Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = BYL719

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3876 KiB  
Article
In Vivo PK-PD and Drug–Drug Interaction Study of Dorzagliatin for the Management of PI3Kα Inhibitor-Induced Hyperglycemia
by Guanqin Jin, Kewei Zheng, Shihuang Liu, Huan Yi, Wei Wei, Congjian Xu, Xiaoqiang Xiang and Yu Kang
Pharmaceuticals 2025, 18(6), 927; https://doi.org/10.3390/ph18060927 - 19 Jun 2025
Viewed by 578
Abstract
Objectives: The anticancer effects of PI3Kα inhibitors (PI3Ki) are constrained by their hyperglycemic side effects, while the efficacy of conventional hypoglycemic agents, such as insulin, metformin, and SGLT-2 inhibitors, in mitigating PI3Ki-induced hyperglycemia remains suboptimal. Dorzagliatin, a novel glucokinase activator, has been approved [...] Read more.
Objectives: The anticancer effects of PI3Kα inhibitors (PI3Ki) are constrained by their hyperglycemic side effects, while the efficacy of conventional hypoglycemic agents, such as insulin, metformin, and SGLT-2 inhibitors, in mitigating PI3Ki-induced hyperglycemia remains suboptimal. Dorzagliatin, a novel glucokinase activator, has been approved in China for the management of hyperglycemia, offering a promising alternative. This study aims to investigate the pharmacokinetic properties and potential mechanisms of drug interactions of dorzagliatin in the regulation of PI3K-induced hyperglycemia. Methods: Plasma concentrations of WX390, BYL719, and Dorz in mice were measured using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Pharmacokinetic (PK) parameters and PK/PD models were derived by using Phoenix WinNonlin 8.3.5 software. Blood glucose levels at various time points and tumor volume changes over a four-week period were assessed to explore the interactions when PI3Ki were combined with dorzagliatin. Results: The results indicated that, compared to the Dorz group, the combination groups (Dorz + BYL719, Dorz + WX390) exhibited increases in AUC0t of dorzagliatin by 41.65% and 20.25%, and in Cmax by 33.48% and 13.32%, respectively. In contrast, co-administration of these PI3Ki with dorzagliatin resulted in minimal increase in their plasma exposure. The combination therapy group (Dorz+BYL719) exhibited superior antitumor efficacy compared to the BYL719 group. Conclusions: Our findings indicate that the drug–drug interactions (DDIs) between dorzagliatin and multiple PI3Ki (including WX390 and BYL719) may partially account for the enhanced antitumor efficacy observed in the combination therapy group compared to PI3Ki monotherapy. This interaction may be explained by the inhibition of P-glycoprotein (P-gp) and the pharmacological mechanism of dorzagliatin regarding the activation of insulin regulation. Full article
(This article belongs to the Special Issue Mathematical Modeling in Drug Metabolism and Pharmacokinetics)
Show Figures

Graphical abstract

16 pages, 10809 KiB  
Article
Gradient Variation and Correlation Analysis of Physical and Mechanical Properties of Moso Bamboo (Phyllostachys edulis)
by Tian Jiang, Xinyu Feng, Zexuan Xia, Shuotong Deng and Xuehua Wang
Materials 2024, 17(9), 2069; https://doi.org/10.3390/ma17092069 - 28 Apr 2024
Cited by 2 | Viewed by 1510
Abstract
This study aimed to investigate the gradient properties of bamboo at the microscopic level and provide a basis for improving the utilization rate of bamboo. Using moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) as a research subject, the variation of vascular bundle [...] Read more.
This study aimed to investigate the gradient properties of bamboo at the microscopic level and provide a basis for improving the utilization rate of bamboo. Using moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) as a research subject, the variation of vascular bundle area percentage, chemical content, relative crystallinity (CR), mechanical properties of different bamboo slivers, and correlation between those parameters were analyzed. From the bamboo green layer (BGL) to the bamboo yellow layer (BYL), the distribution of vascular bundles changed from dense to sparse. Cellulose and lignin mass content decreased gently, and hemicellulose mass content showed gradual increases. The CR showed an order of bamboo middle layer (BML) > BGL > BYL. The tensile modulus of elasticity, tensile strength, bending modulus of elasticity, and bending strength decreased from BGL to BYL. The order of influence degree on mechanical properties of moso bamboo was vascular bundle area, hemicellulose content, lignin mass content, density, and CR, and these factors correlated with mechanical properties at a significant level (p < 0.05). Vascular bundle area had a decisive effect on the mechanical properties of bamboo. The vascular bundle area and density were linearly correlated with mechanical properties, while the lignin mass content and CR were curve-linearly correlated with mechanical properties. Full article
Show Figures

