Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = Antarctic soils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5798 KiB  
Article
Microbial Allies from the Cold: Antarctic Fungal Endophytes Improve Maize Performance in Water-Limited Fields
by Yessica San Miguel, Rómulo Santelices-Moya, Antonio M. Cabrera-Ariza and Patricio Ramos
Plants 2025, 14(14), 2118; https://doi.org/10.3390/plants14142118 - 9 Jul 2025
Viewed by 386
Abstract
Climate change has intensified drought stress, threatening global food security by affecting sensitive crops like maize (Zea mays). This study evaluated the potential of Antarctic fungal endophytes (Penicillium chrysogenum and P. brevicompactum) to enhance maize drought tolerance under field [...] Read more.
Climate change has intensified drought stress, threatening global food security by affecting sensitive crops like maize (Zea mays). This study evaluated the potential of Antarctic fungal endophytes (Penicillium chrysogenum and P. brevicompactum) to enhance maize drought tolerance under field conditions with different irrigation regimes. Drought stress reduced soil moisture to 59% of field capacity. UAV-based multispectral imagery monitored plant physiological status using vegetation indices (NDVI, NDRE, SIPI, GNDVI). Inoculated plants showed up to two-fold higher index values under drought, indicating improved stress resilience. Physiological analysis revealed increased photochemical efficiency (0.775), higher chlorophyll and carotenoid contents (45.54 mg/mL), and nearly 80% lower lipid peroxidation in inoculated plants. Lower proline accumulation suggested better water status and reduced osmotic stress. Secondary metabolites such as phenolics, flavonoids, and anthocyanins were elevated, particularly under well-watered conditions. Antioxidant enzyme activity shifted: SOD, CAT, and APX were suppressed, while POD activity increased, indicating reprogrammed oxidative stress responses. Yield components, including cob weight and length, improved significantly with inoculation under drought. These findings demonstrate the potential of Antarctic endophytes to enhance drought resilience in maize and underscore the value of integrating microbial biotechnology with UAV-based remote sensing for sustainable crop management under climate-induced water scarcity. Full article
(This article belongs to the Special Issue Plant-Microbiome Interactions)
Show Figures

Figure 1

15 pages, 2172 KiB  
Article
Structural Characterisation of TetR/AcrR Regulators in Streptomyces fildesensis So13.3: An In Silico CRISPR-Based Strategy to Influence the Suppression of Actinomycin D Production
by Karla Leal, Juan Machuca, Humberto Gajardo, Matías Palma, María José Contreras, Kattia Nuñez-Montero, Álvaro Gutiérrez and Leticia Barrientos
Int. J. Mol. Sci. 2025, 26(10), 4839; https://doi.org/10.3390/ijms26104839 - 19 May 2025
Viewed by 522
Abstract
The growing threat of antimicrobial resistance has intensified the search for new bioactive compounds, particularly in extreme environments such as Antarctica. Streptomyces fildesensis So13.3, isolated from Antarctic soil, harbours a biosynthetic gene cluster (BGC) associated with actinomycin D production, an antibiotic with biomedical [...] Read more.
The growing threat of antimicrobial resistance has intensified the search for new bioactive compounds, particularly in extreme environments such as Antarctica. Streptomyces fildesensis So13.3, isolated from Antarctic soil, harbours a biosynthetic gene cluster (BGC) associated with actinomycin D production, an antibiotic with biomedical relevance. This study investigates the regulatory role of TetR/AcrR transcription factors encoded within this biosynthetic gene cluster (BGC), focusing on their structural features and expression under different nutritional conditions. Additionally, we propose that repressing an active pathway could lead to the activation of silent biosynthetic routes, and our in-silico analysis provides a foundation for selecting key mutations and experimentally validating this strategy. Expression analysis revealed that TetR-279, in particular, was upregulated in ISP4 and IMA media, suggesting its participation in nutrient-dependent BGC regulation. Structural modelling identified key differences between TetR-206 and TetR-279, with the latter containing a tetracycline-repressor-like domain. Molecular dynamics simulations confirmed TetR-279’s structural stability but showed that the S166P CRISPy-web-guided mutation considerably affected its flexibility, while V167A and V167I had modest effects. These results underscore the importance of integrating omics, structural prediction, and gene editing to evaluate and manipulate transcriptional regulation in non-model bacteria. Targeted disruption of TetR-279 may derepress actinomycin biosynthesis, enabling access to silent or cryptic secondary metabolites with potential pharmaceutical applications. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing—2nd Edition)
Show Figures

