Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = Auger-electron spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1727 KiB  
Article
Chemical–Mechanical Super-Polishing of Al2O3 (0001) Wafer for Epitaxial Purposes
by Chih-Hao Lee and Chih-Hong Lee
Crystals 2025, 15(8), 694; https://doi.org/10.3390/cryst15080694 - 30 Jul 2025
Viewed by 144
Abstract
A super-polishing procedure was performed on the Al2O3 (0001) surface for epitaxial purposes. The roughness of the final polished surface was measured to be 0.16 nm using atomic force microscopy and X-ray reflectivity techniques. After heat treatment at 130 °C, [...] Read more.
A super-polishing procedure was performed on the Al2O3 (0001) surface for epitaxial purposes. The roughness of the final polished surface was measured to be 0.16 nm using atomic force microscopy and X-ray reflectivity techniques. After heat treatment at 130 °C, results from low-energy electron diffraction and Auger energy spectroscopy indicated that the top surface was well ordered and clean, rendering it suitable for epitaxial growth. The successful growth of a GaN thin film on an Al2O3 (0001) substrate was confirmed by the hk-circle scan in XRD and the presence of a sharp peak in the rocking curve of the GaN (0002) Bragg peak. These findings indicate that the top surface of the substrate is conducive to epitaxial growth. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 2449 KiB  
Article
Investigation of Current Effect of Suspended Graphene Pressure Sensor
by Haowei Mi, Run Qi, Pengcheng Li, Ningning Su and Junqiang Wang
Materials 2025, 18(12), 2801; https://doi.org/10.3390/ma18122801 - 14 Jun 2025
Viewed by 324
Abstract
The current effect of passive devices is crucial for device testing. The current effect of a suspended graphene pressure sensor in the range of 0–2 mA is studied in this paper. The results show that the resistance of graphene films and the piezoresistive [...] Read more.
The current effect of passive devices is crucial for device testing. The current effect of a suspended graphene pressure sensor in the range of 0–2 mA is studied in this paper. The results show that the resistance of graphene films and the piezoresistive effect of devices exhibit stable performance within the current threshold range of 400 μA and 300 μA, respectively. Auger electron spectroscopy and Raman spectroscopy tests indicate that the resistance of graphene increases first and then decreases at high current intensity, resulting from the electrostatic adsorption of oxygen atoms in the initial phase of electrification and the Joule-induced desorption in the later phase. This study presents guiding significance for the electrical testing of suspended graphene devices. Full article
Show Figures

Figure 1

13 pages, 1302 KiB  
Article
Combined Experimental and DFT Study of Alumina (α-Al2O3(0001))-Supported Fe Atoms in the Limit of a Single Atom
by Ramazan T. Magkoev, Yong Men, Reza Behjatmanesh-Ardakani, Mohammadreza Elahifard, Ivan V. Silaev, Aleksandr P. Bliev, Nelli E. Pukhaeva, Anatolij M. Turiev, Vladislav B. Zaalishvili, Aleksandr A. Takaev, Tamerlan T. Magkoev, Ramazan A. Khekilaev and Oleg G. Ashkhotov
Nanomaterials 2025, 15(11), 804; https://doi.org/10.3390/nano15110804 - 27 May 2025
Viewed by 521
Abstract
To probe the properties of single atoms is a challenging task, especially from the experimental standpoint, due to sensitivity limits. Nevertheless, it is sometimes possible to achieve this by making corresponding choices and adjustments to the experimental technique and sample under investigation. In [...] Read more.
To probe the properties of single atoms is a challenging task, especially from the experimental standpoint, due to sensitivity limits. Nevertheless, it is sometimes possible to achieve this by making corresponding choices and adjustments to the experimental technique and sample under investigation. In the present case, the absolute value of the electronic charge the Fe atoms acquire when they are adsorbed on the surface of aluminum oxide α-Al2O3(0001) was measured by a set of surface-sensitive techniques: low-energy ion scattering (LEIS), Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and work function (WF) measurements, in combination with density functional theory (DFT) calculations. The main focus was the submonolayer coverage of Fe atoms in situ deposited on the well-ordered stoichiometric α-Al2O3(0001) 7 nm thick film formed on a Mo(110) crystal face. An analysis of the evolution of the Fe LVV Auger triplet upon variation of the Fe coverage shows that there is electronic charge transfer from Fe to alumina and that its value gradually decreases as the Fe coverage grows. The same trend is also predicted by the DFT results. Extrapolation of the experimental Fe charge value versus coverage plot yields an estimated value of a single Fe atom adsorbed on α-Al2O3(0001) of 0.98e (electron charge units), which is in reasonable agreement with the calculated value (+1.15e). The knowledge of this value and the possibility of its adjustment may be important points for the development and tuning of modern sub-nanometer-scale technologies of diverse applied relevance and can contribute to a more complete justification and selection of the corresponding theoretical models. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

