Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = Amnesic Shellfish Poisoning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2415 KiB  
Article
Growth Dynamics and Toxin Production of Pseudo-nitzschia Species Isolated from the Central Adriatic Sea
by Tina Tomašević, Jasna Arapov, Ivana Ujević, Tina Bonačić, Mia Bužančić, Antonija Bulić, Sanda Skejić, Romana Roje-Busatto and Živana Ninčević Gladan
Toxins 2025, 17(6), 307; https://doi.org/10.3390/toxins17060307 - 17 Jun 2025
Cited by 1 | Viewed by 484
Abstract
The marine diatoms Pseudo-nitzschia spp. are globally distributed primary producers, with certain species capable of producing neurotoxin domoic acid (DA), causing amnesic shellfish poisoning (ASP). This study investigates the toxicity and growth rates of Pseudo-nitzschia species isolated from aquaculture areas in the Central [...] Read more.
The marine diatoms Pseudo-nitzschia spp. are globally distributed primary producers, with certain species capable of producing neurotoxin domoic acid (DA), causing amnesic shellfish poisoning (ASP). This study investigates the toxicity and growth rates of Pseudo-nitzschia species isolated from aquaculture areas in the Central Adriatic Sea. A total of 54 strains from eight species were analysed, with strains originating from four different study sites. Growth rates and toxin production were examined across different growth phases in other species and strains. Most species, including P. allochrona, P. calliantha, P. delicatissima, P. fraudulenta, P. galaxiae, P. mannii, and P. multistriata, did not produce DA at any growth phase. The only species that showed toxin production, at 18 °C was P. pseudodelicatissima (0.0007–0.0250 pg cell−1). Notably, the majority of P. pseudodelicatissima strains were toxic in the decay phase and some strains showed continuous toxin production throughout all growth phases. The highest growth rates for the analysed species were recorded in strains of P. delicatissima, which also exhibited the highest cell abundance (8.19 × 105 cell mL−1), followed by the species P. allochrona, P. mannii and P. pseudodelicatissima. Full article
Show Figures

Figure 1

22 pages, 629 KiB  
Article
Investigation into Paralytic Shellfish Toxins and Microcystins in Seabirds from Portugal
by Lucía Soliño, Andrew D. Turner, Begoña Ben-Gigirey, Ryan P. Alexander, Karl J. Dean, Robert G. Hatfield, Benjamin H. Maskrey and María V. Mena Casero
Toxins 2025, 17(3), 135; https://doi.org/10.3390/toxins17030135 - 13 Mar 2025
Cited by 1 | Viewed by 855
Abstract
Microalgae form the basis of marine food webs, essential in sustaining top predators including seabirds. However, certain species of microalgae synthesize biotoxins, which can accumulate in shellfish and fish and may cause harm to marine animals feeding on them. Toxins produced by dinoflagellates [...] Read more.
Microalgae form the basis of marine food webs, essential in sustaining top predators including seabirds. However, certain species of microalgae synthesize biotoxins, which can accumulate in shellfish and fish and may cause harm to marine animals feeding on them. Toxins produced by dinoflagellates have been previously observed to be poisonous to seabirds. Also, in freshwater and brackish habitats, cyanobacteria have caused bird mortality events. In this work, we analyze the prevalence of six families of biotoxins (paralytic shellfish toxins (PSTs), microcystins (MCs), anatoxins, amnesic shellfish toxins (ASTs), cylindrospermopsin, and tetrodotoxins (TTXs)) in 340 samples from 193 wild birds admitted to a wildlife rehabilitation centre in south Portugal. Furthermore, we consider the clinical picture and signs of 17 birds that presented quantifiable levels of biotoxins in their tissues. The relationship between toxin burdens and the symptomatology observed, as well as possible biotoxin sources, are discussed. Based on previously published research data, we conclude that, in these birds, the biotoxins are unlikely to be the only cause of death but might contribute to some extent to a reduction in birds’ fitness. Full article
Show Figures

