Metataxonomics Characterization of Soil Microbiome Extraction Method Using Different Dispersant Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Processing of Antarctic and Crop Soil Samples
2.2. Soil Chemical Chracterization
2.3. Use of Dispersant Solutions for Microbial Extractions
2.4. DNA Extraction
2.5. Metataxonomics Library Preparation and Sequencing
2.6. Microbiota Profiling and Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delgado-Baquerizo, M.; Giaramida, L.; Reich, P.B.; Khachane, A.N.; Hamonts, K.; Edwards, C.; Lawton, L.A.; Singh, B.K. Lack of Functional Redundancy in the Relationship between Microbial Diversity and Ecosystem Functioning. J. Ecol. 2016, 104, 936–946. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the Unknown: Disentangling the Complexities of the Soil Microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil Microbiomes and Climate Change. Nat. Rev. Microbiol. 2019, 18, 35–46. [Google Scholar] [CrossRef]
- Heděnec, P.; Jílková, V.; Lin, Q.; Cajthaml, T.; Filipová, A.; Baldrian, P.; Větrovský, T.; Krištůfek, V.; Chroňáková, A.; Setälä, H.; et al. Microbial Communities in Local and Transplanted Soils along a Latitudinal Gradient. Catena 2019, 173, 456–464. [Google Scholar] [CrossRef]
- Hopple, A.M.; Pennington, S.C.; Megonigal, J.P.; Bailey, V.; Bond-Lamberty, B. Disturbance Legacies Regulate Coastal Forest Soil Stability to Changing Salinity and Inundation: A Soil Transplant Experiment. Soil Biol. Biochem. 2022, 169, 108675. [Google Scholar] [CrossRef]
- Sun, B.; Wang, F.; Jiang, Y.; Li, Y.; Dong, Z.; Li, Z.; Zhang, X.X. A Long-Term Field Experiment of Soil Transplantation Demonstrating the Role of Contemporary Geographic Separation in Shaping Soil Microbial Community Structure. Ecol. Evol. 2014, 4, 1073–1087. [Google Scholar] [CrossRef]
- Benetková, P.; van Diggelen, R.; Háněl, L.; Vicentini, F.; Moradi, R.; Weijters, M.; Bobbink, R.; Harris, J.A.; Frouz, J. Soil Fauna Development during Heathland Restoration from Arable Land: Role of Soil Modification and Material Transplant. Ecol. Eng. 2022, 176, 106531. [Google Scholar] [CrossRef]
- Gerrits, G.M.; Waenink, R.; Aradottir, A.L.; Buisson, E.; Dutoit, T.; Ferreira, M.C.; Fontaine, J.B.; Jaunatre, R.; Kardol, P.; Loeb, R.; et al. Synthesis on the Effectiveness of Soil Translocation for Plant Community Restoration. J. Appl. Ecol. 2023, 60, 714–724. [Google Scholar] [CrossRef]
- Liang, Y.; Jiang, Y.; Wang, F.; Wen, C.; Deng, Y.; Xue, K.; Qin, Y.; Yang, Y.; Wu, L.; Zhou, J.; et al. Long-Term Soil Transplant Simulating Climate Change with Latitude Significantly Alters Microbial Temporal Turnover. ISME J. 2015, 9, 2561–2572. [Google Scholar] [CrossRef]
- Chang, L.; Sun, X.; Wang, B.; Gao, M.; Chen, L.; Liang, A.; Wu, D. Green More than Brown Food Resources Drive the Effect of Simulated Climate Change on Collembola: A Soil Transplantation Experiment in Northeast China. Geoderma 2021, 392, 115008. [Google Scholar] [CrossRef]
- Gowda, M.T.; Prasanna, R.; Rao, U.; Somvanshi, V.S.; Singh, P.K.; Singh, A.K.; Chawla, G. Microbiome Transplant Can Effectively Manage Root-Knot Nematode Infectivity in Tomato. Appl. Soil Ecol. 2023, 190, 105020. [Google Scholar] [CrossRef]
- Yergeau, E.; Bell, T.H.; Champagne, J.; Maynard, C.; Tardif, S.; Tremblay, J.; Greer, C.W. Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but Not on the Rhizosphere Microbiome. Front. Microbiol. 2015, 6, 155793. [Google Scholar] [CrossRef]
