to contribute to the disorder when mutated, the majority encoding proteins [...] Read more.
Bardet–Biedl syndrome (BBS) is a rare recessive multisystem disorder characterized by retinitis pigmentosa, obesity, postaxial polydactyly, cognitive deficits, and genitourinary defects. BBS is clinically variable and genetically heterogeneous, with 26 genes identified to contribute to the disorder when mutated, the majority encoding proteins playing role in primary cilium biogenesis, intraflagellar transport, and ciliary trafficking. Here, we report on an 18-year-old boy with features including severe photophobia and central vision loss since childhood, hexadactyly of the right foot and a supernumerary nipple, which were suggestive of BBS. Genetic analyses using targeted resequencing and exome sequencing failed to provide a conclusive genetic diagnosis. Whole-genome sequencing (WGS) allowed us to identify compound heterozygosity for a missense variant and a large intragenic deletion encompassing exon 12 in BBS9 as underlying the condition. We assessed the functional impact of the identified variants and demonstrated that they impair BBS9 function, with significant consequences for primary cilium formation and morphology. Overall, this study further highlights the usefulness of WGS in the diagnostic workflow of rare diseases to reach a definitive diagnosis. This report also remarks on a requirement for functional validation analyses to more effectively classify variants that are identified in the frame of the diagnostic workflow. Full article
(This article belongs to the Special Issue Advanced Research in Retina 2.0)
Show Figures

Figure 1

24 pages, 1264 KiB  
Article
The Clinical and Mutational Spectrum of Bardet–Biedl Syndrome in Saudi Arabia
by Doaa Milibari, Sawsan R. Nowilaty and Rola Ba-Abbad
Genes 2024, 15(6), 762; https://doi.org/10.3390/genes15060762 - 11 Jun 2024
Cited by 2 | Viewed by 1824
Abstract
The retinal features of Bardet–Biedl syndrome (BBS) are insufficiently characterized in Arab populations. This retrospective study investigated the retinal features and genotypes of BBS in Saudi patients managed at a single tertiary eye care center. Data analysis of the identified 46 individuals from [...] Read more.
The retinal features of Bardet–Biedl syndrome (BBS) are insufficiently characterized in Arab populations. This retrospective study investigated the retinal features and genotypes of BBS in Saudi patients managed at a single tertiary eye care center. Data analysis of the identified 46 individuals from 31 families included visual acuity (VA), systemic manifestations, multimodal retinal imaging, electroretinography (ERG), family pedigrees, and genotypes. Patients were classified to have cone–rod, rod–cone, or generalized photoreceptor dystrophy based on the pattern of macular involvement on the retinal imaging. Results showed that nyctalopia and subnormal VA were the most common symptoms with 76% having VA ≤ 20/200 at the last visit (age: 5–35). Systemic features included obesity 91%, polydactyly 56.5%, and severe cognitive impairment 33%. The predominant retinal phenotype was cone–rod dystrophy 75%, 10% had rod–cone dystrophy and 15% had generalized photoreceptor dystrophy. ERGs were undetectable in 95% of patients. Among the 31 probands, 61% had biallelic variants in BBSome complex genes, 32% in chaperonin complex genes, and 6% had biallelic variants in ARL6; including six previously unreported variants. Interfamilial and intrafamilial variabilities were noted, without a clear genotype–phenotype correlation. Most BBS patients had advanced retinopathy and were legally blind by early adulthood, indicating a narrow therapeutic window for rescue strategies. Full article
(This article belongs to the Special Issue Study of Inherited Retinal Diseases—Volume II)
Show Figures