Figure 1

22 pages, 11601 KiB  
Article
Structure and Function of Canine SP-C Mimic Proteins in Synthetic Surfactant Lipid Dispersions
by Frans J. Walther and Alan J. Waring
Biomedicines 2024, 12(1), 163; https://doi.org/10.3390/biomedicines12010163 - 12 Jan 2024
Cited by 2 | Viewed by 1940
Abstract
Lung surfactant is a mixture of lipids and proteins and is essential for air breathing in mammals. The hydrophobic surfactant proteins B and C (SP-B and SP-C) assist in reducing surface tension in the lung alveoli by organizing the surfactant lipids. SP-B deficiency [...] Read more.
Lung surfactant is a mixture of lipids and proteins and is essential for air breathing in mammals. The hydrophobic surfactant proteins B and C (SP-B and SP-C) assist in reducing surface tension in the lung alveoli by organizing the surfactant lipids. SP-B deficiency is life-threatening, and a lack of SP-C can lead to progressive interstitial lung disease. B-YL (41 amino acids) is a highly surface-active, sulfur-free peptide mimic of SP-B (79 amino acids) in which the four cysteine residues are replaced by tyrosine. Mammalian SP-C (35 amino acids) contains two cysteine-linked palmitoyl groups at positions 5 and 6 in the N-terminal region that override the β-sheet propensities of the native sequence. Canine SP-C (34 amino acids) is exceptional because it has only one palmitoylated cysteine residue at position 4 and a phenylalanine at position 5. We developed canine SP-C constructs in which the palmitoylated cysteine residue at position 4 is replaced by phenylalanine (SP-Cff) or serine (SP-Csf) and a glutamic acid-lysine ion-lock was placed at sequence positions 20–24 of the hydrophobic helical domain to enhance its alpha helical propensity. AI modeling, molecular dynamics, circular dichroism spectroscopy, Fourier Transform InfraRed spectroscopy, and electron spin resonance studies showed that the secondary structure of canine SP-Cff ion-lock peptide was like that of native SP-C, suggesting that substitution of phenylalanine for cysteine has no apparent effect on the secondary structure of the peptide. Captive bubble surfactometry demonstrated higher surface activity for canine SP-Cff ion-lock peptide in combination with B-YL in surfactant lipids than with canine SP-Csf ion-lock peptide. These studies demonstrate the potential of canine SP-Cff ion-lock peptide to enhance the functionality of the SP-B peptide mimic B-YL in synthetic surfactant lipids. Full article
Show Figures

Figure 1

12 pages, 3153 KiB  
Article
Lung Surfactant Protein B Peptide Mimics Interact with the Human ACE2 Receptor
by Alan J. Waring, Grace C.-L. Jung, Shantanu K. Sharma and Frans J. Walther
Int. J. Mol. Sci. 2023, 24(13), 10837; https://doi.org/10.3390/ijms241310837 - 29 Jun 2023
Cited by 3 | Viewed by 2701
Abstract
Lung surfactant is a complex mixture of phospholipids and surfactant proteins that is produced in alveolar type 2 cells. It prevents lung collapse by reducing surface tension and is involved in innate immunity. Exogenous animal-derived and, more recently, synthetic lung surfactant has shown [...] Read more.
Lung surfactant is a complex mixture of phospholipids and surfactant proteins that is produced in alveolar type 2 cells. It prevents lung collapse by reducing surface tension and is involved in innate immunity. Exogenous animal-derived and, more recently, synthetic lung surfactant has shown clinical efficacy in surfactant-deficient premature infants and in critically ill patients with acute respiratory distress syndrome (ARDS), such as those with severe COVID-19 disease. COVID-19 pneumonia is initiated by the binding of the viral receptor-binding domain (RBD) of SARS-CoV-2 to the cellular receptor angiotensin-converting enzyme 2 (ACE2). Inflammation and tissue damage then lead to loss and dysfunction of surface activity that can be relieved by treatment with an exogenous lung surfactant. Surfactant protein B (SP-B) is pivotal for surfactant activity and has anti-inflammatory effects. Here, we study the binding of two synthetic SP-B peptide mimics, Super Mini-B (SMB) and B-YL, to a recombinant human ACE2 receptor protein construct using molecular docking and surface plasmon resonance (SPR) to evaluate their potential as antiviral drugs. The SPR measurements confirmed that both the SMB and B-YL peptides bind to the rhACE2 receptor with affinities like that of the viral RBD–ACE2 complex. These findings suggest that synthetic lung surfactant peptide mimics can act as competitive inhibitors of the binding of viral RBD to the ACE2 receptor. Full article
(This article belongs to the Special Issue Novel Strategies in the Development of Peptide-Based Therapeutics)
Show Figures