- McPherson, M.R.; Wang, P.; Marsh, E.L.; Mitchell, R.B.; Schachtman, D.P. Isolation and Analysis of Microbial Communities in Soil, Rhizosphere, and Roots in Perennial Grass Experiments. J. Vis. Exp. 2018, 2018, e57932. [Google Scholar] [CrossRef]
- Edwin, N.R.; Fitzpatrick, A.H.; Brennan, F.; Abram, F.; O’Sullivan, O. An In-Depth Evaluation of Metagenomic Classifiers for Soil Microbiomes. Environ. Microbiome 2024, 19, 19. [Google Scholar] [CrossRef]
- DeFord, L.; Yoon, J.Y. Soil Microbiome Characterization and Its Future Directions with Biosensing. J. Biol. Eng. 2024, 18, 1–17. [Google Scholar] [CrossRef]
- Khalili, B.; Weihe, C.; Kimball, S.; Schmidt, K.T.; Martiny, J.B.H. Optimization of a Method To Quantify Soil Bacterial Abundance by Flow Cytometry. mSphere 2019, 4, e00435-19. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.Q.; Feng, L.; Cao, H.; Cui, Z. An Improved Method for Extracting Bacteria from Soil for High Molecular Weight DNA Recovery and BAC Library Construction. J. Microbiol. 2010, 48, 728–733. [Google Scholar] [CrossRef]
- Lindahl, V. Improved Soil Dispersion Procedures for Total Bacterial Counts, Extraction of Indigenous Bacteria and Cell Survival. J. Microbiol. Methods 1996, 25, 279–286. [Google Scholar] [CrossRef]
- Durán, P.; Ellis, T.J.; Thiergart, T.; Ågren, J.; Hacquard, S. Climate Drives Rhizosphere Microbiome Variation and Divergent Selection between Geographically Distant Arabidopsis Populations. New Phytol. 2022, 236, 608–621. [Google Scholar] [CrossRef]
- Kim, D.; Song, L.; Breitwieser, F.P.; Salzberg, S.L. Centrifuge: Rapid and Sensitive Classification of Metagenomic Sequences. Genome Res. 2016, 26, 1721–1729. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive Statistical, Functional and Integrative Analysis of Microbiome Data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef]
- Do, T.-X.; Huynh, V.-P.; Le, L.-A.; Nguyen, T.-V.; Nguyen-Pham, A.-T.; Bui-Thi, M.-D.; Chau-Thi, A.-T.; Tran, S.-N.; Nguyen, V.-T.; Ho-Huynh, T.-D. Microbial Diversity Analysis Using 16S RRNA Gene Amplicon Sequencing of Rhizosphere Soils from Double-Cropping Rice and Rice-Shrimp Farming Systems in Soc Trang, Vietnam. Microbiol. Resour. Announc. 2021, 10, e0059521. [Google Scholar] [CrossRef]
- Maretto, L.; Deb, S.; Ravi, S.; Della Lucia, M.C.; Borella, M.; Campagna, G.; Squartini, A.; Concheri, G.; Nardi, S.; Stevanato, P. 16S Metabarcoding, Total Soil DNA Content, and Functional Bacterial Genes Quantification to Characterize Soils under Long-Term Organic and Conventional Farming Systems. Chem. Biol. Technol. Agric. 2023, 10, 78. [Google Scholar] [CrossRef]
- Varliero, G.; Lebre, P.H.; Adams, B.; Chown, S.L.; Convey, P.; Dennis, P.G.; Fan, D.; Ferrari, B.; Frey, B.; Hogg, I.D.; et al. Biogeographic Survey of Soil Bacterial Communities across Antarctica. Microbiome 2024, 12, 9. [Google Scholar] [CrossRef]
- Alekseev, I.; Zverev, A.; Abakumov, E. Microbial Communities in Permafrost Soils of Larsemann Hills, Eastern Antarctica: Environmental Controls and Effect of Human Impact. Microorganisms 2020, 8, 1202. [Google Scholar] [CrossRef]
- Ramos, L.R.; Vollú, R.E.; Jurelevicius, D.; Rosado, A.S.; Seldin, L. Firmicutes in Different Soils of Admiralty Bay, King George Island, Antarctica. Polar Biol. 2019, 42, 2219–2226. [Google Scholar] [CrossRef]
- Enebe, M.C.; Babalola, O.O. Effects of Inorganic and Organic Treatments on the Microbial Community of Maize Rhizosphere by a Shotgun Metagenomics Approach. Ann. Microbiol. 2020, 70, 49. [Google Scholar] [CrossRef]