Figure 1

38 pages, 2970 KiB  
Review
The Toxic Effects of Environmental Domoic Acid Exposure on Humans and Marine Wildlife
by Ami E. Krasner, Margaret E. Martinez, Cara L. Field and Spencer E. Fire
Mar. Drugs 2025, 23(2), 61; https://doi.org/10.3390/md23020061 - 29 Jan 2025
Viewed by 2390
Abstract
Biotoxins produced by harmful algal blooms (HABs) are a substantial global threat to ocean and human health. Domoic acid (DA) is one such biotoxin whose negative impacts are forecasted to increase with climate change and coastal development. This manuscript serves as a review [...] Read more.
Biotoxins produced by harmful algal blooms (HABs) are a substantial global threat to ocean and human health. Domoic acid (DA) is one such biotoxin whose negative impacts are forecasted to increase with climate change and coastal development. This manuscript serves as a review of DA toxicosis after environmental exposure in humans and wildlife, including an introduction to HAB toxins, the history of DA toxicosis, DA production, toxicokinetic properties of DA, susceptibility, clinical signs, DA detection methods and other diagnostic tests, time course of toxicosis, treatment, prognostics, and recommendations for future research. Additionally, we highlight the utility of California sea lions (CSLs; Zalophus californianus) as a model and sentinel of environmental DA exposure. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

26 pages, 27959 KiB  
Article
Advancing the Taxonomy of the Diatom Pseudo-nitzschia Through an Integrative Study Conducted in the Central and Southeastern Adriatic Sea
by Tina Bonačić, Jasna Arapov, Ivana Bušelić, Ivana Lepen Pleić, Blanka Milić Roje, Tina Tomašević, Mia Bužančić, Marija Mladinić, Silvia Casabianca, Antonella Penna, Sanda Skejić and Živana Ninčević Gladan
Plants 2025, 14(2), 245; https://doi.org/10.3390/plants14020245 - 16 Jan 2025
Cited by 3 | Viewed by 1335
Abstract
The marine diatom genus Pseudo-nitzschia comprises cosmopolitan phytoplankton species commonly present in the Adriatic Sea. Species within the genus Pseudo-nitzschia have been of significant concern because they produce domoic acid (DA), which can cause amnesic shellfish poisoning (ASP). In this study, we identified [...] Read more.
The marine diatom genus Pseudo-nitzschia comprises cosmopolitan phytoplankton species commonly present in the Adriatic Sea. Species within the genus Pseudo-nitzschia have been of significant concern because they produce domoic acid (DA), which can cause amnesic shellfish poisoning (ASP). In this study, we identified Pseudo-nitzschia species along the Central and Southeastern Adriatic Sea, where monthly sampling carried out from February 2022 to February 2024 allowed for comprehensive species documentation. Pseudo-nitzschia species cell cultures isolated from the study areas were morphologically and molecularly analysed. Morphological analyses were performed using a scanning electron microscope (FE-SEM/STEM), while molecular analyses were conducted, targeting the ITS1-5.8S-ITS2, LSU, and rbcL regions, to confirm species identity. This integrative approach led to the identification of eight species: Pseudo-nitzschia allochrona, Pseudo-nitzschia calliantha, Pseudo-nitzschia delicatissima, Pseudo-nitzschia fraudulenta, Pseudo-nitzschia mannii, Pseudo-nitzschia multistriata, Pseudo-nitzschia pseudodelicatissima, and Pseudo-nitzschia subfraudulenta. Our findings underscore the value of a combined approach for reliable species identification and contribute to the development of genetic sequence databases that support the advancement of next-generation methods such as metabarcoding. This research emphasises the importance of combined morphological and molecular methods for the differentiation of the cryptic and pseudo-cryptic Pseudo-nitzschia species. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