Figure 1

15 pages, 801 KiB  
Communication
Metataxonomics Characterization of Soil Microbiome Extraction Method Using Different Dispersant Solutions
by David Madariaga-Troncoso, Isaac Vargas, Dorian Rojas-Villalta, Michel Abanto and Kattia Núñez-Montero
Microorganisms 2025, 13(4), 936; https://doi.org/10.3390/microorganisms13040936 - 18 Apr 2025
Viewed by 490
Abstract
Soil health is essential for maintaining ecosystem balance, food security, and human well-being. Anthropogenic activities, such as climate change and excessive agrochemical use, have led to the degradation of soil ecosystems worldwide. Microbiome transplantation has emerged as a promising approach for restoring perturbed [...] Read more.
Soil health is essential for maintaining ecosystem balance, food security, and human well-being. Anthropogenic activities, such as climate change and excessive agrochemical use, have led to the degradation of soil ecosystems worldwide. Microbiome transplantation has emerged as a promising approach for restoring perturbed soils; however, direct soil transfer presents practical limitations for large-scale applications. An alternative strategy involves extracting microbial communities through soil washing processes, but its success highly depends on proper microbiota characterization and efficient extraction methods. This study evaluated a soil wash method using four different dispersant solutions (Tween-80, NaCl, sodium citrate, and sodium pyrophosphate) for their ability to extract the majority of microbial cells from Antarctic and Crop soils. The extracted microbiomes were analyzed using 16S rRNA gene metataxonomics to assess their diversity and abundance. We found that some treatments extracted a greater proportion of specific taxa, and, on the other hand, some extracted a lower proportion than the control treatment. In addition, these dispersant solutions showed the extraction of the relevant microbial community profile in soil samples, composed of multiple taxa, including beneficial bacteria for soil health. Our study aims to optimize DNA extraction methods for microbiome analyses and to explore the use of this technique in various biotechnological applications. The results provide insights into the effect of dispersant solutions on microbiome extractions. In this regard, sodium chloride could be optimal for Antarctic soils, while sodium citrate is suggested for the Crop soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 3398 KiB  
Article
Genome Mining of Pseudarthrobacter sp. So.54, a Rhizospheric Bacteria from Colobanthus quitensis Antarctic Plant
by Dayaimi González, Pablo Bruna, María J. Contreras, Karla Leal, Catherine V. Urrutia, Kattia Núñez-Montero and Leticia Barrientos
Biomolecules 2025, 15(4), 534; https://doi.org/10.3390/biom15040534 - 5 Apr 2025
Viewed by 948
Abstract
Antarctic microorganisms have genomic characteristics and biological functions to ensure survival in complex habitats, potentially representing bioactive compounds of biotechnological interest. Pseudarthrobacter sp. So.54 is an Antarctic bacteria strain isolated from the rhizospheric soil of Colobanthus quitensis. Our work aimed to study [...] Read more.
Antarctic microorganisms have genomic characteristics and biological functions to ensure survival in complex habitats, potentially representing bioactive compounds of biotechnological interest. Pseudarthrobacter sp. So.54 is an Antarctic bacteria strain isolated from the rhizospheric soil of Colobanthus quitensis. Our work aimed to study its genomic characteristics and metabolic potential, linked to environmental adaptation and the production of secondary metabolites with possible biotechnological applications. Whole-genome sequencing, assembly, phylogenetic analysis, functional annotation, and genomic islands prediction were performed to determine the taxonomic affiliation and differential characteristics of the strain So.54. Additionally, Biosynthetic Gene Clusters (BGCs) responsible for secondary metabolites production were identified. The assembled genome of strain So.54 has 3,871,805 bp with 66.0% G + C content. Phylogenetic analysis confirmed that strain So.54 belongs to the Pseudarthrobacter genus; nevertheless, its nucleotide and amino acid identity values were below the species threshold. The main metabolic pathways and 64 genomic islands associated with stress defense and environmental adaptation, such as heavy metal resistance genes, were identified. AntiSMASH analysis predicted six BGCs with low or no similarity to known clusters, suggesting potential as novel natural products. These findings indicate that strain So.54 could be a novel Pseudarthrobacter species with significant environmental adaptation and biotechnological potential. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