15 pages, 8949 KiB  
Article
Ellipsometric Surface Oxidation Model of ALD-Grown Vanadium Oxide Mixed-Valence System
by Xiaojie Sun, Shuguang Wang, Qingyuan Cai, Jingze Liu, Changhai Li, Ertao Hu, Jing Li, Songyou Wang, Yuxiang Zheng, Liangyao Chen and Youngpak Lee
Nanomaterials 2025, 15(9), 645; https://doi.org/10.3390/nano15090645 - 24 Apr 2025
Viewed by 478
Abstract
Vanadium and oxygen form a complex system of vanadium oxides with multiple phases and mixed valency, increasing the difficulty of characterization. In this work, amorphous vanadium oxide thin films with mixed valence states were fabricated by atomic layer deposition, and then post-annealing was [...] Read more.
Vanadium and oxygen form a complex system of vanadium oxides with multiple phases and mixed valency, increasing the difficulty of characterization. In this work, amorphous vanadium oxide thin films with mixed valence states were fabricated by atomic layer deposition, and then post-annealing was conducted for crystalline films. For the surface analysis of this mixed-valence system, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were employed. However, XPS is only able to quasi-quantitatively determine the surface-proximity oxidation states. To account for the inadequacy of surface-sensitive XPS and AES techniques, a surface oxidation model (SOM) was proposed for the ellipsometric modeling of the mixed-valence system. Furthermore, by conducting air thermal oxidation (ATO) experiments, the four sets of fitting parameters of SOM were decreased to three, lowering the system complexity. This study is expected to help with the analysis of vanadium oxide mixed-valence systems and other multivalent metal oxide systems. Full article
Show Figures

Figure 1

12 pages, 3562 KiB  
Article
Stabilization of Epitaxial NiO(001) Ultra-Thin Films on Body-Centered-Cubic Ni(001)-p(1x1)O
by Andrea Picone, Franco Ciccacci, Lamberto Duò and Alberto Brambilla
Coatings 2025, 15(5), 507; https://doi.org/10.3390/coatings15050507 - 23 Apr 2025
Viewed by 433
Abstract
Ultrathin NiO films, ranging from 1 to 16 monolayers (ML) in thickness, have been stabilized via reactive molecular beam epitaxy on the (001) surface of a metastable body-centered cubic (BCC) Ni film. Low-energy electron diffraction (LEED) confirms that NiO grows as a crystalline [...] Read more.
Ultrathin NiO films, ranging from 1 to 16 monolayers (ML) in thickness, have been stabilized via reactive molecular beam epitaxy on the (001) surface of a metastable body-centered cubic (BCC) Ni film. Low-energy electron diffraction (LEED) confirms that NiO grows as a crystalline film, exposing the (001) surface. Auger electron spectroscopy (AES) reveals a slight oxygen excess compared to a perfectly stoichiometric NiO film. Scanning tunneling microscopy (STM) shows that at low coverages the film exhibits atomically flat terraces, while at higher coverage a “wedding cake” morphology emerges. Scanning tunneling spectroscopy (STS) reveals a thickness-dependent evolution of the electronic band gap, which increases from 0.8 eV at 3 ML to 3.5 eV at 16 ML. The center of the band gap is approximately 0.2 eV above the Fermi level, indicating that NiO is p-doped. Full article
Show Figures