26 pages, 2572 KiB  
Review
Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors
by Kuan-Kuan Yuan, Hong-Ye Li and Wei-Dong Yang
Mar. Drugs 2024, 22(11), 510; https://doi.org/10.3390/md22110510 - 10 Nov 2024
Cited by 5 | Viewed by 3279
Abstract
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning [...] Read more.
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning (CP). Despite being caused by exposure to various toxins or toxin analogs, these clinical syndromes share numerous similarities. Humans are exposed to these toxins mainly through the consumption of fish and shellfish, which serve as the main biological vectors. However, the risk of human diseases linked to toxigenic HABs is on the rise, corresponding to a dramatic increase in the occurrence, frequency, and intensity of toxigenic HABs in coastal regions worldwide. Although a growing body of studies have focused on the toxicological assessment of HAB-related species and their toxins on aquatic organisms, the organization of this information is lacking. Consequently, a comprehensive review of the adverse effects of HAB-associated species and their toxins on those organisms could deepen our understanding of the mechanisms behind their toxic effects, which is crucial to minimizing the risks of toxigenic HABs to human and public health. To this end, this paper summarizes the effects of the five most common HAB toxins on fish, shellfish, and humans and discusses the possible mechanisms. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

16 pages, 2458 KiB  
Article
Identification of Pseudo-nitzschia Cryptic Species Collected in the Gulf of Naples Using Whole-Cell Fluorescent In Situ Hybridization: From Cultured Sample to Field Test
by Michele Ferrari, Lucia Barra, Luisa Ruffolo, Antonella Muto, Christian Galasso, Isabella Percopo, Silvestro Greco and Radiana Cozza
Diversity 2023, 15(4), 521; https://doi.org/10.3390/d15040521 - 4 Apr 2023
Viewed by 2488
Abstract
The planktonic diatom genus Pseudo-nitzschia contains several genetically closely related species that can produce domoic acid, a potent neurotoxin known to cause amnesic shellfish poisoning (ASP). An early identification and an adequate monitoring of the potential toxic Pseudo-nitzschia spp. are necessary. However, effective [...] Read more.
The planktonic diatom genus Pseudo-nitzschia contains several genetically closely related species that can produce domoic acid, a potent neurotoxin known to cause amnesic shellfish poisoning (ASP). An early identification and an adequate monitoring of the potential toxic Pseudo-nitzschia spp. are necessary. However, effective monitoring programs are time consuming due, in some cases, to the cell morphology similarities among species, determined with light microscopy, that can result in insufficient data to give a definitive species and toxins attribution. In this paper, Whole-Cell Fluorescent In Situ Hybridization (WC-FISH) has been evaluated as a powerful tool to detect and enumerate harmful cryptic and/or pseudo-cryptic Pseudo-nitzschia spp. collected in the Gulf of Naples. Fluorescently labelled probes directed against the ribosomal RNA (rRNA) of the 28S large subunit (LSU) were used. In particular, five probes detecting four cryptic species of Pseudo-nitzschia delicatissima complex and one specific for Pseudo-nitzschia multistriata gave good results for the molecular identification of potentially toxic target species in natural samples. Finally, we can state that the WC-FISH method, to identify Pseudo-nitzschia species, is faster and more cost-effective if compared with other rDNA-based methods. Full article
(This article belongs to the Special Issue Diversity in 2023)
Show Figures

Figure 1

15 pages, 3070 KiB  
Article
Age and Sex as Determinants of Acute Domoic Acid Toxicity in a Mouse Model
by Alicia M. Hendrix, Kathi A. Lefebvre, Emily K. Bowers, Rudolph Stuppard, Thomas Burbacher and David J. Marcinek
Toxins 2023, 15(4), 259; https://doi.org/10.3390/toxins15040259 - 1 Apr 2023
Cited by 5 | Viewed by 2206
Abstract
The excitatory neurotoxin domoic acid (DA) consistently contaminates food webs in coastal regions around the world. Acute exposure to the toxin causes Amnesic Shellfish Poisoning, a potentially lethal syndrome of gastrointestinal- and seizure-related outcomes. Both advanced age and male sex have been suggested [...] Read more.
The excitatory neurotoxin domoic acid (DA) consistently contaminates food webs in coastal regions around the world. Acute exposure to the toxin causes Amnesic Shellfish Poisoning, a potentially lethal syndrome of gastrointestinal- and seizure-related outcomes. Both advanced age and male sex have been suggested to contribute to interindividual DA susceptibility. To test this, we administered DA doses between 0.5 and 2.5 mg/kg body weight to female and male C57Bl/6 mice at adult (7–9-month-old) and aged (25–28-month-old) life stages and observed seizure-related activity for 90 min, at which point we euthanized the mice and collected serum, cortical, and kidney samples. We observed severe clonic–tonic convulsions in some aged individuals, but not in younger adults. We also saw an association between advanced age and the incidence of a moderately severe seizure-related outcome, hindlimb tremors, and between advanced age and overall symptom severity and persistence. Surprisingly, we additionally report that female mice, particularly aged female mice, demonstrated more severe neurotoxic symptoms following acute exposure to DA than males. Both age and sex patterns were reflected in tissue DA concentrations as well: aged mice and females had generally higher concentrations of DA in their tissues at 90 min post-exposure. This study contributes to the body of work that can inform intelligent, evidence-based public health protections for communities threatened by more frequent and extensive DA-producing algal blooms. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