21 pages, 1829 KiB  
Review
Hidden Contaminants: The Presence of Per- and Polyfluoroalkyl Substances in Remote Regions
by Kuok Ho Daniel Tang
Environments 2025, 12(3), 88; https://doi.org/10.3390/environments12030088 - 13 Mar 2025
Cited by 1 | Viewed by 1314
Abstract
Per- and polyfluoroalkyl substances (PFAS) are increasingly detected in remote environments. This review aims to provide a comprehensive overview of the types and concentrations of PFAS found in the air, water, soil, sediments, ice, and precipitation across different remote environments globally. Most of [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are increasingly detected in remote environments. This review aims to provide a comprehensive overview of the types and concentrations of PFAS found in the air, water, soil, sediments, ice, and precipitation across different remote environments globally. Most of the recent studies on PFAS remote occurrence have been conducted for the Arctic, the Antarctica, and the remote regions of China. Elevated perfluorooctane sulfonate (PFOS) in Meretta and Resolute Lakes reflects the impact of local sources like airports, while PFAS in lakes located in remote regions such as East Antarctica and the Canadian High Arctic suggest atmospheric deposition as a primary PFAS input. Long-chain PFAS (≥C7) accumulate in sediments, while short-chain PFAS remain in water, as shown in Hulun Lake. Oceanic PFAS are concentrated in surface waters, driven by atmospheric deposition, with PFOA and PFOS dominating across oceans due to current emissions and legacy contamination. Coastal areas display higher PFAS levels from local sources. Arctic sediment analysis highlights atmospheric deposition and ocean transport as significant PFAS contributors. PFAS in Antarctic coastal areas suggest local biological input, notably from penguins. The Tibetan Plateau and Arctic atmospheric data confirm long-range transport, with linear PFAS favoring gaseous states, while branched PFAS are more likely to associate with particulates. Climatic factors like the Indian monsoon and temperature fluctuations affect PFAS deposition. Short-chain PFAS are prevalent in snowpacks, serving as temporary reservoirs. Mountainous regions, such as the Tibetan Plateau, act as cold traps, accumulating PFAS from atmospheric precursors. Future studies should focus on identifying and quantifying primary sources of PFAS. Full article
Show Figures