Figure 1

22 pages, 5924 KiB  
Article
Discovering Synergistic Compounds with BYL-719 in PI3K Overactivated Basal-like PDXs
by David C. Boyd, Emily K. Zboril, Amy L. Olex, Tess J. Leftwich, Nicole S. Hairr, Holly A. Byers, Aaron D. Valentine, Julia E. Altman, Mohammad A. Alzubi, Jacqueline M. Grible, Scott A. Turner, Andrea Ferreira-Gonzalez, Mikhail G. Dozmorov and J. Chuck Harrell
Cancers 2023, 15(5), 1582; https://doi.org/10.3390/cancers15051582 - 3 Mar 2023
Cited by 8 | Viewed by 3724
Abstract
Basal-like triple-negative breast cancer (TNBC) tumor cells are difficult to eliminate due to resistance mechanisms that promote survival. While this breast cancer subtype has low PIK3CA mutation rates when compared to estrogen receptor-positive (ER+) breast cancers, most basal-like TNBCs have an overactive PI3K [...] Read more.
Basal-like triple-negative breast cancer (TNBC) tumor cells are difficult to eliminate due to resistance mechanisms that promote survival. While this breast cancer subtype has low PIK3CA mutation rates when compared to estrogen receptor-positive (ER+) breast cancers, most basal-like TNBCs have an overactive PI3K pathway due to gene amplification or high gene expression. BYL-719 is a PIK3CA inhibitor that has been found to have low drug-drug interactions, which increases the likelihood that it could be useful for combinatorial therapy. Alpelisib (BYL-719) with fulvestrant was recently approved for treating ER+ breast cancer patients whose cancer had developed resistance to ER-targeting therapy. In these studies, a set of basal-like patient-derived xenograft (PDX) models was transcriptionally defined with bulk and single-cell RNA-sequencing and clinically actionable mutation profiles defined with Oncomine mutational profiling. This information was overlaid onto therapeutic drug screening results. BYL-719-based, synergistic two-drug combinations were identified with 20 different compounds, including everolimus, afatinib, and dronedarone, which were also found to be effective at minimizing tumor growth. These data support the use of these drug combinations towards cancers with activating PIK3CA mutations/gene amplifications or PTEN deficient/PI3K overactive pathways. Full article
(This article belongs to the Collection Combination Therapies in Cancers)
Show Figures

Figure 1

22 pages, 3474 KiB  
Article
Targeted Therapy with PI3K, PARP, and WEE1 Inhibitors and Radiotherapy in HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy while Effects with APR-246 Are Limited
by Karin Byskata, Monika Lukoseviciute, Filippo Tuti, Mark Zupancic, Ourania N. Kostopoulou, Stefan Holzhauser and Tina Dalianis
Cancers 2023, 15(1), 93; https://doi.org/10.3390/cancers15010093 - 23 Dec 2022
Cited by 6 | Viewed by 2659
Abstract
Human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC) is rising in incidence, but chemoradiotherapy is not curative for all. Therefore, targeted therapy with PI3K (BYL719), PARP (BMN-673), and WEE1 (MK-1775) inhibitors alone or combined was pursued with or [...] Read more.
Human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC) is rising in incidence, but chemoradiotherapy is not curative for all. Therefore, targeted therapy with PI3K (BYL719), PARP (BMN-673), and WEE1 (MK-1775) inhibitors alone or combined was pursued with or without 10 Gy and their effects were analyzed by viability, proliferation, and cytotoxicity assays on the TSCC/BOTSCC cell lines HPV+ UPCI-SCC-154 and HPV UT-SCC-60A. Effective single drug/10 Gy combinations were validated on additional TSCC lines. Finally, APR-246 was assessed on several TSCC/BOTSCC cell lines. BYL719, BMN-673, and MK-1775 treatments induced dose dependent responses in HPV+ UPCI-SCC-154 and HPV UT-SCC-60A and when combined with 10 Gy, synergistic effects were disclosed, as was also the case upon validation. Using BYL719/BMN-673, BYL719/MK-1775, or BMN-673/MK-1775 combinations on HPV+ UPCI-SCC-154 and HPV UT-SCC-60A also induced synergy compared to single drug administrations, but adding 10 Gy to these synergistic drug combinations had no further major effects. Low APR-246 concentrations had limited usefulness. To conclude, synergistic effects were disclosed when complementing single BYL719 BMN-673 and MK-1775 administrations with 10 Gy or when combining the inhibitors, while adding 10 Gy to the latter did not further enhance their already additive/synergistic effects. APR-246 was suboptimal in the present context. Full article
(This article belongs to the Special Issue Cancer Chemotherapy: Combination with Inhibitors)
Show Figures