18 pages, 1058 KiB  
Article
SoundToxins: A Research and Monitoring Partnership for Harmful Phytoplankton in Washington State
by Vera L. Trainer and Teri L. King
Toxins 2023, 15(3), 189; https://doi.org/10.3390/toxins15030189 - 2 Mar 2023
Cited by 9 | Viewed by 3166
Abstract
The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest [...] Read more.
The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest because of their impact on human health are the saxitoxins that cause paralytic shellfish poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP), diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP) and the recent measurement of azaspiracids, known to cause azaspiracid poisoning (AZP), at low concentrations in Puget Sound shellfish. The flagellate, Heterosigma akashiwo, impacts the health and harvestability of aquacultured and wild salmon in Puget Sound. The more recently described flagellates that cause the illness or death of cultivated and wild shellfish, include Protoceratium reticulatum, known to produce yessotoxins, Akashiwo sanguinea and Phaeocystis globosa. This increased incidence of HABs, especially dinoflagellate HABs that are expected in increase with enhanced stratification linked to climate change, has necessitated the partnership of state regulatory programs with SoundToxins, the research, monitoring and early warning program for HABs in Puget Sound, that allows shellfish growers, Native tribes, environmental learning centers and citizens, to be the “eyes on the coast”. This partnership enables safe harvest of wholesome seafood for consumption in the region and helps to describe unusual events that impact the health of oceans, wildlife and humans. Full article
Show Figures

Figure 1

23 pages, 6985 KiB  
Article
Impacts of Climate Change on the Biogeography of Three Amnesic Shellfish Toxin Producing Diatom Species
by Francisco O. Borges, Vanessa M. Lopes, Catarina Frazão Santos, Pedro Reis Costa and Rui Rosa
Toxins 2023, 15(1), 9; https://doi.org/10.3390/toxins15010009 - 22 Dec 2022
Cited by 3 | Viewed by 2913
Abstract
Harmful algal blooms (HABs) are considered one of the main risks for marine ecosystems and human health worldwide. Climate change is projected to induce significant changes in species geographic distribution, and, in this sense, it is paramount to accurately predict how it will [...] Read more.
Harmful algal blooms (HABs) are considered one of the main risks for marine ecosystems and human health worldwide. Climate change is projected to induce significant changes in species geographic distribution, and, in this sense, it is paramount to accurately predict how it will affect toxin-producing microalgae. In this context, the present study was intended to project the potential biogeographical changes in habitat suitability and occurrence distribution of three key amnesic shellfish toxin (AST)—producing diatom species (i.e., Pseudo-nitzschia australis, P. seriata, and P. fraudulenta) under four different climate change scenarios (i.e., RCP-2.6, 4.5, 6.0, and 8.5) up to 2050 and 2100. For this purpose, we applied species distribution models (SDMs) using four abiotic predictors (i.e., sea surface temperature, salinity, current velocity, and bathymetry) in a MaxEnt framework. Overall, considerable contraction and potential extirpation were projected for all species at lower latitudes together with projected poleward expansions into higher latitudes, mainly in the northern hemisphere. The present study aims to contribute to the knowledge on the impacts of climate change on the biogeography of toxin-producing microalgae species while at the same time advising the correct environmental management of coastal habitats and ecosystems. Full article
Show Figures