Graphical abstract

10 pages, 5007 KiB  
Case Report
Autosomal Recessive Rod–Cone Dystrophy with Mild Extra-Ocular Manifestations Due to a Splice-Affecting Variant in BBS9
by Iris Deitch, Sofia Itskov, Daan Panneman, Aasem Abu Shtaya, Tal Saban, Yael Goldberg, Miriam Ehrenberg, Frans P. M. Cremers, Susanne Roosing and Tamar Ben-Yosef
Curr. Issues Mol. Biol. 2024, 46(3), 2566-2575; https://doi.org/10.3390/cimb46030163 - 18 Mar 2024
Viewed by 1739
Abstract
Bardet–Biedl syndrome (BBS), one of the most common forms of syndromic inherited retinal diseases (IRDs), is characterized by the combination of retinal degeneration with additional extra-ocular manifestations, including obesity, intellectual disability, kidney disease, polydactyly and other skeletal abnormalities. We observed an Israeli patient [...] Read more.
Bardet–Biedl syndrome (BBS), one of the most common forms of syndromic inherited retinal diseases (IRDs), is characterized by the combination of retinal degeneration with additional extra-ocular manifestations, including obesity, intellectual disability, kidney disease, polydactyly and other skeletal abnormalities. We observed an Israeli patient with autosomal recessive apparently non-syndromic rod–cone dystrophy (RCD). Extra-ocular findings were limited to epilepsy and dental problems. Genetic analysis with a single molecule molecular inversion probes-based panel that targets the exons and splice sites of 113 genes associated with retinitis pigmentosa and Leber congenital amaurosis revealed a homozygous rare missense variant in the BBS9 gene (c.263C>T;p.(Ser88Leu)). This variant, which affects a highly conserved amino acid, is also located in the last base of Exon 3, and predicted to be splice-altering. An in vitro minigene splice assay demonstrated that this variant leads to the partial aberrant splicing of Exon 3. Therefore, we suggest that this variant is likely hypomorphic. This is in agreement with the relatively mild phenotype observed in the patient. Hence, the findings in our study expand the phenotypic spectrum associated with BBS9 variants and indicate that variants in this gene should be considered not only in BBS patients but also in individuals with non-syndromic IRD or IRD with very mild extra-ocular manifestations. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

21 pages, 9758 KiB  
Article
De-Suppression of Mesenchymal Cell Identities and Variable Phenotypic Outcomes Associated with Knockout of Bbs1
by Grace Mercedes Freke, Tiago Martins, Rosalind Jane Davies, Tina Beyer, Marian Seda, Emma Peskett, Naila Haq, Avishek Prasai, Georg Otto, Jeshmi Jeyabalan Srikaran, Victor Hernandez, Gaurav D. Diwan, Robert B. Russell, Marius Ueffing, Martina Huranova, Karsten Boldt, Philip L. Beales and Dagan Jenkins
Cells 2023, 12(22), 2662; https://doi.org/10.3390/cells12222662 - 20 Nov 2023
Cited by 1 | Viewed by 1972
Abstract
Bardet–Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation [...] Read more.
Bardet–Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation owing to genetic background and stochastic processes, is of paramount importance in syndromology. The BBSome is a membrane-trafficking and intraflagellar transport (IFT) adaptor protein complex formed by eight BBS proteins, including BBS1, which is the most commonly mutated gene in BBS. To investigate disease pathogenesis, we generated a series of clonal renal collecting duct IMCD3 cell lines carrying defined biallelic nonsense or frameshift mutations in Bbs1, as well as a panel of matching wild-type CRISPR control clones. Using a phenotypic screen and an unbiased multi-omics approach, we note significant clonal variability for all assays, emphasising the importance of analysing panels of genetically defined clones. Our results suggest that BBS1 is required for the suppression of mesenchymal cell identities as the IMCD3 cell passage number increases. This was associated with a failure to express epithelial cell markers and tight junction formation, which was variable amongst clones. Transcriptomic analysis of hypothalamic preparations from BBS mutant mice, as well as BBS patient fibroblasts, suggested that dysregulation of epithelial-to-mesenchymal transition (EMT) genes is a general predisposing feature of BBS across tissues. Collectively, this work suggests that the dynamic stability of the BBSome is essential for the suppression of mesenchymal cell identities as epithelial cells differentiate. Full article
(This article belongs to the Special Issue Complex Role of Cilium-Generated Signaling)
Show Figures