Figure 1

18 pages, 3734 KiB  
Article
Targeted Therapy of HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy between CDK4/6, PI3K and Sometimes FGFR Inhibitors, but Rarely between PARP and WEE1 Inhibitors
by Ourania N. Kostopoulou, Mark Zupancic, Mariona Pont, Emma Papin, Monika Lukoseviciute, Borja Agirre Mikelarena, Stefan Holzhauser and Tina Dalianis
Viruses 2022, 14(7), 1372; https://doi.org/10.3390/v14071372 - 23 Jun 2022
Cited by 9 | Viewed by 3017
Abstract
Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC) have a favorable outcome, but upon relapse, survival is poor and new therapeutical options are needed. Recently, we found synergistic effects by combining the food and drug administration [...] Read more.
Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC) have a favorable outcome, but upon relapse, survival is poor and new therapeutical options are needed. Recently, we found synergistic effects by combining the food and drug administration approved (FDA) phosphoinositide 3-kinase (PI3K) and fibroblast-growth-factor-receptor (FGFR) inhibitors BYL719 and JNJ-42756493 on TSCC cell lines. Here this approach was extended and Cyclin-Dependent-Kinase-4/6 (CDK4/6) and Poly-ADP-ribose-polymerase (PARP) and WEE1 inhibitors PD-0332991, and MK-1775 respectively were also examined. HPV+ CU-OP-2, -3, -20, and HPV CU-OP-17 TSCC cell lines were treated with either BYL719 and JNJ-42756493, PD-0332991 BMN-673 and MK-1775 alone or in different combinations. Viability, proliferation, and cytotoxicity were followed by WST-1 assays and the IncuCyte S3 Live® Cell Analysis System. All inhibitors presented dose-dependent inhibitory effects on tested TSCC lines. Synergy was frequently obtained when combining CDK4/6 with PI3K inhibitors, but only sometimes or rarely when combining CDK4/6 with FGFR inhibitors or PARP with WEE1 inhibitors. To conclude, using CDK4/6 with PI3K or FGFR inhibitors, especially PD-0332991 with BYL719 presented synergy and enhanced the decrease of viability considerably, while although dose dependent responses were obtained with PARP and WEE1 inhibitors (BMN-673 and MK-1775 resp.), synergy was rarely disclosed. Full article
(This article belongs to the Special Issue HPV in the Head and Neck Region 2.0)
Show Figures