Figure 1

19 pages, 9996 KiB  
Article
A Study on the Corrosion Behavior of Fe/Ni-Based Structural Materials in Unpurified Molten Chloride Salt
by Unho Lee, Min Wook Kim, Jisu Na, Mingyu Lee, Sung Joong Kim, Dong-Joo Kim and Young Soo Yoon
Materials 2025, 18(7), 1653; https://doi.org/10.3390/ma18071653 - 3 Apr 2025
Cited by 1 | Viewed by 732
Abstract
The molten salt reactor is a fourth-generation nuclear power plant considered a long-term eco-friendly energy source with high efficiency and the potential for green hydrogen production. The selection of alloys for such reactors, which can operate for more than 30 years, is a [...] Read more.
The molten salt reactor is a fourth-generation nuclear power plant considered a long-term eco-friendly energy source with high efficiency and the potential for green hydrogen production. The selection of alloys for such reactors, which can operate for more than 30 years, is a primary concern because of corrosion by high-temperature molten salt. In this study, three Fe- and Ni-based alloys were selected as structural material candidates. Corrosion immersion tests were conducted in NaCl–KCl molten salt for 48 h at 800 °C and 40% RH conditions in an air environment. In the absence of moisture and oxygen removal, ClNaK salt-induced damage was observed in the investigated alloys. The corrosion behavior of the alloys was characterized using various techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The results show that the corrosion process can be explained by salt-induced surface damage, internal ion migration, and depletion to the surface. The corrosion rate is high in SS316L (16Cr-Fe), N10003 (7Cr-Ni), and C-276 (16Cr-Ni), in decreasing order. Based on the corrosion penetration, ion elution, and interfacial diffusion results, C-276 and N10003 are good candidates for structural materials for MSRs. Therefore, Ni-based alloys with high Cr content minimize surface damage and ion depletion in unpurified molten salt environments. This indicates that Ni-based alloys with high Cr content exhibit highly corrosion resistance. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Figure 1

15 pages, 4338 KiB  
Article
Self-Reduction of Nitric Oxide on Alumina-Supported Ultra-Small Nickel Particles
by Ramazan T. Magkoev, Yong Men, Reza Behjatmanesh-Ardakani, Mohammadreza Elahifard, Nelli E. Pukhaeva, Aleksandr A. Takaev, Ramazan A. Khekilaev, Tamerlan T. Magkoev and Oleg. G. Ashkhotov
Surfaces 2025, 8(1), 6; https://doi.org/10.3390/surfaces8010006 - 8 Jan 2025
Viewed by 975
Abstract
The adsorption and reaction of nitric oxide (NO) molecules on the surface of the model-supported metal/oxide system, consisting of Ni nanoparticles deposited on α-Al2O3 (0001) in ultra-high vacuum, have been studied using in situ surface-sensitive techniques and density functional theory [...] Read more.
The adsorption and reaction of nitric oxide (NO) molecules on the surface of the model-supported metal/oxide system, consisting of Ni nanoparticles deposited on α-Al2O3 (0001) in ultra-high vacuum, have been studied using in situ surface-sensitive techniques and density functional theory (DFT) calculations. As a combination of X-ray and Auger electron spectroscopy (XPS, AES), Fourier-transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) techniques reveals, there is a threshold of Ni particle mean size (<d>) of c.a. 2 nm, differentiating the electron state of adsorbed NO molecules and their reaction. The main feature of Ni particles normally not exceeding 2 nm is that the NO adsorbs in the form of (NO)2 dimers, whereas, for larger particles, the NO molecules adsorb in the form of monomers, usually characteristic for the bulk Ni substrate. This difference is demonstrated to be the main reason for the different reaction of NO molecules on the surface of Ni/alumina. The striking feature is that, in the case of ultra-small Ni particles (<d> ≤ 2 nm), the nitrous oxide (N2O) molecules are formed upon heating as a result of the NO self-reduction mechanism, which are otherwise not formed in the case of larger Ni particles. According to DFT results, this is due to the significant synergistic impact of NO co-adsorption on the neighboring NO dissociation reaction over ultra-small Ni particles, mediated by the metal/oxide perimeter interface. The observed molecular conversion effects offer an opportunity to tune the catalytic selectivity of this and related metal/oxide systems via varying the supported metal particle size. Full article
Show Figures