- Schultz, J.; Argentino, I.C.V.; Kallies, R.; Nunes da Rocha, U.; Rosado, A.S. Polyphasic Analysis Reveals Potential Petroleum Hydrocarbon Degradation and Biosurfactant Production by Rare Biosphere Thermophilic Bacteria From Deception Island, an Active Antarctic Volcano. Front. Microbiol. 2022, 13, 885557. [Google Scholar] [CrossRef]
- Coleine, C.; Stajich, J.E.; Pombubpa, N.; Zucconi, L.; Onofri, S.; Canini, F.; Selbmann, L. Altitude and Fungal Diversity Influence the Structure of Antarctic Cryptoendolithic Bacteria Communities. Environ. Microbiol. Rep. 2019, 11, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Venturelli, R.A.; Michaud, A.B.; Hawkings, J.R.; Achberger, A.M.; Vick-Majors, T.J.; Rosenheim, B.E.; Dore, J.E.; Steigmeyer, A.; Skidmore, M.L.; et al. Biogeochemical and Historical Drivers of Microbial Community Composition and Structure in Sediments from Mercer Subglacial Lake, West Antarctica. ISME Commun. 2023, 3, 8. [Google Scholar] [CrossRef]
- Bakermans, C.; Skidmore, M.L.; Douglas, S.; McKay, C.P. Molecular Characterization of Bacteria from Permafrost of the Taylor Valley, Antarctica. FEMS Microbiol. Ecol. 2014, 89, 331–346. [Google Scholar] [CrossRef]
- Zheng, R.; Zhao, Y.; Wang, L.; Chang, X.; Zhang, Y.; Da, X.; Peng, F. Mucilaginibacter antarcticus Sp. Nov., Isolated from Tundra Soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 5140–5144. [Google Scholar] [CrossRef]
- Karlov, D.S.; Marie, D.; Chuvochina, M.S.; Alekhina, I.A.; Bulat, S.A. Microbial Communities of Water Column of Lake Radok, East Antarctica, Dominated by Abundant Actinobacterium “Candidatus Planktophila Limnetica”. Microbiology 2011, 80, 576–579. [Google Scholar] [CrossRef]
- da Silva, J.P.; Veloso, T.G.R.; Costa, M.D.; de Souza, J.J.L.L.; Soares, E.M.B.; Gomes, L.C.; Schaefer, C.E.G.R. Microbial Successional Pattern along a Glacier Retreat Gradient from Byers Peninsula, Maritime Antarctica. Environ. Res. 2024, 241, 117548. [Google Scholar] [CrossRef]
- Contreras, M.J.; Leal, K.; Bruna, P.; Nuñez-Montero, K.; Goméz-Espinoza, O.; Santos, A.; Bravo, L.; Valenzuela, B.; Solis, F.; Gahona, G.; et al. Commonalities between the Atacama Desert and Antarctica Rhizosphere Microbial Communities. Front. Microbiol. 2023, 14, 1197399. [Google Scholar] [CrossRef]
- Zeng, Y.; Nupur, Y.; Wu, N.; Madsen, A.M.; Chen, X.; Gardiner, A.T.; Koblížek, M. Gemmatimonas groenlandica Sp. Nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes. Front. Microbiol. 2021, 11, 606612. [Google Scholar] [CrossRef]
- Rawat, S.R.; Männistö, M.K.; Bromberg, Y.; Häggblom, M.M. Comparative Genomic and Physiological Analysis Provides Insights into the Role of Acidobacteria in Organic Carbon Utilization in Arctic Tundra Soils. FEMS Microbiol. Ecol. 2012, 82, 341–355. [Google Scholar] [CrossRef]
- Lian, T.; Ma, Q.; Shi, Q.; Cai, Z.; Zhang, Y.; Cheng, Y.; Nian, H. High Aluminum Stress Drives Different Rhizosphere Soil Enzyme Activities and Bacterial Community Structure between Aluminum-Tolerant and Aluminum-Sensitive Soybean Genotypes. Plant Soil 2019, 440, 409–425. [Google Scholar] [CrossRef]
- Oshiki, M.; Toyama, Y.; Suenaga, T.; Terada, A.; Kasahara, Y.; Yamaguchi, T.; Araki, N. N2O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N2O Reduction in Agricultural Soils. Microbes Environ. 2022, 37, ME21090. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, T.; Huang, Q.; Guo, H.; Zhang, H.; Xu, Q.; Shen, Q.; Ling, N. Core Species Impact Plant Health by Enhancing Soil Microbial Cooperation and Network Complexity during Community Coalescence. Soil Biol. Biochem. 2024, 188, 109231. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Poonguzhali, S.; Lee, J.S.; Senthilkumar, M.; Lee, K.C.; Sundaram, S. Mucilaginibacter gossypii Sp. Nov. and Mucilaginibacter gossypiicola Sp. Nov., Plant-Growth-Promoting Bacteria Isolated from Cotton Rhizosphere Soils. Int. J. Syst. Evol. Microbiol. 2010, 60, 2451–2457. [Google Scholar] [CrossRef]