Figure 1

15 pages, 2579 KiB  
Article
Carbon Dioxide Fluxes Associated with Prokaryotic and Eukaryotic Communities in Ice-Free Areas on King George Island, Maritime Antarctica
by Luiz H. Rosa, Vívian N. Gonçalves, Débora Luiza Costa Barreto, Marcio Rocha Francelino, Clara Glória Oliveira Baldi, Danilo Cesar Mello, Kárita C. R. Santos, Fabyano A. C. Lopes, Micheline Carvalho-Silva, Peter Convey and Paulo E. A. S. Câmara
DNA 2025, 5(1), 15; https://doi.org/10.3390/dna5010015 - 10 Mar 2025
Viewed by 1268
Abstract
Background and Methods: We assessed the prokaryotic and eukaryotic diversity present in non-vegetated and vegetated soils on King George Island, Maritime Antarctic, in combination with measurements of carbon dioxide fluxes. Results: For prokaryotes, 381 amplicon sequence variants (ASVs) were assigned, dominated by the [...] Read more.
Background and Methods: We assessed the prokaryotic and eukaryotic diversity present in non-vegetated and vegetated soils on King George Island, Maritime Antarctic, in combination with measurements of carbon dioxide fluxes. Results: For prokaryotes, 381 amplicon sequence variants (ASVs) were assigned, dominated by the phyla Actinobacteriota, Acidobacteriota, Pseudomonadota, Chloroflexota, and Verrucomicrobiota. A total of 432 eukaryotic ASVs were assigned, including representatives from seven kingdoms and 21 phyla. Fungi dominated the eukaryotic communities, followed by Viridiplantae. Non-vegetated soils had higher diversity indices compared with vegetated soils. The dominant prokaryotic ASV in non-vegetated soils was Pyrinomonadaceae sp., while Pseudarthrobacter sp. dominated vegetated soils. Mortierella antarctica (Fungi) and Meyerella sp. (Viridiplantae) were dominant eukaryotic taxa in the non-vegetated soils, while Lachnum sp. (Fungi) and Polytrichaceae sp. (Viridiplantae) were dominant in the vegetated soils. Measured CO2 fluxes indicated that the net ecosystem exchange values measured in vegetated soils were lower than ecosystem respiration in non-vegetated soils. However, the total flux values indicated that the region displayed positive ecosystem respiration values, suggesting that the soils may represent a source of CO2 in the atmosphere. Conclusions: Our study revealed the presence of rich and complex communities of prokaryotic and eukaryotic organisms in both soil types. Although non-vegetated soils demonstrated the highest levels of diversity, they had lower CO2 fluxes than vegetated soils, likely reflecting the significant biomass of photosynthetically active plants (mainly dense moss carpets) and their resident organisms. The greater diversity detected in exposed soils may influence future changes in CO2 flux in the studied region, for which comparisons of non-vegetated and vegetated soils with different microbial diversities are needed. This reinforces the necessity for studies to monitor the impact of resident biota on CO2 flux in different areas of Maritime Antarctica, a region strongly impacted by climatic changes. Full article
Show Figures

Graphical abstract

12 pages, 255 KiB  
Review
Pollution Has No Borders: Microplastics in Antarctica
by Daniela Pellegrino, Daniele La Russa and Laura Barberio
Environments 2025, 12(3), 77; https://doi.org/10.3390/environments12030077 - 2 Mar 2025
Cited by 2 | Viewed by 1782
Abstract
In recent years, microplastic pollution has become one of the major global concerns and represents a complex, multidimensional, and multisectoral reality. The considerable existing data relating to microplastic pollution in matrices such as water and soil suggests that microplastics are widespread globally, but [...] Read more.
In recent years, microplastic pollution has become one of the major global concerns and represents a complex, multidimensional, and multisectoral reality. The considerable existing data relating to microplastic pollution in matrices such as water and soil suggests that microplastics are widespread globally, but there are several knowledge gaps regarding their actual distribution mostly in remote locations far from sources. In this review we examine current knowledge on microplastic pollution in the Antarctic continent. Antarctica, the unique continent not permanently anthropized, is the southernmost part of the planet but its geographic isolation does not protect against the harmful impact of human activities. This continent is characterized by limited internal pollution sources but high-burden external routes of contaminants and represents a unique natural laboratory to analyze how pollution can reach every part of the biosphere. This review reports the presence of microplastics in organic and inorganic matrices not only at marine level (water, sediments, benthic organisms, krill, and fish) but also in freshwater (lakes, rivers, snow, and glaciers) highlighting that microplastic contamination is endemic in the Antarctic environment. Microplastic pollution is of great environmental concern everywhere, but the characteristics of remote ecosystems suggest that they could be more sensitive to harm from this pollution. Full article
22 pages, 1907 KiB  
Article
Lipid Production in Cultivable Filamentous Fungi Isolated from Antarctic Soils: A Comprehensive Study
by Victor Gallardo, Jéssica Costa, Marcela Sepúlveda, Yasna Cayún, Christian Santander, Excequel Ponce, Juliana Bittencourt, César Arriagada, Javiera Soto, Romina Pedreschi, Vania Aparecida Vicente, Pablo Cornejo and Cledir Santos
Microorganisms 2025, 13(3), 504; https://doi.org/10.3390/microorganisms13030504 - 25 Feb 2025
Viewed by 904
Abstract
Antarctic soil represents an important reservoir of filamentous fungi (FF) species with the ability to produce novel bioactive lipids. However, the lipid extraction method is still a bottleneck. The objective of the present work was to isolate and identify cultivable FF from Antarctic [...] Read more.
Antarctic soil represents an important reservoir of filamentous fungi (FF) species with the ability to produce novel bioactive lipids. However, the lipid extraction method is still a bottleneck. The objective of the present work was to isolate and identify cultivable FF from Antarctic soils, to assess the most effective methods for fatty acid (FA) extraction, and to characterise the obtained lipids. A total of 18 fungal strains belonging to the Botrytis, Cladosporium, Cylindrobasidium, Mortierella, Penicillium, Pseudogymnoascus, and Talaromyces genera and the Melanommataceae family were isolated and identified. The Folch, Bligh and Dyer, and Lewis extraction methods were assessed, and methyl esters of FA (FAMEs) were obtained. The Lewis method was the best in recovering FAMEs from fungal biomass. A total of 17 FAs were identified, and their chemical compositions varied depending on fungal species and strain. Oleic, linoleic, stearic, and palmitic acids were predominant for all fungal strains in the three assessed methods. Among the analysed strains, Cylindrobasidium eucalypti, Penicillium miczynskii, P. virgatum, and Pseudogymnoascus pannorum produced high amounts of FA. This suggests that the soils of Antarctica Bay, as well as harbouring known oleaginous fungi, are also an important source of oleaginous filamentous fungi that remain poorly analysed. Full article
Show Figures