Figure 1

11 pages, 5313 KiB  
Article
Etching Chemistry Process Optimization of Ethylene Diluted with Helium (C2H4/He) in Interconnect Integration
by Hwa-Rim Lee, Eun-Su Jung, Jin-Uk Yoo, Tae-Min Choi and Sung-Gyu Pyo
Micromachines 2024, 15(12), 1439; https://doi.org/10.3390/mi15121439 - 28 Nov 2024
Cited by 1 | Viewed by 1089
Abstract
This study explores the effects of different passivation gases on the properties of polymers formed on aluminum (Al) sidewalls during the etching process in Al-based interconnect structures. The research compares the use of nitrogen (N2) and ethylene diluted with helium (C [...] Read more.
This study explores the effects of different passivation gases on the properties of polymers formed on aluminum (Al) sidewalls during the etching process in Al-based interconnect structures. The research compares the use of nitrogen (N2) and ethylene diluted with helium (C2H4/He) as passivation gases, focusing on the resulting polymer’s composition, thickness, and strength, as well as the levels of residual chlorine post-etch. The findings reveal that using C2H4 leads to the formation of a thinner, weaker polymer with lower chlorine residue compared to the thicker, stronger polymer formed with N2. Elemental analysis further highlights significant differences in carbon and oxygen content, with C2H4-based polymers exhibiting lower carbon and higher oxygen levels. These results underscore the critical impact of passivation gas choice on the etching process and the integrity of Al-based interconnects, offering valuable insights for optimizing metal etching processes in semiconductor manufacturing. Full article
(This article belongs to the Special Issue Semiconductor and Energy Materials and Processing Technology)
Show Figures

Figure 1

18 pages, 28935 KiB  
Article
The Effect of Varying Parameters of Laser Surface Alloying Post-Treatment on the Microstructure and Hardness of Additively Manufactured 17-4PH Stainless Steel
by Alexander S. Chaus, Oleg G. Devoino, Martin Sahul, Ľubomír Vančo and Ivan Buranský
Crystals 2024, 14(6), 569; https://doi.org/10.3390/cryst14060569 - 20 Jun 2024
Viewed by 1273
Abstract
In the present work, the evolution of the microstructure in additively manufactured 17-4PH stainless steel, which was subjected to laser surface alloying with amorphous boron and nitrogen at the varying process parameters, was studied. The main aim was to improve surface hardness and [...] Read more.
In the present work, the evolution of the microstructure in additively manufactured 17-4PH stainless steel, which was subjected to laser surface alloying with amorphous boron and nitrogen at the varying process parameters, was studied. The main aim was to improve surface hardness and hence potential wear resistance of the steel. Scanning electron microscopy, wavelength-dispersive X-ray spectroscopy (WDS), and Auger electron spectroscopy (AES) were used. It was shown that the final microstructure developed in the laser-melted zone (LMZ) is dependent on a variety of processing parameters (1 and 1.5 mm laser beam spot diameters; 200, 400, and 600 mm/min laser scan speeds), which primarily influence the morphology and orientation of the eutectic dendrites in the LMZ. It was metallographically proven that a fully eutectic microstructure, except for one sample containing 60 ± 4.2% of the eutectic, was revealed in the LMZ in the studied samples. The results of WDS and AES also confirmed alloying the LMZ with nitrogen. The formation of the boron eutectic and the supersaturation of the α-iron solid solution with boron and nitrogen (as a part of the eutectic mixture) led to enhanced microhardness, which was significantly higher compared with that of the heat-treated substrate (545.8 ± 12.59–804.7 ± 19.4 vs. 276.8 ± 10.1–312.7 ± 11.7 HV0.1). Full article
(This article belongs to the Special Issue Advances in Surface Modifications of Metallic Materials)
Show Figures