Figure 1

11 pages, 503 KiB  
Article
Searching for Effective Methods of Diagnosing Nervous System Lesions in Patients with Alström and Bardet–Biedl Syndromes
by Arleta Waszczykowska, Krzysztof Jeziorny, Dobromiła Barańska, Katarzyna Matera, Aleksandra Pyziak-Skupien, Michał Ciborowski and Agnieszka Zmysłowska
Genes 2023, 14(9), 1784; https://doi.org/10.3390/genes14091784 - 10 Sep 2023
Viewed by 1460
Abstract
Bardet–Biedl syndrome (BBS) and Alström syndrome (ALMS) are rare multisystem diseases with an autosomal recessive mode of inheritance and genetic heterogeneity, characterized by visual impairment, hearing impairment, cardiomyopathy, childhood obesity, and insulin resistance. The purpose of our study was to evaluate the indicators [...] Read more.
Bardet–Biedl syndrome (BBS) and Alström syndrome (ALMS) are rare multisystem diseases with an autosomal recessive mode of inheritance and genetic heterogeneity, characterized by visual impairment, hearing impairment, cardiomyopathy, childhood obesity, and insulin resistance. The purpose of our study was to evaluate the indicators of nervous system changes occurring in patients with ALMS and BBS using optical coherence tomography (OCT) and magnetic resonance spectroscopy (MRS) methods compared to a group of healthy subjects. The OCT results showed significantly lower macular thickness in the patient group compared to the control group (p = 0.002). The MRS study observed differences in metabolite levels between the study and control groups in brain areas such as the cerebellum, thalamus, and white matter. After summing the concentrations from all areas, statistically significant results were obtained for N-acetylaspartate, total N-acetylaspartate, and total creatine. Concentrations of these metabolites were reduced in ALMS/BBS patients by 38% (p = 0.0004), 35% (p = 0.0008), and 28% (p = 0.0005), respectively. Our results may help to understand the pathophysiology of these rare diseases and identify strategies for new therapies. Full article
(This article belongs to the Special Issue Genetics in Retinal Diseases)
Show Figures