Figure 1

28 pages, 12911 KiB  
Review
Spatial Temporal Expansion of Harmful Algal Blooms in Chile: A Review of 65 Years Records
by Camila Barría, Piera Vásquez-Calderón, Catalina Lizama, Pablo Herrera, Anahi Canto, Pablo Conejeros, Orietta Beltrami, Benjamín A. Suárez-Isla, Daniel Carrasco, Ignacio Rubilar, Leonardo Guzmán, L. René Durán and Doris Oliva
J. Mar. Sci. Eng. 2022, 10(12), 1868; https://doi.org/10.3390/jmse10121868 - 2 Dec 2022
Cited by 16 | Viewed by 3714
Abstract
Harmful Algal Blooms (HABs) have been classified depending on the causative organism and its impacts: non-toxic HAB (microalgae capable of affecting tourism and causing oxygen deficiency, which generates mortality of marine organisms), toxic HAB (microalgae capable of transferring toxins to the food chain), [...] Read more.
Harmful Algal Blooms (HABs) have been classified depending on the causative organism and its impacts: non-toxic HAB (microalgae capable of affecting tourism and causing oxygen deficiency, which generates mortality of marine organisms), toxic HAB (microalgae capable of transferring toxins to the food chain), and ichthyotoxic HAB (microalgae capable of generating mechanical damage in fish). HABs represent a worldwide problem and have apparently increased in frequency, intensity, and geographic distribution at different latitudes. This review details the occurrence of HAB events in the Southeast Pacific, Chile, over a 65-year period, analysing two of the three types of HAB described: toxic and ichthyotoxic HABs. For this, we conducted a review from many different scientific sources and from the written press and social media, that have mentioned HAB events in the country. In Chile, the microalgae involved in HAB events are dinoflagellate (52%), diatoms (33%) and silicoflagellate (10%), with a total of 41 species and/or genera described in the literature. A total of 501 HAB events were recorded in Chile between 1956 and 2021, where 240 (47.9%), 238 (47.5%), 14 (2.7%), 8 (1.5%) and 1 (0.2%) event were caused by diatoms, dinoflagellate, silicoflagellate, raphidophycean and haptophyte, respectively. An apparent increase in the frequency of HAB events is observed since the first record in 1956, with a maximum of 46 events during the years 2017 and 2019. The highest incidence in fish is caused by the group of silicoflagellate, raphidophycean and haptophyte (23 events), where 10 events caused mortalities in salmon with an incidence rate of 43.4%. Unlike what is observed with diatoms and dinoflagellate, the events associated with these groups are less frequent, but hold a much higher salmon mortality rate. During the last 65 years, HAB’s geographic extent shows an apparent trend to increase south-to-north. However, the identification of events is closely linked to the areas where much of the country’s aquaculture is located and, therefore, it could be biased. In turn, it is observed that the apparent increase in HAB events could be associated with a greater monitoring effort after major events (e.g., after the 2016 HAB event). On the other hand, it is also recognized a lack of knowledge about harmful algae throughout the Chilean Humboldt Current system, particularly in the northern regions, such as Atacama and Coquimbo. Therefore, the total number of blooms that have occurred in fjords and channels, particularly those that have caused minor economic impacts for artisanal fishermen and the salmon and mussel farming sector, might be underestimated. Full article
(This article belongs to the Special Issue Marine Harmful Algae)
Show Figures