Figure 1

11 pages, 1028 KiB  
Communication
Molecular Detection of blaTEM and blaSHV Genes in ESBL-Producing Acinetobacter baumannii Isolated from Antarctic Soil
by Clara Pazos, Miguel Gualoto, Tania Oña, Elizabeth Velarde, Karen Portilla, Santiago Cabrera-García, Carlos Banchón, Gabriela Dávila, Fernanda Hernández-Alomia and Carlos Bastidas-Caldes
Microorganisms 2025, 13(3), 482; https://doi.org/10.3390/microorganisms13030482 - 21 Feb 2025
Cited by 1 | Viewed by 2649
Abstract
The phenomenon of antimicrobial resistance (AMR) in cold environments, exemplified by the Antarctic, calls into question the assumption that pristine ecosystems lack clinically significant resistance genes. This study examines the molecular basis of AMR in Acinetobacter spp. Isolated from Antarctic soil, focusing on [...] Read more.
The phenomenon of antimicrobial resistance (AMR) in cold environments, exemplified by the Antarctic, calls into question the assumption that pristine ecosystems lack clinically significant resistance genes. This study examines the molecular basis of AMR in Acinetobacter spp. Isolated from Antarctic soil, focusing on the blaTEM and blaSHV genes associated with extended-spectrum beta-lactamase (ESBL) production; Soil samples were collected and processed to isolate Antarctic soil bacteria. Molecular detection was then conducted using polymerase chain reaction (PCR) to identify the bacteria species by 16S rRNA/rpoB and 10 different beta-lactamase-producing genes. PCR amplicons were sequenced to confirm gene identity and analyze genetic variability. Acinetobacter baumannii were identified by both microbiological and molecular tests. Notably, both the blaTEM and blaSHV genes encoding the enzymes responsible for resistance to penicillins and cephalosporins were identified, indicating the presence of resistance determinants in bacteria from extreme cold ecosystems. The nucleotide sequence analysis indicated the presence of conserved ARGs, which suggest stability and the potential for horizontal gene transfer within microbial communities. These findings emphasize that AMR is not confined to human-impacted environments but can emerge and persist in remote, cold habitats, potentially facilitated by natural reservoirs and global microbial dispersal. Understanding the presence and role of AMR in extreme environments provides insights into its global dissemination and supports the development of strategies to mitigate the spread of resistance genes in both environmental and clinical contexts. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Figure 1