Figure 1

32 pages, 458 KiB  
Review
Gene Therapy in Hereditary Retinal Dystrophies: The Usefulness of Diagnostic Tools in Candidate Patient Selections
by Mariaelena Malvasi, Lorenzo Casillo, Filippo Avogaro, Alessandro Abbouda and Enzo Maria Vingolo
Int. J. Mol. Sci. 2023, 24(18), 13756; https://doi.org/10.3390/ijms241813756 - 6 Sep 2023
Cited by 11 | Viewed by 3401
Abstract
Purpose: Gene therapy actually seems to have promising results in the treatment of Leber Congenital Amaurosis and some different inherited retinal diseases (IRDs); the primary goal of this strategy is to change gene defects with a wild-type gene without defects in a DNA [...] Read more.
Purpose: Gene therapy actually seems to have promising results in the treatment of Leber Congenital Amaurosis and some different inherited retinal diseases (IRDs); the primary goal of this strategy is to change gene defects with a wild-type gene without defects in a DNA sequence to achieve partial recovery of the photoreceptor function and, consequently, partially restore lost retinal functions. This approach led to the introduction of a new drug (voretigene neparvovec-rzyl) for replacement of the RPE65 gene in patients affected by Leber Congenital Amaurosis (LCA); however, the treatment results are inconstant and with variable long-lasting effects due to a lack of correctly evaluating the anatomical and functional conditions of residual photoreceptors. These variabilities may also be related to host immunoreactive reactions towards the Adenovirus-associated vector. A broad spectrum of retinal dystrophies frequently generates doubt as to whether the disease or the patient is a good candidate for a successful gene treatment, because, very often, different diseases share similar genetic characteristics, causing an inconstant genotype/phenotype correlation between clinical characteristics also within the same family. For example, mutations on the RPE65 gene cause Leber Congenital Amaurosis (LCA) but also some forms of Retinitis Pigmentosa (RP), Bardet Biedl Syndrome (BBS), Congenital Stationary Night Blindness (CSNB) and Usher syndrome (USH), with a very wide spectrum of clinical manifestations. These confusing elements are due to the different pathways in which the product protein (retinoid isomer-hydrolase) is involved and, consequently, the overlapping metabolism in retinal function. Considering this point and the cost of the drug (over USD one hundred thousand), it would be mandatory to follow guidelines or algorithms to assess the best-fitting disease and candidate patients to maximize the output. Unfortunately, at the moment, there are no suggestions regarding who to treat with gene therapy. Moreover, gene therapy might be helpful in other forms of inherited retinal dystrophies, with more frequent incidence of the disease and better functional conditions (actually, gene therapy is proposed only for patients with poor vision, considering possible side effects due to the treatment procedures), in which this approach leads to better function and, hopefully, visual restoration. But, in this view, who might be a disease candidate or patient to undergo gene therapy, in relationship to the onset of clinical trials for several different forms of IRD? Further, what is the gold standard for tests able to correctly select the patient? Our work aims to evaluate clinical considerations on instrumental morphofunctional tests to assess candidate subjects for treatment and correlate them with clinical and genetic defect analysis that, often, is not correspondent. We try to define which parameters are an essential and indispensable part of the clinical rationale to select patients with IRDs for gene therapy. This review will describe a series of models used to characterize retinal morphology and function from tests, such as optical coherence tomography (OCT) and electrophysiological evaluation (ERG), and its evaluation as a primary outcome in clinical trials. A secondary aim is to propose an ancillary clinical classification of IRDs and their accessibility based on gene therapy’s current state of the art. Material and Methods: OCT, ERG, and visual field examinations were performed in different forms of IRDs, classified based on clinical and retinal conditions; compared to the gene defect classification, we utilized a diagnostic algorithm for the clinical classification based on morphofunctional information of the retina of patients, which could significantly improve diagnostic accuracy and, consequently, help the ophthalmologist to make a correct diagnosis to achieve optimal clinical results. These considerations are very helpful in selecting IRD patients who might respond to gene therapy with possible therapeutic success and filter out those in which treatment has a lower chance or no chance of positive results due to bad retinal conditions, avoiding time-consuming patient management with unsatisfactory results. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Retinal Degeneration and How to Avoid It)
9 pages, 7580 KiB  
Case Report
Multiple Independent Gene Disorders Causing Bardet–Biedl Syndrome, Congenital Hypothyroidism, and Hearing Loss in a Single Indian Patient
by Isabella Peixoto de Barcelos, Dong Li, Deborah Watson, Elizabeth M. McCormick, Lisa Elden, Thomas S. Aleman, Erin C. O’Neil, Marni J. Falk and Hakon Hakonarson
Brain Sci. 2023, 13(8), 1210; https://doi.org/10.3390/brainsci13081210 - 16 Aug 2023
Viewed by 1842
Abstract
We report a 20-year-old, female, adopted Indian patient with over 662 Mb regions of homozy-gosity who presented with intellectual disability, ataxia, schizophrenia, retinal dystrophy, moder-ate-to-severe progressive sensorineural hearing loss (SNHL), congenital hypothyroidism, cleft mi-tral valve with mild mitral valve regurgitation, and dysmorphic features. [...] Read more.
We report a 20-year-old, female, adopted Indian patient with over 662 Mb regions of homozy-gosity who presented with intellectual disability, ataxia, schizophrenia, retinal dystrophy, moder-ate-to-severe progressive sensorineural hearing loss (SNHL), congenital hypothyroidism, cleft mi-tral valve with mild mitral valve regurgitation, and dysmorphic features. Exome analysis first on a clinical basis and subsequently on research reanalysis uncovered pathogenic variants in three nu-clear genes following two modes of inheritance that were causal to her complex phenotype. These included (1) compound heterozygous variants in BBS6 potentially causative for Bardet–Biedl syn-drome 6; (2) a homozygous, known pathogenic variant in the stereocilin (STRC) gene associated with nonsyndromic deafness; and (3) a homozygous variant in dual oxidase 2 (DUOX2) gene asso-ciated with congenital hypothyroidism. A variant of uncertain significance was identified in a fourth gene, troponin T2 (TNNT2), associated with cardiomyopathy but not the cleft mitral valve, with mild mitral regurgitation seen in this case. This patient was the product of an apparent first-degree relationship, explaining the multiple independent inherited findings. This case high-lights the need to carefully evaluate multiple independent genetic etiologies for complex pheno-types, particularly in the case of consanguinity, rather than presuming unexplained features are expansions of known gene disorders. Full article
(This article belongs to the Special Issue Neurogenetic Disorders across Human Life: From Infancy to Adulthood)
Show Figures