Figure 1

26 pages, 2731 KiB  
Article
Marine Biotoxins in Whole and Processed Scallops from the Argentine Sea
by Alejandra B. Goya, Danial Baqer, Ryan P. Alexander, Patrycja Stubbs, Karl Dean, Adam M. Lewis, Lewis Coates, Benjamin H. Maskrey and Andrew D. Turner
Mar. Drugs 2022, 20(10), 634; https://doi.org/10.3390/md20100634 - 10 Oct 2022
Cited by 7 | Viewed by 2907
Abstract
Harmful algal blooms are an increasing worldwide threat to the seafood industry and human health as a consequence of the natural production of biotoxins that can accumulate in shellfish. In the Argentine Sea, this has been identified as an issue for the offshore [...] Read more.
Harmful algal blooms are an increasing worldwide threat to the seafood industry and human health as a consequence of the natural production of biotoxins that can accumulate in shellfish. In the Argentine Sea, this has been identified as an issue for the offshore fisheries of Patagonian scallops (Zygochlamys patagonica), leading to potentially harmful effects on consumers. Here we assess spatial and temporal patterns in marine biotoxin concentrations in Patagonian scallops harvested in Argentinian waters between 2012–2017, based on analyses for paralytic shellfish toxins, lipophilic toxins, and amnesic shellfish toxins. There was no evidence for concentrations of lipophilic or amnesic toxins above regulatory acceptance thresholds, with trace concentrations of pectenotoxin 2, azaspiracid 2 and okadaic acid group toxins confirmed. Conversely, paralytic shellfish toxins were quantified in some scallops. Gonyautoxins 1 and 2 dominated the unusual toxin profiles (91%) in terms of saxitoxin equivalents with maximum concentrations reaching 3985 µg STX eq/kg and with changes in profiles linked in part to seasonal changes. Total toxin concentrations were compared between samples of the adductor muscle and whole tissue, with results showing the absence of toxins in the adductor muscle confirming toxin accumulation in the digestive tracts of the scallops and the absence of a human health threat following the processing of scallop adductor meat. These findings highlight that paralytic shellfish toxins with an unusual toxin profile can occur in relatively high concentrations in whole Patagonian scallops in specific regions and during particular time periods, also showing that the processing of scallops on board factory ships to obtain frozen adductor muscle is an effective management process that minimizes the risk of poisonings from final products destined for human consumption. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Figure 1

19 pages, 1838 KiB  
Review
Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review
by Biswajita Pradhan, Hansol Kim, Sofia Abassi and Jang-Seu Ki
Toxins 2022, 14(6), 397; https://doi.org/10.3390/toxins14060397 - 8 Jun 2022
Cited by 26 | Viewed by 5390
Abstract
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences [...] Read more.
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future. Full article
Show Figures

Figure 1

17 pages, 2391 KiB  
Article
Toxicity of the Diatom Genus Pseudo-nitzschia (Bacillariophyceae): Insights from Toxicity Tests and Genetic Screening in the Northern Adriatic Sea
by Timotej Turk Dermastia, Sonia Dall’Ara, Jožica Dolenc and Patricija Mozetič
Toxins 2022, 14(1), 60; https://doi.org/10.3390/toxins14010060 - 15 Jan 2022
Cited by 25 | Viewed by 5846
Abstract
Diatoms of the genus Pseudo-nitzschia H.Peragallo are known to produce domoic acid (DA), a toxin involved in amnesic shellfish poisoning (ASP). Strains of the same species are often classified as both toxic and nontoxic, and it is largely unknown whether this difference is [...] Read more.
Diatoms of the genus Pseudo-nitzschia H.Peragallo are known to produce domoic acid (DA), a toxin involved in amnesic shellfish poisoning (ASP). Strains of the same species are often classified as both toxic and nontoxic, and it is largely unknown whether this difference is also genetic. In the Northern Adriatic Sea, there are virtually no cases of ASP, but DA occasionally occurs in shellfish samples. So far, three species—P. delicatissima (Cleve) Heiden, P. multistriata (H. Takano) H. Takano, and P. calliantha Lundholm, Moestrup, & Hasle—have been identified as producers of DA in the Adriatic Sea. By means of enzme-linked immunosorbent assay (ELISA), high-performance liquid chromatography with UV and visible spectrum detection (HPLC-UV/VIS), and liquid chromatography with tandem mass spectrometry (LC-MS/MS), we reconfirmed the presence of DA in P. multistriata and P. delicatissima and detect for the first time in the Adriatic Sea DA in P. galaxiae Lundholm, & Moestrup. Furthermore, we attempted to answer the question of the distribution of DA production among Pseudo-nitzschia species and strains by sequencing the internal transcribed spacer (ITS) phylogenetic marker and the dabA DA biosynthesis gene and coupling this with toxicity data. Results show that all subclades of the Pseudo-nitzschia genus contain toxic species and that toxicity appears to be strain dependent, often with geographic partitioning. Amplification of dabA was successful only in toxic strains of P. multistriata and the presence of the genetic architecture for DA production in non-toxic strains was thus not confirmed. Full article
(This article belongs to the Special Issue Marine Toxins from Harmful Algae and Seafood Safety)
Show Figures