Figure 1

14 pages, 2003 KiB  
Article
Combined Treatment with PI3K Inhibitors BYL-719 and CAL-101 Is a Promising Antiproliferative Strategy in Human Rhabdomyosarcoma Cells
by Manuela Piazzi, Alberto Bavelloni, Vittoria Cenni, Sara Salucci, Anna Bartoletti Stella, Enrica Tomassini, Katia Scotlandi, William L. Blalock and Irene Faenza
Molecules 2022, 27(9), 2742; https://doi.org/10.3390/molecules27092742 - 24 Apr 2022
Cited by 7 | Viewed by 3307
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer arising from skeletal muscle myogenic progenitors. Recent studies have shown an important role for AKT signaling in RMS progression. Aberrant activation of the PI3K/AKT axis is one of the most frequent events occurring [...] Read more.
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer arising from skeletal muscle myogenic progenitors. Recent studies have shown an important role for AKT signaling in RMS progression. Aberrant activation of the PI3K/AKT axis is one of the most frequent events occurring in human cancers and serves to disconnect the control of cell growth, survival, and metabolism from exogenous growth stimuli. In the study reported here, a panel of five compounds targeting the catalytic subunits of the four class I PI3K isoforms (p110α, BYL-719 inhibitor; p110β, TGX-221 inhibitor; p110γ, CZC24832; p110δ, CAL-101 inhibitor) and the dual p110α/p110δ, AZD8835 inhibitor, were tested on the RMS cell lines RD, A204, and SJCRH30. Cytotoxicity, cell cycle, apoptosis, and the activation of downstream targets were analyzed. Of the individual inhibitors, BYL-719 demonstrated the most anti-tumorgenic properties. BYL-719 treatment resulted in G1/G0 phase cell cycle arrest and apoptosis. When combined with CAL-101, BYL-719 decreased cell viability and induced apoptosis in a synergistic manner, equaling or surpassing results achieved with AZD8835. In conclusion, our findings indicate that BYL-719, either alone or in combination with the p110δ inhibitor, CAL-101, could represent an efficient treatment for human rhabdomyosarcoma presenting with aberrant upregulation of the PI3K signaling pathway. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 1850 KiB  
Article
UC.183, UC.110, and UC.84 Ultra-Conserved RNAs Are Mutually Exclusive with miR-221 and Are Engaged in the Cell Cycle Circuitry in Breast Cancer Cell Lines
by Fabio Corrà, Francesca Crudele, Federica Baldassari, Nicoletta Bianchi, Marco Galasso, Linda Minotti, Chiara Agnoletto, Gianpiero Di Leva, Federica Brugnoli, Eva Reali, Valeria Bertagnolo, Andrea Vecchione and Stefano Volinia
Genes 2021, 12(12), 1978; https://doi.org/10.3390/genes12121978 - 13 Dec 2021
Cited by 6 | Viewed by 2998
Abstract
In the human genome, there are about 600 ultra-conserved regions (UCRs), long DNA sequences extremely conserved in vertebrates. We performed a large-scale study to quantify transcribed UCR (T-UCR) and miRNA levels in over 6000 cancer and normal tissue samples to find possible correlation [...] Read more.
In the human genome, there are about 600 ultra-conserved regions (UCRs), long DNA sequences extremely conserved in vertebrates. We performed a large-scale study to quantify transcribed UCR (T-UCR) and miRNA levels in over 6000 cancer and normal tissue samples to find possible correlation between these kinds of regulatory molecules. Our analysis evidenced several non-coding RNAs showing negative co-regulation with miRNAs; among them, we focused on miR-221 to investigate any relationship with its pivotal role in the cell cycle. We have chosen breast cancer as model, using two cell lines with different phenotypes to carry out in vitro treatments with siRNAs against T-UCRs. Our results demonstrate that the expression of uc.183, uc.110, and uc.84 T-UCRs is mutually exclusive with miR-221 and is engaged in the regulation of CDKN1B expression. In addition, tests with a set of anticancer drugs, including BYL719, AZD5363, AZD8055, AZD7762, and XL765, revealed the modulation of specific T-UCRs without alteration of miR-221 levels. Full article
(This article belongs to the Special Issue Molecular Therapeutics of Breast Cancer)
Show Figures