Figure 1

22 pages, 1470 KiB  
Review
Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity
by Avital Horwitz and Ruth Birk
Nutrients 2023, 15(15), 3445; https://doi.org/10.3390/nu15153445 - 4 Aug 2023
Cited by 58 | Viewed by 12158
Abstract
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose [...] Read more.
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose tissue expansion is yet to be fully understood. Obesity can be divided into common multifactorial/polygenic obesity and monogenic obesity, non-syndromic and syndromic. Several genes related to obesity were found through studies of monogenic non-syndromic obesity models. However, syndromic obesity, characterized by additional features other than obesity, suggesting a more global role of the mutant genes related to the syndrome and, thus, an additional peripheral influence on the development of obesity, were hardly studied to date in this regard. This review summarizes present knowledge regarding the hyperplasia and hypertrophy of adipocytes in common obesity. Additionally, we highlight the scarce research on syndromic obesity as a model for studying adipocyte hyperplasia and hypertrophy, focusing on Bardet–Biedl syndrome (BBS). BBS obesity involves central and peripheral mechanisms, with molecular and mechanistic alternation in adipocyte hyperplasia and hypertrophy. Thus, we argue that using syndromic obesity models, such as BBS, can further advance our knowledge regarding peripheral adipocyte regulation in obesity. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Scheme 1

18 pages, 2300 KiB  
Article
Biallelic Variants in Seven Different Genes Associated with Clinically Suspected Bardet–Biedl Syndrome
by Hamed Nawaz, Mujahid, Sher Alam Khan, Farhana Bibi, Ahmed Waqas, Abdul Bari, Fardous, Niamatullah Khan, Nazif Muhammad, Amjad Khan, Sohail Aziz Paracha, Qamre Alam, Mohammad Azhar Kamal, Misbahuddin M. Rafeeq, Noor Muhammad, Fayaz Ul Haq, Shazia Khan, Arif Mahmood, Saadullah Khan and Muhammad Umair
Genes 2023, 14(5), 1113; https://doi.org/10.3390/genes14051113 - 19 May 2023
Cited by 9 | Viewed by 3617
Abstract
Bardet–Biedl syndrome (BBS) is a rare clinically and genetically heterogeneous autosomal recessive multi-systemic disorder with 22 known genes. The primary clinical and diagnostic features include six different hallmarks, such as rod–cone dystrophy, learning difficulties, renal abnormalities, male hypogonadism, post-axial polydactyly, and obesity. Here, [...] Read more.
Bardet–Biedl syndrome (BBS) is a rare clinically and genetically heterogeneous autosomal recessive multi-systemic disorder with 22 known genes. The primary clinical and diagnostic features include six different hallmarks, such as rod–cone dystrophy, learning difficulties, renal abnormalities, male hypogonadism, post-axial polydactyly, and obesity. Here, we report nine consanguineous families and a non-consanguineous family with several affected individuals presenting typical clinical features of BBS. In the present study, 10 BBS Pakistani families were subjected to whole exome sequencing (WES), which revealed novel/recurrent gene variants, including a homozygous nonsense mutation (c.94C>T; p.Gln32Ter) in the IFT27 (NM_006860.5) gene in family A, a homozygous nonsense mutation (c.160A>T; p.Lys54Ter) in the BBIP1 (NM_001195306.1) gene in family B, a homozygous nonsense variant (c.720C>A; p.Cys240Ter) in the WDPCP (NM_015910.7) in family C, a homozygous nonsense variant (c.505A>T; p.Lys169Ter) in the LZTFL1 (NM_020347.4) in family D, pathogenic homozygous 1 bp deletion (c.775delA; p.Thr259Leufs*21) in the MKKS/BBS5 (NM_170784.3) gene in family E, a pathogenic homozygous missense variant (c.1339G>A; p.Ala447Thr) in BBS1 (NM_024649.4) in families F and G, a pathogenic homozygous donor splice site variant (c.951+1G>A; p?) in BBS1 (NM_024649.4) in family H, a pathogenic bi-allelic nonsense variant in MKKS (NM_170784.3) (c.119C>G; p.Ser40*) in family I, and homozygous pathogenic frameshift variants (c.196delA; p.Arg66Glufs*12) in BBS5 (NM_152384.3) in family J. Our findings extend the mutation and phenotypic spectrum of four different types of ciliopathies causing BBS and also support the importance of these genes in the development of multi-systemic human genetic disorders. Full article
Show Figures