Figure 1

18 pages, 6425 KiB  
Article
Comparative Study on Passive Film Formation Mechanism of Cast and PBF-LB/M-TC4 in Simulated Physiological Solution
by Ming Liu, Zhang Liu, Jie Wang, Yongqiang Zhang and Xin Gao
Materials 2024, 17(11), 2583; https://doi.org/10.3390/ma17112583 - 27 May 2024
Cited by 2 | Viewed by 1050
Abstract
Personalized laser powder bed fusion (PBF-LB/M) Ti-6Al-4V (TC4) has a broader application prospect than that of traditional casting. In this paper, the composition and corrosion resistance of the passive film formation mechanism of TC4 prepared by optimization of PBF-LB/M techniques and traditional casting [...] Read more.
Personalized laser powder bed fusion (PBF-LB/M) Ti-6Al-4V (TC4) has a broader application prospect than that of traditional casting. In this paper, the composition and corrosion resistance of the passive film formation mechanism of TC4 prepared by optimization of PBF-LB/M techniques and traditional casting were systematically studied in 0.9 wt.% NaCl at 37 °C by electrochemical technique and surface analysis. The rates of the passive film formation process, corrosion resistance and composition of TC4 show different characteristics for the different preparation processes. Although the rate of passive film formation of cast-TC4 was higher at the initial immersion, the open circuit potential was more positive, and the film thickness was larger after stabilization, those facts show no positive correlation with corrosion resistance. On the contrary, with no obvious defects on the optimized PBF-LB/M-TC4, the passive film resistance is 2.5 times more, the defect concentration is reduced by 30%, and the TiO2 content is higher than that of the cast-TC4, making the martensitic-based PBF-LB/M-TC4 exhibit excellent corrosion resistance. This also provides good technical support for the further clinical application of PBF-LB/M-TC4. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (2nd Edition))
Show Figures

Figure 1

27 pages, 15037 KiB  
Article
Porous and Ag-, Cu-, Zn-Doped Al2O3 Fabricated via Barrier Anodizing of Pure Al and Alloys
by Alexander Poznyak, Gerhard Knörnschild, Aliaksandr Hoha and Andrei Pligovka
Coatings 2024, 14(5), 576; https://doi.org/10.3390/coatings14050576 - 6 May 2024
Cited by 5 | Viewed by 2882
Abstract
The paper breaks the general concepts and shows that pore formation is possible in anodic aluminum barrier oxide by anodizing of pure Al, and also presents the results of electrochemical anodizing in boric acid and citrate buffer aqueous solutions of homogeneous binary alloys [...] Read more.
The paper breaks the general concepts and shows that pore formation is possible in anodic aluminum barrier oxide by anodizing of pure Al, and also presents the results of electrochemical anodizing in boric acid and citrate buffer aqueous solutions of homogeneous binary alloys AlCu (4 wt.%), AlZn (3 wt.%) and AlAg (5.2 wt.% and 16.2 wt.%). Barrier anodizing allowed obtaining Al2O3 thin films doped with copper, zinc and silver. The anodizing behavior and the effect of anodic current density on the charge were studied, and scanning electron microscopy, X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses were performed. The doped alumina thin films, which are a mixture of Al2O3, Cu2O, ZnO, Ag2O, AgO and promising double metal oxides CuAlO2, AgAlO2 and ZnAl2O4, are promising for use as resistive switching, photoelectron, mechanical, photo-thermoelectric and fluorescence materials; sensors; and transparent conductive and photocatalyst films. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