15 pages, 2854 KiB  
Article
Antarctic Soil and Viable Microbiota After Long-Term Storage at Constant −20 °C
by Cristian-Emilian Pop, Sergiu Fendrihan, Nicolai Crăciun, Garbis Vasilighean, Daniela Ecaterina Chifor, Florica Topârceanu, Andreea Florea, Dan Florin Mihăilescu and Maria Mernea
Biology 2025, 14(3), 222; https://doi.org/10.3390/biology14030222 - 20 Feb 2025
Cited by 1 | Viewed by 860
Abstract
During an Antarctic expedition that took place in December 2010–January 2011 in the East Antarctic coastal region, soil samples were collected in aseptic conditions and stored for over a decade in freezers at −20 °C. Due to the shortly afterward passing of the [...] Read more.
During an Antarctic expedition that took place in December 2010–January 2011 in the East Antarctic coastal region, soil samples were collected in aseptic conditions and stored for over a decade in freezers at −20 °C. Due to the shortly afterward passing of the Antarctic researcher in charge, Teodor Negoiță, the samples remained unintentionally frozen for a long period and were made available for research 13 years later. A chemical analysis of soil as well as screening for viable microbial presence was performed; soil analysis was conducted via inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier-transform infrared spectroscopy coupled with attenuated total reflection (FTIR-ATR). The presence of aerobic and facultative aerobic microbiotas was evaluated through a Biolog Ecoplates assay, and isolated strains were 16S sequenced for final taxonomic identification. The results obtained new insights into Antarctic soil characteristics from both chemical and microbiological aspects, even after over a decade of conservation. Full article
Show Figures

Figure 1

18 pages, 3308 KiB  
Article
Microbial Communities in Permafrost, Moraine and Deschampsia antarctica Rhizosphere Soils near Ecology Glacier (King George Island, Maritime Antarctic)
by Daniel E. Palma, Alexis Gaete, Dariel López, Andrés E. Marcoleta, Francisco P. Chávez, León A. Bravo, Jacquelinne J. Acuña, Verónica Cambiazo and Milko A. Jorquera
Diversity 2025, 17(2), 86; https://doi.org/10.3390/d17020086 - 25 Jan 2025
Viewed by 1464
Abstract
While the recession of glaciers in the Antarctic is of global concern under climate change, the impact of deglaciation on soil microbiomes is still limited. Here, soil samples were collected from permafrost (P), moraine (M) and Deschampsia antarctica rhizosphere (R) soils near Ecology [...] Read more.
While the recession of glaciers in the Antarctic is of global concern under climate change, the impact of deglaciation on soil microbiomes is still limited. Here, soil samples were collected from permafrost (P), moraine (M) and Deschampsia antarctica rhizosphere (R) soils near Ecology Glacier (Antarctic), and their soil physicochemical properties and microbial communities (bacteria, archaea and fungi) were characterized. Our analyses showed that there were significant differences in the soil properties and microbial communities between the R samples and the P and M samples. Specifically, amplicon sequencing of 16S rDNA revealed high bacterial richness and diversity in the studied soils, which were dominated mainly by the phyla Proteobacteria, Actinobacteriota and Bacteroidota. In contrast, lower richness and diversity were observed in the archaeal communities, which were dominated by the phyla Chenarchaeota (M and R) and Thermoplasmadota (M). In addition, fungal community analysis revealed a lower richness and diversity (M and R), dominated by the phylum Ascomycota. Our observations are consistent with previous reports describing the relevant changes in soil microbial communities during glacial recession, including fewer microbial groups studied in soils (archaea and fungi). However, further studies are still needed to elucidate the contributions of microbial communities to soil formation and plant colonization in ice-free soils in Antarctica under global climate change. Full article
(This article belongs to the Special Issue 2024 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