Figure 1

15 pages, 2358 KiB  
Article
WGS Revealed Novel BBS5 Pathogenic Variants, Missed by WES, Causing Ciliary Structure and Function Defects
by Adella Karam, Clarisse Delvallée, Alejandro Estrada-Cuzcano, Véronique Geoffroy, Jean-Baptiste Lamouche, Anne-Sophie Leuvrey, Elsa Nourisson, Julien Tarabeux, Corinne Stoetzel, Sophie Scheidecker, Louise Frances Porter, Emmanuelle Génin, Richard Redon, Florian Sandron, Anne Boland, Jean-François Deleuze, Nicolas Le May, Hélène Dollfus and Jean Muller
Int. J. Mol. Sci. 2023, 24(10), 8729; https://doi.org/10.3390/ijms24108729 - 13 May 2023
Cited by 6 | Viewed by 3152
Abstract
Bardet–Biedl syndrome (BBS) is an autosomal recessive ciliopathy that affects multiple organs, leading to retinitis pigmentosa, polydactyly, obesity, renal anomalies, cognitive impairment, and hypogonadism. Until now, biallelic pathogenic variants have been identified in at least 24 genes delineating the genetic heterogeneity of BBS. [...] Read more.
Bardet–Biedl syndrome (BBS) is an autosomal recessive ciliopathy that affects multiple organs, leading to retinitis pigmentosa, polydactyly, obesity, renal anomalies, cognitive impairment, and hypogonadism. Until now, biallelic pathogenic variants have been identified in at least 24 genes delineating the genetic heterogeneity of BBS. Among those, BBS5 is a minor contributor to the mutation load and is one of the eight subunits forming the BBSome, a protein complex implied in protein trafficking within the cilia. This study reports on a European BBS5 patient with a severe BBS phenotype. Genetic analysis was performed using multiple next-generation sequencing (NGS) tests (targeted exome, TES and whole exome, WES), and biallelic pathogenic variants could only be identified using whole-genome sequencing (WGS), including a previously missed large deletion of the first exons. Despite the absence of family samples, the biallelic status of the variants was confirmed. The BBS5 protein’s impact was confirmed on the patient’s cells (presence/absence and size of the cilium) and ciliary function (Sonic Hedgehog pathway). This study highlights the importance of WGS and the challenge of reliable structural variant detection in patients’ genetic explorations as well as functional tests to assess a variant’s pathogenicity. Full article
Show Figures

Figure 1

13 pages, 1607 KiB  
Article
Delineating the Spectrum of Genetic Variants Associated with Bardet-Biedl Syndrome in Consanguineous Pakistani Pedigrees
by Ali Raza Rao, Aamir Nazir, Samina Imtiaz, Sohail Aziz Paracha, Yar Muhammad Waryah, Ikram Din Ujjan, Ijaz Anwar, Afia Iqbal, Federico A. Santoni, Inayat Shah, Khitab Gul, Hafiz Muhammad Azhar Baig, Ali Muhammad Waryah, Stylianos E. Antonarakis and Muhammad Ansar
Genes 2023, 14(2), 404; https://doi.org/10.3390/genes14020404 - 3 Feb 2023
Cited by 9 | Viewed by 3149
Abstract
This study aimed to find the molecular basis of Bardet-Biedl syndrome (BBS) in Pakistani consanguineous families. A total of 12 affected families were enrolled. Clinical investigations were performed to access the BBS-associated phenotypes. Whole exome sequencing was conducted on one affected individual from [...] Read more.
This study aimed to find the molecular basis of Bardet-Biedl syndrome (BBS) in Pakistani consanguineous families. A total of 12 affected families were enrolled. Clinical investigations were performed to access the BBS-associated phenotypes. Whole exome sequencing was conducted on one affected individual from each family. The computational functional analysis predicted the variants’ pathogenic effects and modeled the mutated proteins. Whole-exome sequencing revealed 9 pathogenic variants in six genes associated with BBS in 12 families. The BBS6/MKS was the most common BBS causative gene identified in five families (5/12, 41.6%), with one novel (c.1226G>A, p.Gly409Glu) and two reported variants. c.774G>A, Thr259LeuTer21 was the most frequent BBS6/MMKS allele in three families 3/5 (60%). Two variants, c.223C>T, p.Arg75Ter and a novel, c. 252delA, p.Lys85STer39 were detected in the BBS9 gene. A novel 8bp deletion c.387_394delAAATAAAA, p. Asn130GlyfsTer3 was found in BBS3 gene. Three known variants were detected in the BBS1, BBS2, and BBS7 genes. Identification of novel likely pathogenic variants in three genes reaffirms the allelic and genetic heterogeneity of BBS in Pakistani patients. The clinical differences among patients carrying the same pathogenic variant may be due to other factors influencing the phenotype, including variants in other modifier genes. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

Back to TopTop