Figure 1

21 pages, 5838 KiB  
Article
IGF2 Mediates Resistance to Isoform-Selective-Inhibitors of the PI3K in HPV Positive Head and Neck Cancer
by Mai Badarni, Manu Prasad, Artemiy Golden, Baisali Bhattacharya, Liron Levin, Ksenia M. Yegodayev, Orr Dimitstein, Ben-Zion Joshua, Limor Cohen, Ekaterina Khrameeva, Dexin Kong, Angel Porgador, Alex Braiman, Jennifer R. Grandis, Barak Rotblat and Moshe Elkabets
Cancers 2021, 13(9), 2250; https://doi.org/10.3390/cancers13092250 - 7 May 2021
Cited by 9 | Viewed by 4139
Abstract
Over 50% of human papilloma positive head-and-neck cancer (HNCHPV+) patients harbor genomic-alterations in PIK3CA, leading to hyperactivation of the phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K) pathway. Nevertheless, despite PI3K pathway activation in HNCHPV+ tumors, the anti-tumor activities of PI3K pathway inhibitors [...] Read more.
Over 50% of human papilloma positive head-and-neck cancer (HNCHPV+) patients harbor genomic-alterations in PIK3CA, leading to hyperactivation of the phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K) pathway. Nevertheless, despite PI3K pathway activation in HNCHPV+ tumors, the anti-tumor activities of PI3K pathway inhibitors are moderate, mostly due to the emergence of resistance. Thus, for potent and long-term tumor management, drugs blocking resistance mechanisms should be combined with PI3K inhibitors. Here, we delineate the molecular mechanisms of the acquisition of resistance to two isoform-selective inhibitors of PI3K (isiPI3K), alpelisib (BYL719) and taselisib (GDC0032), in HNCHPV+ cell lines. By comparing the transcriptional landscape of isiPI3K-sensitive tumor cells with that of their corresponding isiPI3K-acquired-resistant tumor cells, we found upregulation of insulin growth factor 2 (IGF2) in the resistant cells. Mechanistically, we show that upon isiPI3K treatment, isiPI3K-sensitive tumor cells upregulate the expression of IGF2 to induce cell proliferation via the activation of the IGF1 receptor (IGF1R). Stimulating tumor cells with recombinant IGF2 limited isiPI3K efficacy and released treated cells from S phase arrest. Knocking-down IGF2 with siRNA, or blocking IGF1R with AEW541, resulted in superior anti-tumor activity of isiPI3K in vitro and ex vivo. In vivo, the combination of isiPI3K and IGF1R inhibitor induced stable disease in mice bearing either tumors generated by the HNCHPV+ UM-SCC47 cell line or HPV+ patient-derived xenografts. These findings indicate that IGF2 and the IGF2/IGF1R pathway may constitute new targets for combination therapies to enhance the efficacy of PI3K inhibitors for the treatment of HNCHPV+. Full article
(This article belongs to the Special Issue Targeting PI3K Signaling in Cancer)
Show Figures

Figure 1

22 pages, 4686 KiB  
Article
Growth and Viability of Cutaneous Squamous Cell Carcinoma Cell Lines Display Different Sensitivities to Isoform-Specific Phosphoinositide 3-Kinase Inhibitors
by Viviana Mannella, Kira Boehm, Suheyla Celik, Tasnim Ali, Amnah N. Mirza, Mariam El Hasnaouy, Andreas Kaffa, Yanshuang Lyu, Donya Kafaei Golahmadi, Irene M. Leigh, Daniele Bergamaschi, Catherine A. Harwood and Tania Maffucci
Int. J. Mol. Sci. 2021, 22(7), 3567; https://doi.org/10.3390/ijms22073567 - 30 Mar 2021
Cited by 6 | Viewed by 3422
Abstract
Cutaneous squamous cell carcinomas (cSCCs) account for about 20% of keratinocyte carcinomas, the most common cancer in the UK. Therapeutic options for cSCC patients who develop metastasis are limited and a better understanding of the biochemical pathways involved in cSCC development/progression is crucial [...] Read more.
Cutaneous squamous cell carcinomas (cSCCs) account for about 20% of keratinocyte carcinomas, the most common cancer in the UK. Therapeutic options for cSCC patients who develop metastasis are limited and a better understanding of the biochemical pathways involved in cSCC development/progression is crucial to identify novel therapeutic targets. Evidence indicates that the phosphoinositide 3-kinases (PI3Ks)/Akt pathway plays an important role, in particular in advanced cSCC. Questions remain of whether all four PI3K isoforms able to activate Akt are involved and whether selective inhibition of specific isoform(s) might represent a more targeted strategy. Here we determined the sensitivity of four patient-derived cSCC cell lines to isoform-specific PI3K inhibitors to start investigating their potential therapeutic value in cSCC. Parallel experiments were performed in immortalized keratinocyte cell lines. We observed that pan PI3Ks inhibition reduced the growth/viability of all tested cell lines, confirming the crucial role of this pathway. Selective inhibition of the PI3K isoform p110α reduced growth/viability of keratinocytes and of two cSCC cell lines while affecting the other two only slightly. Importantly, p110α inhibition reduced Akt phosphorylation in all cSCC cell lines. These data indicate that growth and viability of the investigated cSCC cells display differential sensitivity to isoform-specific PI3K inhibitors. Full article
(This article belongs to the Special Issue Phosphoinositides and Downstream Signalling Molecules)
Show Figures