23 pages, 15469 KiB  
Article
Interfacial Segregation of Sn during the Continuous Annealing and Selective Oxidation of Fe-Mn-Sn Alloys
by Jonas Wagner and Joseph R. McDermid
Materials 2024, 17(6), 1257; https://doi.org/10.3390/ma17061257 - 8 Mar 2024
Cited by 4 | Viewed by 1409
Abstract
The effect of Mn on interfacial Sn segregation during the selective oxidation of Fe-(0–10)Mn-0.03Sn (at.%) alloys was determined for annealing conditions compatible with continuous galvanizing. Significant Sn enrichment was observed at the substrate free surface and metal/oxide interface for all annealing conditions and [...] Read more.
The effect of Mn on interfacial Sn segregation during the selective oxidation of Fe-(0–10)Mn-0.03Sn (at.%) alloys was determined for annealing conditions compatible with continuous galvanizing. Significant Sn enrichment was observed at the substrate free surface and metal/oxide interface for all annealing conditions and Mn levels. Sn enrichment at the free surface was insensitive to the Mn alloy concentration, which was partially attributed to the opposing effects of Mn on segregation thermodynamics and kinetics: Mn increases the driving force for Sn segregation via reducing Sn solubility in Fe but also reduces the effective Sn diffusivity by increasing the austenite volume fraction. This insensitivity was exacerbated by the depletion of solute Mn near the surface due to the selective oxidation of Mn. Thus, Sn segregation occurred in regions with a local Mn concentration lower than the nominal bulk composition of the alloys suggested. Sn enrichment at the metal/external oxide interface was reduced compared to the free surface and decreased with increasing bulk Mn content, which was attributed to changes in the external oxide morphology and metal/internal oxide interfaces acting as Sn sinks. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 3458 KiB  
Article
Acid Treatments of Ti-Based Metallic Glasses for Improving Corrosion Resistance in Implant Applications
by Nora Fernández-Navas, Viktoriia Shtefan, Martin Hantusch and Annett Gebert
Metals 2024, 14(2), 241; https://doi.org/10.3390/met14020241 - 16 Feb 2024
Cited by 2 | Viewed by 1683
Abstract
Ti-based bulk metallic glasses are promising materials for metallic bone implants, mainly due to their mechanical biofunctionality. A major drawback is their limited corrosion resistance, with high sensitivity to pitting. Thus, effective surface treatments for these alloys must be developed. This work investigates [...] Read more.
Ti-based bulk metallic glasses are promising materials for metallic bone implants, mainly due to their mechanical biofunctionality. A major drawback is their limited corrosion resistance, with high sensitivity to pitting. Thus, effective surface treatments for these alloys must be developed. This work investigates the electrochemical treatment feasibility of nitric acid (HNO3) solution for two bulk glass-forming alloys. The surface states obtained at different anodic potentials are characterized with electron microscopy and Auger electron spectroscopy. The corrosion behavior of the treated glassy alloys is analyzed via comparison to non-treated states in phosphate-buffered saline solution (PBS) at 37 °C. For the glassy Ti47Zr7.5Cu38Fe2.5Sn2Si1Ag2 alloy, the pre-treatment causes pseudo-dealloying, with a transformation from naturally passivated surfaces to Ti- and Zr-oxide nanoporous layers and Cu-species removal from the near-surface regions. This results in effective suppression of chloride-induced pitting in PBS. The glassy Ti40Zr10Cu34Pd14Sn2 alloy shows lower free corrosion activity in HNO3 and PBS due to Pd stabilizing its strong passivity. However, this alloy undergoes pitting under anodic conditions. Surface pre-treatment results in Cu depletion but causes enrichment of Pd species and non-homogeneous surface oxidation. Therefore, for this glassy alloy, pitting cannot be completely inhibited in PBS. Concluding, anodic treatments in HNO3 are more suitable for Pd-free glassy Ti-based alloys. Full article
(This article belongs to the Special Issue Recent Surface Treatments of Metals and Their Alloys)
Show Figures