Figure 1

12 pages, 636 KiB  
Article
Occurrence and Seasonal Monitoring of Domoic Acid in Three Shellfish Species from the Northern Adriatic Sea
by Kristina Kvrgić, Tina Lešić, Natalija Džafić and Jelka Pleadin
Toxins 2022, 14(1), 33; https://doi.org/10.3390/toxins14010033 - 3 Jan 2022
Cited by 10 | Viewed by 2913
Abstract
As filter feeders, bivalves and ascidians can accumulate contaminants present in the environment and pass them on to higher food chain levels as vectors. The consumption of bivalves contaminated with the potent neurotoxin domoic acid (DA) can cause amnesic shellfish poisoning in humans. [...] Read more.
As filter feeders, bivalves and ascidians can accumulate contaminants present in the environment and pass them on to higher food chain levels as vectors. The consumption of bivalves contaminated with the potent neurotoxin domoic acid (DA) can cause amnesic shellfish poisoning in humans. The aim of this study was to determine seasonal differences in occurrence and accumulation of this phycotoxin in European oysters (Ostrea edulis Linnaeus, 1758) (n = 46), Queen scallops (Aequipecten opercularis Linnaeus, 1758) (n = 53), and edible ascidians of the Microcosmus spp. (n = 107), originating from the same harvesting area in the Northern Adriatic Sea. The quantification was performed using ultra-performance liquid chromatography–tandem mass spectrometry (LC-MS/MS) preceded by derivatization with dansyl chloride. DA was found in very low concentrations throughout the year, with a maximum value of 810 μg/kg in Queen scallops. This study reveals differences in the occurrence and accumulation of DA between Queen scallops and the other two investigated species (oysters and ascidians) and the highest concentrations during the colder part of the year. Even though DA was detected in all of them, Queen scallops showed higher DA accumulation compared to the other two (p < 0.001), hence representing a sentinel species suitable for the monitoring of DA level in seafood. Full article
Show Figures

Figure 1

23 pages, 6833 KiB  
Article
Twenty-Five Years of Domoic Acid Monitoring in Galicia (NW Spain): Spatial, Temporal and Interspecific Variations
by Juan Blanco, Ángeles Moroño, Fabiola Arévalo, Jorge Correa, Covadonga Salgado, Araceli E. Rossignoli and J. Pablo Lamas
Toxins 2021, 13(11), 756; https://doi.org/10.3390/toxins13110756 - 25 Oct 2021
Cited by 13 | Viewed by 3120
Abstract
Prevalence, impact on shellfish resources and interspecific, spatial, and temporal variabilities of domoic acid (DA) in bivalves from Galicia (NW Spain) have been studied based on more than 25 years of monitoring data. The maximum prevalence (samples in which DA was detected) (100%) [...] Read more.
Prevalence, impact on shellfish resources and interspecific, spatial, and temporal variabilities of domoic acid (DA) in bivalves from Galicia (NW Spain) have been studied based on more than 25 years of monitoring data. The maximum prevalence (samples in which DA was detected) (100%) and incidence (samples with DA levels above the regulatory limit) (97.4%) were recorded in Pecten maximus, and the minimum ones in Mytilus galloprovincialis (12.6 and 1.1%, respectively). The maximum DA concentrations were 663.9 mg kg−1 in P. maximus and 316 mg kg1 in Venerupis corrugata. After excluding scallop P. maximus data, DA was found (prevalence) in 13.3% of bivalve samples, with 1.3% being over the regulatory limit. In general, the prevalence of this toxin decreased towards the North but not the magnitude of its episodes. The seasonal distribution was characterized by two maxima, in spring and autumn, with the later decreasing in intensity towards the north. DA levels decreased slightly over the studied period, although this decreasing trend was not linear. A cyclic pattern was observed in the interannual variability, with cycles of 4 and 11 years. Intoxication and detoxification rates were slower than those expected from laboratory experiments, suggesting the supply of DA during these phases plays an important role. Full article
(This article belongs to the Special Issue Monitoring of Marine Biotoxins)
Show Figures

Figure 1

Back to TopTop