18 pages, 6900 KiB  
Article
Macrogenomic Analysis Reveals Soil Microbial Diversity in Different Regions of the Antarctic Peninsula
by Jiangyong Qu, Xiaofei Lu, Tianyi Liu, Ying Qu, Zhikai Xing, Shuang Wang, Siluo Jing, Li Zheng, Lijun Wang and Xumin Wang
Microorganisms 2024, 12(12), 2444; https://doi.org/10.3390/microorganisms12122444 - 27 Nov 2024
Cited by 1 | Viewed by 1440
Abstract
(1) Background: The unique geographical and climatic conditions of the Antarctic Peninsula contribute to distinct regional ecosystems. Microorganisms are crucial for sustaining the local ecological equilibrium. However, the variability in soil microbial community diversity across different regions of the Antarctic Peninsula remains underexplored. [...] Read more.
(1) Background: The unique geographical and climatic conditions of the Antarctic Peninsula contribute to distinct regional ecosystems. Microorganisms are crucial for sustaining the local ecological equilibrium. However, the variability in soil microbial community diversity across different regions of the Antarctic Peninsula remains underexplored. (2) Methods: We utilized metagenome sequencing to investigate the composition and functionality of soil microbial communities in four locations: Devil Island, King George Island, Marambio Station, and Seymour Island. (3) Results: In the KGI region, we observed increased abundance of bacteria linked to plant growth promotion and the degradation of pollutants, including PAHs. Conversely, Marambio Station exhibited a significant reduction in bacterial abundance associated with iron and sulfur oxidation/reduction. Notably, we identified 94 antibiotic resistance genes (ARGs) across 15 classes of antibiotics in Antarctic soils, with those related to aminoglycosides, β-lactamase, ribosomal RNA methyltransferase, antibiotic efflux, gene regulatory resistance, and ABC transporters showing a marked influence from anthropogenic activities. (4) Conclusions: This study carries substantial implications for the sustainable use, advancement, and conservation of microbial resources in Antarctic soils. Full article
(This article belongs to the Topic Environmental Bioengineering and Geomicrobiology)
Show Figures

Figure 1

14 pages, 3641 KiB  
Article
Bacterial Diversity, Metabolic Profiling, and Application Potential of Antarctic Soil Metagenomes
by Mario Fernández, Salvador Barahona, Fernando Gutierrez, Jennifer Alcaíno, Víctor Cifuentes and Marcelo Baeza
Curr. Issues Mol. Biol. 2024, 46(11), 13165-13178; https://doi.org/10.3390/cimb46110785 - 18 Nov 2024
Cited by 1 | Viewed by 1294
Abstract
Antarctica has attracted increasing interest in understanding its microbial communities, metabolic potential, and as a source of microbial hydrolytic enzymes with industrial applications, for which advances in next-generation sequencing technologies have greatly facilitated the study of unculturable microorganisms. In this work, soils from [...] Read more.
Antarctica has attracted increasing interest in understanding its microbial communities, metabolic potential, and as a source of microbial hydrolytic enzymes with industrial applications, for which advances in next-generation sequencing technologies have greatly facilitated the study of unculturable microorganisms. In this work, soils from seven sub-Antarctic islands and Union Glacier were studied using a whole-genome shotgun metagenomic approach. The main findings were that the microbial community at all sites was predominantly composed of the bacterial phyla Actinobacteria and Cyanobacteria, and the families Streptomycetaceae and Pseudonocardiaceae. Regarding the xenobiotic biodegradation and metabolism pathway, genes associated with benzoate, chloroalkane, chloroalkene, and styrene degradation were predominant. In addition, putative genes encoding industrial enzymes with predicted structural properties associated with improved activity at low temperatures were found, with catalases and malto-oligosyltrehalose trehalohydrolase being the most abundant. Overall, our results show similarities between soils from different Antarctic sites with respect to more abundant bacteria and metabolic pathways, especially at higher classification levels, regardless of their geographic location. Furthermore, our results strengthen the potential of Antarctic soils as a source of industrially relevant enzymes. Full article
Show Figures