Figure 1

20 pages, 4052 KiB  
Article
Multiscale Investigation of Microcracks and Grain Boundary Wetting in Press-Hardened Galvanized 20MnB8 Steel
by Martin Arndt, Philipp Kürnsteiner, Tia Truglas, Jiri Duchoslav, Kurt Hingerl, David Stifter, Christian Commenda, Johannes Haslmayr, Siegfried Kolnberger, Josef Faderl and Heiko Groiss
Metals 2024, 14(1), 46; https://doi.org/10.3390/met14010046 - 29 Dec 2023
Viewed by 1631
Abstract
Grain boundary wetting as a preliminary stage for zinc-induced grain boundary weakening and embrittlement in a Zn-coated press-hardened 20MnB8 steel was analyzed using electron backscatter diffraction, Auger electron spectroscopy, energy dispersive X-ray analysis, atom probe tomography and transmission electron microscopy. Microcracks at prior [...] Read more.
Grain boundary wetting as a preliminary stage for zinc-induced grain boundary weakening and embrittlement in a Zn-coated press-hardened 20MnB8 steel was analyzed using electron backscatter diffraction, Auger electron spectroscopy, energy dispersive X-ray analysis, atom probe tomography and transmission electron microscopy. Microcracks at prior austenite grain boundaries were observed. Structures that developed after microcrack formation were identified: for example, Zn/Fe intermetallic phases with grain sizes smaller than 100 nm were present at the crack surfaces and the wedge-shaped crack tips. An electrolytically coated reference sample that underwent the same heat treatment as the press-hardened material but without the application of tensile stress was investigated in order to find the initial cause of the microcracks. On this sample, Zn, in the order of one atomic layer, was found along prior austenite grain boundaries several micrometers away from the actual Zn/Fe phases in the coating. The resulting grain boundary weakening with the Zn wetting of prior austenitic grain boundaries during austenitization and/or hot forming is a necessary precondition for microcrack formation. Full article
Show Figures

Figure 1

10 pages, 11778 KiB  
Communication
Improved Properties of Post-Deposition Annealed Ga2O3/SiC and Ga2O3/Al2O3/SiC Back-Gate Transistors Fabricated by Radio Frequency Sputtering
by Hee-Jae Lee, Geon-Hee Lee, Seung-Hwan Chung, Dong-Wook Byun, Michael A. Schweitz, Dae Hwan Chun, Nack Yong Joo, Minwho Lim, Tobias Erlbacher and Sang-Mo Koo
Micro 2023, 3(4), 775-784; https://doi.org/10.3390/micro3040055 - 30 Sep 2023
Cited by 1 | Viewed by 2298
Abstract
The high breakdown electric field, n-type doping capability, availability of high-quality substrates, and high Baliga’s figure of merit of Ga2O3 demonstrate its potential as a next-generation power semiconductor material. However, the thermal conductivity of Ga2O3 is lower [...] Read more.
The high breakdown electric field, n-type doping capability, availability of high-quality substrates, and high Baliga’s figure of merit of Ga2O3 demonstrate its potential as a next-generation power semiconductor material. However, the thermal conductivity of Ga2O3 is lower than that of other wide-bandgap materials, resulting in the degradation of the electrical performance and reduced reliability of devices. The heterostructure formation on substrates with high thermal conductivity has been noted to facilitate heat dissipation in devices. In this work, Ga2O3 thin films with an Al2O3 interlayer were deposited on SiC substrates by radio frequency sputtering. Post-deposition annealing was performed at 900 °C for 1 h to crystallize the Ga2O3 thin films. The Auger electron spectroscopy depth profiles revealed the interdiffusion of the Ga and Al atoms at the Ga2O3/Al2O3 interface after annealing. The X-ray diffraction (XRD) results displayed improved crystallinity after annealing and adding the Al2O3 interlayer. The crystallite size increased from 5.72 to 8.09 nm as calculated by the Scherrer equation using the full width at half maximum (FWHM). The carrier mobility was enhanced from 5.31 to 28.39 cm2 V−1 s−1 in the annealed Ga2O3 thin films on Al2O3/SiC. The transfer and output characteristics of the Ga2O3/SiC and Ga2O3/Al2O3/SiC back-gate transistors reflect the trend of the XRD and Hall measurement results. Therefore, this work demonstrated that the physical and electrical properties of the Ga2O3/SiC back-gate transistors can be improved by post-deposition annealing and the introduction of an Al2O3 interlayer. Full article
Show Figures

Figure 1

Back to TopTop