- Yahya, G.; Ebada, A.; Khalaf, E.M.; Mansour, B.; Nouh, N.A.; Mosbah, R.A.; Saber, S.; Moustafa, M.; Negm, S.; El-Sokkary, M.M.A.; et al. Soil-Associated Bacillus Species: A Reservoir of Bioactive Compounds with Potential Therapeutic Activity against Human Pathogens. Microorganisms 2021, 9, 1131. [Google Scholar] [CrossRef]
- Khan, M.S.; Gao, J.; Chen, X.; Zhang, M.; Yang, F.; Du, Y.; Moe, T.S.; Munir, I.; Xue, J.; Zhang, X. Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. Biomed. Res. Int. 2020, 2020, 8650957. [Google Scholar] [CrossRef]
- Ofek, M.; Hadar, Y.; Minz, D. Ecology of Root Colonizing Massilia (Oxalobacteraceae). PLoS ONE 2012, 7, e40117. [Google Scholar] [CrossRef]
- Da Mota, F.F.; Gomes, E.A.; Paiva, E.; Seldin, L. Assessment of the Diversity of Paenibacillus Species in Environmental Samples by a Novel RpoB-Based PCR-DGGE Method. FEMS Microbiol. Ecol. 2005, 53, 317–328. [Google Scholar] [CrossRef]
- Baek, J.H.; Baek, W.; Ruan, W.; Jung, H.S.; Lee, S.C.; Jeon, C.O. Massilia soli Sp. Nov., Isolated from Soil. Int. J. Syst. Evol. Microbiol. 2022, 72, 005227. [Google Scholar] [CrossRef]
- Foysal, M.J.; Lisa, A.K. Isolation and Characterization of Bacillus Sp. Strain BC01 from Soil Displaying Potent Antagonistic Activity against Plant and Fish Pathogenic Fungi and Bacteria. J. Genet. Eng. Biotechnol. 2018, 16, 387–392. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D.U.; Park, S.; Yoon, J.H.; Ka, J.O. Massilia chloroacetimidivorans Sp. Nov., a Chloroacetamide Herbicide-Degrading Bacterium Isolated from Soil. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2017, 110, 751–758. [Google Scholar] [CrossRef]
- Jalilvand, N.; Akhgar, A.; Alikhani, H.A.; Rahmani, H.A.; Rejali, F. Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. J. Soil Sci. Plant Nutr. 2020, 20, 206–219. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Zang, P.; Zhao, Y.; He, Z.; Zhu, H.; Song, S.; Zhang, L. Study on the Simultaneous Degradation of Five Pesticides by Paenibacillus polymyxa from Panax Ginseng and the Characteristics of Their Products. Ecotoxicol. Environ. Saf. 2019, 168, 415–422. [Google Scholar] [CrossRef]
- Pal, A.K.; Sengupta, C. Isolation of Cadmium and Lead Tolerant Plant Growth Promoting Rhizobacteria: Lysinibacillus varians and Pseudomonas Putida from Indian Agricultural Soil. Soil Sediment Contam. Int. J. 2019, 28, 601–629. [Google Scholar] [CrossRef]
- Brat, K.; Sedlacek, I.; Sevcikova, A.; Merta, Z.; Laska, K.; Sevcik, P. Imported Anthropogenic Bacteria May Survive the Antarctic Winter and Introduce New Genes into Local Bacterial Communities. Pol. Polar Res. 2016, 37, 89–104. [Google Scholar] [CrossRef]
- de Francisco Martínez, P.; Morgante, V.; González-Pastor, J.E. Isolation of Novel Cold-Tolerance Genes from Rhizosphere Microorganisms of Antarctic Plants by Functional Metagenomics. Front. Microbiol. 2022, 13, 1026463. [Google Scholar] [CrossRef]
- Coleine, C.; Albanese, D.; Ray, A.E.; Delgado-Baquerizo, M.; Stajich, J.E.; Williams, T.J.; Larsen, S.; Tringe, S.; Pennacchio, C.; Ferrari, B.C.; et al. Metagenomics Untangles Potential Adaptations of Antarctic Endolithic Bacteria at the Fringe of Habitability. Sci. Total Environ. 2024, 917, 170290. [Google Scholar] [CrossRef]