Figure 1

32 pages, 5708 KiB  
Review
Plastic-Degrading Enzymes from Marine Microorganisms and Their Potential Value in Recycling Technologies
by Robert Ruginescu and Cristina Purcarea
Mar. Drugs 2024, 22(10), 441; https://doi.org/10.3390/md22100441 - 26 Sep 2024
Cited by 3 | Viewed by 7951
Abstract
Since the 2005 discovery of the first enzyme capable of depolymerizing polyethylene terephthalate (PET), an aromatic polyester once thought to be enzymatically inert, extensive research has been undertaken to identify and engineer new biocatalysts for plastic degradation. This effort was directed toward developing [...] Read more.
Since the 2005 discovery of the first enzyme capable of depolymerizing polyethylene terephthalate (PET), an aromatic polyester once thought to be enzymatically inert, extensive research has been undertaken to identify and engineer new biocatalysts for plastic degradation. This effort was directed toward developing efficient enzymatic recycling technologies that could overcome the limitations of mechanical and chemical methods. These enzymes are versatile molecules obtained from microorganisms living in various environments, including soil, compost, surface seawater, and extreme habitats such as hot springs, hydrothermal vents, deep-sea regions, and Antarctic seawater. Among various plastics, PET and polylactic acid (PLA) have been the primary focus of enzymatic depolymerization research, greatly enhancing our knowledge of enzymes that degrade these specific polymers. They often display unique catalytic properties that reflect their particular ecological niches. This review explores recent advancements in marine-derived enzymes that can depolymerize synthetic plastic polymers, emphasizing their structural and functional features that influence the efficiency of these catalysts in biorecycling processes. Current status and future perspectives of enzymatic plastic depolymerization are also discussed, with a focus on the underexplored marine enzymatic resources. Full article
(This article belongs to the Special Issue Bioactive Molecules from Extreme Environments III)
Show Figures

Graphical abstract

22 pages, 1376 KiB  
Article
Polar-Region Soils as Novel Reservoir of Lactic Acid Bacteria from the Genus Carnobacterium
by Katarzyna Kosiorek, Jakub Grzesiak, Jan Gawor, Agnieszka Sałańska and Tamara Aleksandrzak-Piekarczyk
Int. J. Mol. Sci. 2024, 25(17), 9444; https://doi.org/10.3390/ijms25179444 - 30 Aug 2024
Cited by 3 | Viewed by 1483
Abstract
Polar habitats offer excellent sites to isolate unique bacterial strains due to their diverse physical, geochemical, and biological factors. We hypothesize that the unique environmental conditions of polar regions select for distinct strains of lactic acid bacteria (LAB) with novel biochemical properties. In [...] Read more.
Polar habitats offer excellent sites to isolate unique bacterial strains due to their diverse physical, geochemical, and biological factors. We hypothesize that the unique environmental conditions of polar regions select for distinct strains of lactic acid bacteria (LAB) with novel biochemical properties. In this study, we characterized ten strains of psychrotrophic LAB isolated from hitherto poorly described sources—High Arctic and maritime Antarctic soils and soil-like materials, including ornithogenic soils, cryoconites, elephant seal colonies, and postglacial moraines. We evaluated the physiological and biochemical properties of the isolates. Based on 16S rRNA and housekeeping genes, the four LAB strains were assigned to three Carnobacterium species: C. alterfunditum, C. maltaromaticum, and C. jeotgali. The remaining strains may represent three new species of the Carnobacterium genus. All isolates were neutrophilic and halophilic psychrotrophs capable of fermenting various carbohydrates, organic acids, and alcohols. The identified metabolic properties of the isolated Carnobacterium strains suggest possible syntrophic interactions with other microorganisms in polar habitats. Some showed antimicrobial activity against food pathogens such as Listeria monocytogenes and human pathogens like Staphylococcus spp. Several isolates exhibited unique metabolic traits with potential biotechnological applications that could be more effectively exploited under less stringent technological conditions compared to thermophilic LAB strains, such as lower temperatures and reduced nutrient concentrations. Analysis of extrachromosomal genetic elements revealed 13 plasmids ranging from 4.5 to 79.5 kb in five isolates, featuring unique genetic structures and high levels of previously uncharacterized genes. This work is the first comprehensive study of the biochemical properties of both known and new Carnobacterium species and enhances our understanding of bacterial communities in harsh and highly selective polar soil ecosystems. Full article
(This article belongs to the Special Issue Molecular Studies of Microbial Communities)
Show Figures

Figure 1

Back to TopTop