Figure 1

13 pages, 1433 KiB  
Article
Efficacy of Providing the PI3K p110α Inhibitor BYL719 (Alpelisib) to Middle-Aged Mice in Their Diet
by Christopher P. Hedges, Jordi Boix, Jagdish K. Jaiswal, Bhoopika Shetty, Peter R. Shepherd and Troy L. Merry
Biomolecules 2021, 11(2), 150; https://doi.org/10.3390/biom11020150 - 25 Jan 2021
Cited by 9 | Viewed by 3922
Abstract
BYL719 (alpelisib) is a small molecule inhibitor of PI3K p110α developed for cancer therapy. Targeted suppression of PI3K has led to lifespan extension in rodents and model organisms. If PI3K inhibitors are to be considered as an aging therapeutic, it is important to [...] Read more.
BYL719 (alpelisib) is a small molecule inhibitor of PI3K p110α developed for cancer therapy. Targeted suppression of PI3K has led to lifespan extension in rodents and model organisms. If PI3K inhibitors are to be considered as an aging therapeutic, it is important to understand the potential consequences of long-term exposure, and the most practical way to achieve this is through diet administration. Here, we investigated the pharmacokinetics of BYL719 delivered in diet and the efficacy of BYL719 to suppress insulin signaling when administered in the diet of 8-month-old male and female mice. Compared to oral gavage, diet incorporation resulted in a lower peak plasma BYL719 (3.6 vs. 9.2 μM) concentration but similar half-life (~1.5 h). Consuming BYL719 resulted in decreased insulin signaling in liver and muscle within 72 h, and mice still showed impaired glucose tolerance and insulin sensitivity following 6 weeks of access to a diet containing 0.3 g/kg BYL719. However, consuming BYL719 did not affect food intake, body mass, muscle function (rotarod and hang time performance) or cognitive behaviors. This provides evidence that BYL719 has long-term efficacy without major toxicity or side effects, and suggests that administering BYL719 in diet is suitable for studying the effect of pharmacological suppression of PI3K p110α on aging and metabolic function. Full article
Show Figures

Figure 1

12 pages, 2428 KiB  
Article
CDK 4/6 Inhibition Overcomes Acquired and Inherent Resistance to PI3Kα Inhibition in Pre-Clinical Models of Head and Neck Squamous Cell Carcinoma
by Eric Remer, Mai Badarni, Elad Hikri, Avraham Dayan, Lirit Levi, Aron Popovtzer, Muhammed Iraqi, Angel Porgador, Ben-Zion Joshua, Gideon Bachar, Moshe Elkabets, Maurizio Scaltriti and Aviram Mizrachi
J. Clin. Med. 2020, 9(10), 3214; https://doi.org/10.3390/jcm9103214 - 7 Oct 2020
Cited by 7 | Viewed by 3509
Abstract
Activating alterations in PIK3CA, the gene coding for the catalytic subunit of phosphoinositide-3-kinase (PI3K), are prevalent in head and neck squamous cell carcinoma (HNSCC) and thought to be one of the main drivers of these tumors. However, early clinical trials on PI3K [...] Read more.
Activating alterations in PIK3CA, the gene coding for the catalytic subunit of phosphoinositide-3-kinase (PI3K), are prevalent in head and neck squamous cell carcinoma (HNSCC) and thought to be one of the main drivers of these tumors. However, early clinical trials on PI3K inhibitors (PI3Ki) have been disappointing due to the limited durability of the activity of these drugs. To investigate the resistance mechanisms to PI3Ki and attempt to overcome them, we conducted a molecular-based study using both HNSCC cell lines and patient-derived xenografts (PDXs). We sought to simulate and dissect the molecular pathways that come into play in PIK3CA-altered HNSCC treated with isoform-specific PI3Ki (BYL719, GDC0032). In vitro assays of cell viability and protein expression indicate that activation of the mTOR and cyclin D1 pathways is associated with resistance to PI3Ki. Specifically, in BYL719-resistant cells, BYL719 treatment did not induce pS6 and pRB inhibition as detected in BYL719-sensitive cells. By combining PI3Ki with either mammalian target of rapamycin complex 1 (mTORC1) or cyclin D1 kinase (CDK) 4/6 specific inhibitors (RAD001 and abemaciclib, respectively), we were able to overcome the acquired resistance. Furthermore, we found that PI3Ki and CDK 4/6 inhibitors have a synergistic anti-tumor effect when combined in human papillomavirus (HPV)-negative/PIK3CA-WT tumors. These findings provide a rationale for combining PI3Ki and CDK 4/6 inhibitors to enhance anti-tumor efficacy in HNSCC patients. Full article
(This article belongs to the Special Issue Frontiers in Oral Cancer—Basic and Clinical Sciences)
Show Figures