- Lebre, P.H.; Bosch, J.; Coclet, C.; Hallas, R.; Hogg, I.D.; Johnson, J.; Moon, K.L.; Ortiz, M.; Rotimi, A.; Stevens, M.I.; et al. Expanding Antarctic Biogeography: Microbial Ecology of Antarctic Island Soils. Ecography 2023, 2023, e06568. [Google Scholar] [CrossRef]
- Chong, C.W.; Silvaraj, S.; Supramaniam, Y.; Snape, I.; Tan, I.K.P. Effect of Temperature on Bacterial Community in Petroleum Hydrocarbon-Contaminated and Uncontaminated Antarctic Soil. Polar Biol. 2018, 41, 1763–1775. [Google Scholar] [CrossRef]
- Chong, C.W.; Dunn, M.J.; Convey, P.; Tan, G.Y.A.; Wong, R.C.S.; Tan, I.K.P. Environmental Influences on Bacterial Diversity of Soils on Signy Island, Maritime Antarctic. Polar Biol. 2009, 32, 1571–1582. [Google Scholar] [CrossRef]
- Chong, C.W.; Pearce, D.A.; Convey, P.; Tan, G.Y.A.; Wong, R.C.S.; Tan, I.K.P. High Levels of Spatial Heterogeneity in the Biodiversity of Soil Prokaryotes on Signy Island, Antarctica. Soil Biol. Biochem. 2010, 42, 601–610. [Google Scholar] [CrossRef]
- Acevedo-Barrios, R.; Bertel-Sevilla, A.; Alonso-Molina, J.; Olivero-Verbel, J. Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean. Int. J. Microbiol. 2019, 2019, 6981865. [Google Scholar] [CrossRef]
- Salam, L.B.; Obayori, O.S.; Ilori, M.O.; Amund, O.O. Chromium Contamination Accentuates Changes in the Microbiome and Heavy Metal Resistome of a Tropical Agricultural Soil. World J. Microbiol. Biotechnol. 2023, 39, 228. [Google Scholar] [CrossRef]
- Ibrahim, U.B.; Kawo, A.H.; Yusuf, I.; Yahaya, S. Physicochemical and Molecular Characterization of Heavy Metal–Tolerant Bacteria Isolated from Soil of Mining Sites in Nigeria. J. Genet. Eng. Biotechnol. 2021, 19, 152. [Google Scholar] [CrossRef]
- Aburto-Medina, A.; Adetutu, E.M.; Aleer, S.; Weber, J.; Patil, S.S.; Sheppard, P.J.; Ball, A.S.; Juhasz, A.L. Comparison of Indigenous and Exogenous Microbial Populations during Slurry Phase Biodegradation of Long-Term Hydrocarbon-Contaminated Soil. Biodegradation 2012, 23, 813–822. [Google Scholar] [CrossRef]
- Tong, H.; Hu, M.; Li, F.; Chen, M.; Lv, Y. Burkholderiales Participating in Pentachlorophenol Biodegradation in Iron-Reducing Paddy Soil as Identified by Stable Isotope Probing. Environ. Sci. Process Impacts 2015, 17, 1282–1289. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madariaga-Troncoso, D.; Vargas, I.; Rojas-Villalta, D.; Abanto, M.; Núñez-Montero, K. Metataxonomics Characterization of Soil Microbiome Extraction Method Using Different Dispersant Solutions. Microorganisms 2025, 13, 936. https://doi.org/10.3390/microorganisms13040936
Madariaga-Troncoso D, Vargas I, Rojas-Villalta D, Abanto M, Núñez-Montero K. Metataxonomics Characterization of Soil Microbiome Extraction Method Using Different Dispersant Solutions. Microorganisms. 2025; 13(4):936. https://doi.org/10.3390/microorganisms13040936
Chicago/Turabian StyleMadariaga-Troncoso, David, Isaac Vargas, Dorian Rojas-Villalta, Michel Abanto, and Kattia Núñez-Montero. 2025. "Metataxonomics Characterization of Soil Microbiome Extraction Method Using Different Dispersant Solutions" Microorganisms 13, no. 4: 936. https://doi.org/10.3390/microorganisms13040936
APA StyleMadariaga-Troncoso, D., Vargas, I., Rojas-Villalta, D., Abanto, M., & Núñez-Montero, K. (2025). Metataxonomics Characterization of Soil Microbiome Extraction Method Using Different Dispersant Solutions. Microorganisms, 13(4), 936. https://doi.org/10.3390/microorganisms13040936