Figure 1

15 pages, 2397 KiB  
Article
PI3K p110α Blockade Enhances Anti-Tumor Efficacy of Abemaciclib in Human Colorectal Cancer Cells
by Hyun Jung Lee, Kui-Jin Kim, Ji Hea Sung, Milang Nam, Koung Jin Suh, Ji-Won Kim, Se Hyun Kim, Jin Won Kim, Yu Jung Kim, Keun-Wook Lee, Jong Seok Lee and Jee Hyun Kim
Cancers 2020, 12(9), 2500; https://doi.org/10.3390/cancers12092500 - 3 Sep 2020
Cited by 6 | Viewed by 3737
Abstract
Targeting cell cycle regulation in colorectal cancer has not been fully evaluated. We investigated the efficacy of the CDK4/6 inhibitor, abemaciclib, and confirmed a synergistic interaction for PI3K p110α and CDK dual inhibition in colorectal cancer cell lines. Caco-2 and SNU-C4 cell lines [...] Read more.
Targeting cell cycle regulation in colorectal cancer has not been fully evaluated. We investigated the efficacy of the CDK4/6 inhibitor, abemaciclib, and confirmed a synergistic interaction for PI3K p110α and CDK dual inhibition in colorectal cancer cell lines. Caco-2 and SNU-C4 cell lines were selected to explore the mechanism of action for and resistance to abemaciclib. In vitro and in vivo models were used to validate the anti-tumor activity of abemaciclib monotherapy and BYL719 combination therapy. Abemaciclib monotherapy inhibited cell cycle progression and proliferation in Caco-2 and SNU-C4 cells. CDK2-mediated Rb phosphorylation and AKT phosphorylation appeared to be potential resistance mechanisms to abemaciclib monotherapy. Abemaciclib/BYL719 combination therapy demonstrated synergistic effects regardless of PIK3CA mutation status but showed greater efficacy in the PIK3CA mutated SNU-C4 cell line. Growth inhibition, cell cycle arrest, and migration inhibition were confirmed as mechanisms of action for this combination. In an SNU-C4 mouse xenograft model, abemaciclib/BYL719 combination resulted in tumor growth inhibition and apoptosis with tolerable toxicity. Dual blockade of PI3K p110α and CDK4/6 showed synergistic anti-tumor effects in vivo and in vitro in human colorectal cancer cell lines. This combination could be a promising candidate for the treatment of patients with advanced colorectal cancer. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

20 pages, 6149 KiB  
Article
Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts
by Chia-Yu Yang, Chiao-Rou Liu, Ian Yi-Feng Chang, Chun-Nan OuYang, Chia-Hsun Hsieh, Yen-Lin Huang, Chun-I Wang, Fei-Wen Jan, Wan-Ling Wang, Ting-Lin Tsai, Hsuan Liu, Ching-Ping Tseng, Yu-Sun Chang, Chih-Ching Wu and Kai-Ping Chang
Cancers 2020, 12(7), 1726; https://doi.org/10.3390/cancers12071726 - 29 Jun 2020
Cited by 19 | Viewed by 3373
Abstract
Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we [...] Read more.
Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we reported that OSCC PDXs recapitulated the genomic signatures of their paired primary tumors and the expression of CHEK1, PIK3CA, and PIK3CD was significantly upregulated in OSCC. The antitumor efficacy of CHK1 inhibitors (PF477736, AZD7762, LY2606368) and PI3K inhibitors (BYL719, GDC0941, GSK1059615) was investigated in OSCC cell lines and PDX models. Targeting either CHK1 or PI3K effectively inhibited cell proliferation and colony formation by inducing cell cycle arrest and apoptosis in in vitro cell-based assays. Cisplatin-based chemotherapy combined with CHK1 inhibitor treatment synergistically inhibited cell proliferation by suppressing CHK1 phosphorylation and inducing PARP cleavage. Furthermore, compared with monotherapy, cotreatment with CHK1 and PI3K inhibitors exerted synergistic anticancer effects by suppressing CHK1, AKT, and 4E-BP1 phosphorylation. In summary, our study identified CHK1 and PI3K as promising targets, especially in a dual treatment strategy combining a CHK1 inhibitor with cisplatin or a PI3K inhibitor as a novel therapeutic approach for OSCC patients with aberrant cell cycle regulation and PI3K signaling activation. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop