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Abstract: Diatoms of the genus Pseudo-nitzschia H.Peragallo are known to produce domoic acid
(DA), a toxin involved in amnesic shellfish poisoning (ASP). Strains of the same species are often
classified as both toxic and nontoxic, and it is largely unknown whether this difference is also
genetic. In the Northern Adriatic Sea, there are virtually no cases of ASP, but DA occasionally
occurs in shellfish samples. So far, three species—P. delicatissima (Cleve) Heiden, P. multistriata
(H. Takano) H. Takano, and P. calliantha Lundholm, Moestrup, & Hasle—have been identified as
producers of DA in the Adriatic Sea. By means of enzme-linked immunosorbent assay (ELISA),
high-performance liquid chromatography with UV and visible spectrum detection (HPLC-UV/VIS),
and liquid chromatography with tandem mass spectrometry (LC-MS/MS), we reconfirmed the
presence of DA in P. multistriata and P. delicatissima and detect for the first time in the Adriatic Sea
DA in P. galaxiae Lundholm, & Moestrup. Furthermore, we attempted to answer the question of the
distribution of DA production among Pseudo-nitzschia species and strains by sequencing the internal
transcribed spacer (ITS) phylogenetic marker and the dabA DA biosynthesis gene and coupling this
with toxicity data. Results show that all subclades of the Pseudo-nitzschia genus contain toxic species
and that toxicity appears to be strain dependent, often with geographic partitioning. Amplification of
dabA was successful only in toxic strains of P. multistriata and the presence of the genetic architecture
for DA production in non-toxic strains was thus not confirmed.

Keywords: Adriatic; dabA; domoic acid; Pseudo-nitzschia galaxiae; ITS

Key Contribution: Determination of toxic Pseudo-nitzschia species in the Adriatic Sea. Study on the
phylogenetic distribution of the capability to produce DA.

1. Introduction

Pseudo-nitzschia H. Peragallo is a genus consisting of 54 confirmed species of diatoms,
about half of which have been confirmed as producers of the neurotoxin domoic acid
(DA) [1,2]. There are several methods for detecting DA that have evolved over time.
Shellfish-monitoring programs use the standard reference method—liquid chromatography
with ultraviolet detection, which is sufficient because threshold concentrations are usually
high (20 µg/kg shellfish tissue). Immunoassays are also readily available from commercial
manufacturers and offer high sensitivity and throughput. Finally, liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS) is the main method used in research
today, as it offers high throughput and analytical precision. Several mechanisms for the
induction and upregulation of domoic acid have been proposed, often with conflicting
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evidence. From the synthesis of factors affecting the production of DA presented in [3],
it appears that the physiological state of the cell has a significant influence although the
evolutionary purpose of the production of DA is not fully understood. Originally, it
was proposed that DA is a chelating agent for iron and copper ions [4–6] although there
is still conflicting evidence for this hypothesis [7,8]. Nonetheless, the understanding of
toxin regulation and physiology has improved significantly recently, particularly with the
discovery of the DA biosynthetic pathway, where four enzymes (DabA–D) coded by four
genes (dabA–D) were discovered [9]. Furthermore, it was established that DA production
is induced by copepod grazer cues [10,11] although an increase in DA concentration did
not significantly affect grazing in these studies. Recently, however, new evidence has been
presented for the deterrent function of DA against grazers [12]. Whatever evolutionary or
ecological advantage the production of DA may provide, questions remain as to why some
strains of the same species produce it and others do not and how the ability to produce DA
is distributed along the phylogenetic tree of Pseudo-nitzschia. This is particularly interesting
since some studies suggest that species that do not produce DA do not benefit from the
addition of DA into their iron-limited growth media [8]. Conversely, the deterrent effect on
grazers seems to be of great benefit to DA-producing strains, so it could be assumed that the
loss of this ability would be detrimental to such strains. The discovery of nzyme-encoding
genes involved in the biosynthetic pathway of DA production [9] provides an opportunity
to trace gene distribution and structure within the genus Pseudo-nitzschia and beyond and
to answer these questions.

The aim of this work was to determine the toxicity potential of several Pseudo-nitzschia
species found in the Gulf of Trieste (GoT), the northern Adriatic [13], and to complement
these results with molecular data to determine whether the production of DA is phyloge-
netically linked. In this context, we also investigated whether the dabA gene is present in
strains that we found did not produce DA. The GoT is a nutrient-rich environment with
occasional phosphorus limitation. The temperature rarely drops below 7 ◦C in winter and
can exceed 28 ◦C at the surface in summer. Although potentially toxic Pseudo-nitzschia
species occasionally bloom here [13,14], DA is rarely found in shellfish and is generally not
harmful to the food industry [15]. The diversity of Pseudo-nitzschia in the Gulf of Trieste has
only recently been elucidated [13], while numerous reports are available for other regions of
the Adriatic Sea, e.g., [16–20]. Species richness is comparable to that of other coastal regions
of the Mediterranean and other temperate zones, while seasonality and species occurrence
seem to be localized to some extent. Reports on toxicity are much sparser, but the presence
of DA in cultures of P. delicatissima [17], P. multistriata [21], and recently P. calliantha [22]
has been reported. The latter was previously suspected based on circumstantial evidence
derived from the analysis of toxin-positive mussel samples and the accompanying net
trawls in which P. calliantha and P. pseudodelicatissima (Hasle) Hasle cells were found [19,23].

We tested six species using different methods and report toxin production in three
species, namely P. multistriata, P. delicatissima, and—for the first time in this area—in P.
galaxiae. Several strains of each species were studied, and three morphological types were
also recognized in P. galaxiae [13,24]. We complement our results with a global perspective
on the phylogeny of toxic and non-toxic Pseudo-nitzschia and as well provide preliminary
insight into the distribution of the dabA gene.

2. Results
2.1. Toxicity of Individual Strains

Thirty-three strains belonging to six species of Pseudo-nitzschia were analyzed for the
content of DA. Table 1 shows the toxicity results for each strain tested. The method with
the lowest limit of detection (LOD) was the ELISA method, with a LOD of 0.17 ng/mL of
DA and a limit of quantification (LOQ) of 0.5 ng/mL. HPLC-UV had a LOQ of 2 µg·mL−1,
and LC-MS/MS had a LOQ of 0.8 µg·mL−1. As you can see, some strains were confirmed
to be toxic only by the ELISA test, while they did not prove positive in HPLC-UV and in
the LC-MC/MS method. This prompted us to retest these samples with ELISA at lower
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dilutions to confirm the presence or absence of DA. Most retests resulted in concentrations
below LOQ, with the exception of P. galaxiae strain B3S, where the concentration was
still above the limit of quantification. There were also many borderline strains that had
concentrations below 0.5 ng/mL (LOQ), but we could not rule out their toxicity because
the absorbance was lower than the negative standard values, indicating some competitive
binding in the ELISA. P. galaxiae strains BAT2 and B2S also showed inconclusive results, as
the dissolved DA (dDA) fraction gave higher measured concentrations than the total DA
(tDA) fraction. On repeated analysis, both particulate (pDA) and dDA in B2S were below
LOQ, while in BAT2, the concentration of pDA was higher than dDA although we could
not quantify it again as the signal remained above quantification. We could not confirm
toxin production in strains of P. mannii Amato & Montresor and P. subfraudulenta (Hasle)
Hasle and P. calliantha although for one strain of P. calliantha and one strain of P. mannii,
results indicated minute concentrations below the LOQ of the ELISA assay.

2.2. DA Production in Different Growth Phases

We observed a decreasing trend in particulate toxin content with increasing cell density
in P. multistriata strain 119-A4 (Figure 1A), while dDA increased slightly only on the last
day of measurements (Figure 1B). It can be seen that the initial screening yielded a similar
cell number as on day 11 but a completely different concentration for both the pDA and
dDA fractions. While the pDA fraction was lower in the initial screening compared to day
11, the dDA fraction was significantly higher. In our case, the toxin was already produced
in the exponential growth phase, while measurements in the stationary phase were not
performed. After the initial confirmation of toxicity in P. delicatissima strain 119-B3, we
could not confirm DA in the experiment where DA was sampled during different growth
stages. The concentration of DA was probably very low in this case since the HPLC-UV
method could not detect DA even in the initial screening (Table 1). We see here that the
measurements between the HPLC-UV and ELISA methods are comparable and give very
similar concentrations, except in the case of the first screening with dDA, where the ELISA
method gives much higher concentrations. Reliable concentrations of pDA and dDA for
the other strains tested in different growth phases could not be determined and so are not
reported here.

2.3. Phylogeny and Toxicity

Our comprehensive phylogenetic analysis based on the ITS2 sequences of all species of
Pseudo-nitzschia—where both ITS2 sequence data and toxicity data were available—shows
that all major lineages of the genus harbor strains and species that are both toxic and
non-toxic (Figure 2). The group with the lowest number of toxic strains was Group III
sensu [25] although we see that a toxic P. kodamae S.T. Teng, H.C. Lim, C.P. Leaw, & P.T.
Lim strain is included in this group. We also know that P. calliantha, which is a member of
Group III, can be toxic, but no ITS sequences of toxic strains were available in GenBank. In
some cases, toxic and non-toxic strains were separated by high statistical support. We see
this pattern in P. australis Franguelli; P. bipertita S.T. Teng, H.C. Lim, & C.P. Leaw; P. galaxiae;
P. kodamae; P. multiseries (Hasle) Hasle; P. subcurvata (Hasle) Fryxell; P. subfraudulenta; and
P. pseudodelicatissima. In some cases, such as with P. bipertita, P. pseudodelicatissima, and P.
subfraudulenta, the differing strains were from different geographical areas, while in other
species, strains were from the same area (Table S1). The differences between geographically
separated as well as non-separated strains are most pronounced in P. galaxiae, which stands
out when we take a closer look at the phylogeny (Figure 3B). P. galaxiae shows major
genetic differences that are consistent with the morphological characterization. Therefore, P.
galaxiae is hereafter referred to as the P. galaxiae species complex although the phylogenetic
position of these different strains has not yet been clarified. We see that two major clades
have emerged, one consisting mainly of non-toxic larger strains, while the other consisted of
well-separated medium and small strains, including three from this study (Figure 4). Both
clades harbored a strain that was an exception to this rule although the BAT2 strain was
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morphologically quite distinct from the other three strains, exhibiting a peculiar baseball
bat-like morphology (Figure 5). Strain (10)4A3 from Greece was also a medium-sized strain.
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Figure 1. (A) Change in pDA content in P. multistriata strain 119-A4; (B) change in dDA content in P.
multistriata strain 119-A4. The preliminary measurements were part of the screening experiment
presented in Table 1.
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Table 1. Summary of strains and tests performed on each strain and the concentrations of DA associated with them.

Species Strain Sampling
Frequency 1 Partition Tested Test Method 2 Result 3 DA Concentration4 ELISA Retest 5

P. delicatissima 219 A1 P pDA E -
219 A2 P pDA E -
219 A3 P pDA E -
219 B1 P pDA E -
219 B2 P pDA E -
219 B3 P pDA E -
219 B4 P pDA E -
119 A2 P pDA E -
119 A3 P pDA E -
119 B3 P & C pDA and dDA E&H + (E) 1.5 fg/cell <quant
119 C1 P pDA and dDA E&H + (E) NA <quant
119 C4 P pDA E -

P. multistriata 119 A4 P & C pDA and dDA E&H + (E&H) pDA: 16–114 fg/cell; dDA: 6–257 ng/mL
119 C3 P pDA and dDA E&H + (E&H) pDA: 121–160 fg/cell; dDA: 30–80
MS2 P & C pDA and dDA E; H; L + (E) pDA: 0–32.8 fg/cell; dDA: 20 ng/mL <quant
MS3 P & C pDA and dDA E; H; L + (E) pDA: 1.42–20.7 fg/cell; dDA: 14.6–38.5 ng/mL <quant

PN0DB2131216-A P pDA L -
PN0DB2131216-B P pDA L -
PN0DB2131216-C P pDA L + 0.217 fg/cell

P. galaxiae—large MA-919-C1 P pDA and dDA E&H -
MA-919-A2 P pDA and dDA E&H -
F919-C2L P pDA and dDA E&H -

P. galaxiae—medium F919-B1M P pDA and dDA E&H -
P. galaxiae—bat-like BAT2 P pDA and dDA E&H o (E) dDA: 13 ng/mL <quant

P. galaxiae—small B3S P pDA and dDA E&H + (E) dDA: 5–24.8 ng/mL; pDA > quant >quant
B2S P pDA and dDA E&H o (E) dDA: 12.6 ng/mL <quant

P. mannii BF-819-B2 P pDA and dDA E&H -
BF-819-A4 P pDA and dDA E&H -
BD-919-A3 P pDA and dDA E&H -

PNF_1020_5 P pDA and dDA E o <quant

P. subfraudulenta PNF_1020_1 P pDA and dDA E -

P. calliantha PNF_1020_2 P pDA and dDA E o <quant
PN00BF281016-2A P pDA L -

1 P, point; C, continuous. 2 E, ELISA; H, HPLC-UV; L, LC-MS/MS. 3 o indicates an inconclusive result. 4 NA, not available; the toxicity range is obtained from different tests of the same
culture. 5 </> quant, below/above quantification.
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Figure 2. Maximum likelihood (ML) tree of the ITS2 marker constructed using 94 sequences gathered
from GenBank (https://www.ncbi.nlm.nih.gov/genbank/; accessed on 19 November 2021), using
the TVM + G + I evolutionary model and 10,000 bootstraps of the tree space. Only bootstrap supports
higher than 0.7 are shown. >0.95 is considered high support. Note that not all strains presented in
Table 1 are included because ITS sequences of some could not be obtained.

https://www.ncbi.nlm.nih.gov/genbank/


Toxins 2022, 14, 60 7 of 17Toxins 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 3. Pruned trees from Figure 2. (A) Tree of P. delicatissima; (B) tree of P. galaxiae; (C) tree of P. 

multistriata. The trees were drawn using the same conditions as the tree in Figure 2. Bootstrap sup-

ports higher than 0.5 are shown. 

Figure 3. Pruned trees from Figure 2. (A) Tree of P. delicatissima; (B) tree of P. galaxiae; (C) tree of
P. multistriata. The trees were drawn using the same conditions as the tree in Figure 2. Bootstrap
supports higher than 0.5 are shown.
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Figure 4. P. galaxiae small morphotype, strain B3S. (A) LM image of the cells in culture.
Scale bar = 5 µm; (B) Transmission electron microscope (TEM)image of the cell valve at the po-
sition of the central nodule (CN). Scale bar = 500 nm; (C) TEM image of the cell tip with the random
distribution of poroids. Scale bar = 200 nm; (D) TEM image showing the tightly packed poroids along
the striae(s) with rare poroids in the interstrial space. Scale bar = 100 nm.

Species that we examined in more detail, since we had many strains available for
toxicity testing, were also P. delicatissima (Figure 3A) and P. multistriata (Figure 3C). We see
that in both cases, the genetic divergence of strains on the ITS2 marker was not as large as
with the P. galaxiae species complex and that identical or slightly-divergent strains appeared
to be both toxic and non-toxic. This is particularly evident in P. multistriata, which showed
very little divergence. In P. delicatissima, the divergence was somewhat greater; in particular,
the toxic strain PN100-07A2 from the western Atlantic was separated from ours and other
Mediterranean strains, two of which were toxic. Unfortunately, we were unable to obtain
ITS sequences of the P. multistriata strains that were found to be non-toxic in our analysis as
well as the non-toxic P. subfraudulenta and P. mannii strains.
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Figure 5. P. galaxiae strain BAT2 with a distinct bat-like morphology. Note that not all cells of the
culture had this morphology and that the environmental isolate from which the culture was grown
demonstrated this morphology. (A) LM image of the cells in culture. Scale bar = 10 µm; (B) TEM
image of the entire valve. Scale bar = 5 µm; (C) Detailed TEM image of the valve and the central
nodule (CN), with the visible random distribution of several poroids between striae(s), fibulae,
and the band (B). Scale bar = 200 nm; (D) TEM image of cell tip at the unusually shortened end.
Scale bar = 1 µm; (E) TEM image of the cell tip at the normally elongated end. Scale bar = 500 nm.

2.4. dabA Gene Screening in Toxic and Non-Toxic Strains

PCR with primers published in [9] did not yield specific products with any species,
and so, we redesigned primers for the dabA gene using the available public sequences,
which included a P. multiseries sequence from [9] and an incomplete P. multistriata sequence
from [26], which came from genome sequencing. The designed primer amplified the
gene in four of the sequenced P. multistriata strains (Table S1). The amplified product
was approximately 1450 bp long and contained the intronic region, which was removed
from the sequences after alignment with the only two published sequences. The product
obtained was a partial gene sequence, as the primers designed in [9] did not yield a specific
product, and so, the primers had to be designed internally on the available sequences. The P.
multistriata sequences obtained were highly conserved and had only a few ambiguous sites,
but these were all on degenerate codon positions and did not affect the amino acid sequence.
The sequences all aligned well with the published sequence from the P. multistriata genome,
which was incomplete, because it contained undefined positions, which resulted in a
translated amino acid sequence with multiple stop codons. The published sequence of
P. multiseries (MH202990) is 84% identical to the sequences of our P. multistriata strains,
whereas the translated sequences show 89% similarity to the DabA protein of P. multiseries.
There is significant structural similarity identified by homology modelling in Phyre2
(Figure S1), highlighting the functionality of the P. multistriata enzyme in producing DA.
Our attempt to amplify the dabA gene in other species of Pseudo-nitzschia using the same
primers did not yield specific products. After we purified, isolated, and sequenced the
nonspecific bands from the other species, BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi;
accessed on 6 May 2021) did not yield any highly similar hits. Thus, we confirmed that all
toxin-producing strains of P. multistriata harbored the dabA gene, while we were unable to
resolve the dilemma of whether non-toxic strains have the genetic capacity to produce DA
or whether they actually lack the required genes. In any case, based on the data we have
from two closely related Pseudo-nitzschia species—P. multiseries and P. multistriata—the dabA

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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gene is not highly conserved with respect to its nucleotide sequence, and it may well be
that the primers we used did not work in P. galaxiae and P. delicatissima since these species
are the furthest from the P. seriata (Cleve) H. Peragallo species complex in the phylogenetic
tree (Figure 3).

3. Discussion
3.1. Toxicity

The results of the toxicity analyses complement the studies from the northwestern
Adriatic in that mildly toxic strains of P. delicatissima and P. multistriata are present in the
northeastern Adriatic Sea as well. However, the toxicity levels of P. delicatissima are 25-times
higher (~1.5 fg cell−1) than those reported in the northwestern Adriatic (0.063 fg cell−1) [17].
During this study, we realized that many factors can affect pDA concentrations, including
sample preparation, counting errors, culture condition, and other factors related to the
production of DA that we did not control (reviewed in [3,27]). This was particularly evident
in the experiment monitoring DA production of P. multistriata strain 119-A4 at different
phases of growth, where the initial screens differed greatly from the concentration measured
during the experiment. Regarding the threat of P. multistriata and P. delicatissima to the
ecosystem and industry in our region, P. delicatissima from the northern Adriatic appears
to be a mildly toxic species that can reach bloom abundances, especially in spring [13],
although shellfish toxin monitoring programs did not detect any DA in shellfish in this
period [15,28]. P. multistriata, in contrast, appears to have a higher cellular content of DA
and also higher than strains from the northwestern Adriatic [21] and the recently identified
Peruvian strains [29] but comparable to some strains from the Gulf of Naples [30,31].
However, this species rarely proliferates into high-abundance blooms and has only been
detected in the winter months [13].

Furthermore, we can report toxic strains of P. galaxiae. These findings are preliminary,
as no toxicity could be confirmed by chromatographic methods although repeated ELISA
screens confirmed the presence of DA in at least one strain (B3S). DA was found only in
small and medium morphotypes of the species [13,24] and even in these only in dDA dur-
ing the first test, leading to some inconsistencies with pDA calculations. We attributed this
to procedural errors and therefore repeated the ELISA with these samples, which resolved
this discrepancy somewhat, at least for strain B3S. P. galaxiae also showed the greatest
genetic divergence between different strains, which was also true for strains isolated on the
same day and at the same location (see [13]). These results may additionally suggest that P.
galaxiae, as now described, is indeed a species complex, which has been suggested previ-
ously [13,32] and is also supported by our morphological and toxicological observations.
Our data contribute valuable information on the toxicological and phylogenetic position of
this species. P. galaxiae was so far found to be toxic only in the Aegean Sea (Greece) and
even here with trace levels of DA in culture [33]. All other studies investigating P. galaxiae
toxicity found this species to be non-toxic ([1] and references therein). This is thus the first
unequivocal report on P. galaxiae toxicity. This species is known to grow to high abundances
both in culture—over 1 million cells per mL—and in the environment (unpublished data
from Gulf of Trieste). However, due to the small size of the cells, similarly to P. delicatissima,
it is probably not a threat.

Finally, the possible detection of DA in P. calliantha—even if below ELISA quantifi-
cation—would need further investigation. However, it would not be surprising since DA
has only recently been found in Adriatic P. calliantha strains [22] although it was previously
suspected [19,23]. Conversely, the indication that even some P. mannii strains may be toxic
is surprising—as this species has not been confirmed to be toxic before [1,34]—although
we do not have enough evidence to confirm this.

The onset of production of DA in cultures depends on the species and strains [3]
although in most species, DA production starts in the late exponential phase and increases
during the stationary phase. We only had one stationary phase sample in our experiment.
Our results corroborate those of [35], who found decreasing pDA levels with increasing
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cell number in P. cf. pseudodelicatissima, but contrast with the results of [31,36], who
found increasing pDA concentrations with increasing cell number in P. multistriata and P.
multiseries, respectively. In the study of [7], the pDA concentration remained constant with
increasing abundance of P. multiseries although it decreased dramatically when DA was
added externally to the growth medium, albeit during increased copper stress. The decrease
in pDA concentration with increasing cell concentration may be due to an as-yet unknown
quorum-sensing strategy of the cells to accommodate increasing DA in the environment
by producing less DA [37]. Quorum-sensing responses could also depend on the resident
bacterial community, so differences between strains and cultures would not be unexpected.
However, we do not have sufficient data to conclude that this strategy is indeed responsible
for our observed results. Our results also suggest that comparing DA concentrations of
point samples between studies and basins is not useful because conditions and culture
states can vary considerably [3].

Finally, we point to some of the inconsistencies in the measurements of pDA in MS2
and MS3, which prompted us to retest these samples with HPLC-UV and LC-MS/MS.
However, the LC -MS/MS method used to screen mussel samples had a LOQ of 0.8 µg/mL
and so was too high to detect DA in our culture samples with the exception of one strain
(PN0DB2131216-C, GenBank 28S accession: MK682491.1), which was analyzed on another
occasion. In addition, the repeated tests were performed on samples that had been stored
in the original growth medium for six months to over a year after the initial ELISA screens,
which may have resulted in some toxin degradation [38,39]. In contrast, the strain positive
for DA in LC-MS/MS was specifically prepared for LC-MS/MS analysis and tested shortly
after extraction.

3.2. Phylogenetic Relationships between Toxic and Non-Toxic Strains

To our knowledge, this is the first attempt to relate the toxicity of Pseudo-nitzschia
strains to their phylogenetic relationship although speculation that ITS type is not related
to the ability to produce DA has been made previously for P. multistriata [31]. This has also
been shown for yessotoxin-producing dinoflagellates, where no correlations were found
between toxicity and phylogenetic position [40]. Our study provides conflicting evidence
for this question. Clearly, the ability to produce DA is widespread in the phylogenetic
tree of Pseudo-nitzschia although it is possible that it was lost several times during the
evolutionary history of the genus and its species. The genetic similarity of P. delicatissima
and P. multistriata strains in relation to their toxicity suggests that toxicity in these two cases
is irrelevant to the ITS phylogeny and may support the previously discussed idea that the
physiological state of the culture determines whether or not DA is produced, where gene
expression may also play a role [41].

In contrast, in P. subfraudulenta, P. subcurvata, P. australis, P. pseudodelicatissima, P. multi-
series, and P. galaxiae, toxic and non-toxic strains were separated by high bootstrap support
that was in certain cases also related to the geographic origin of the strains. This may
contribute to the idea that genes required for DA production were lost in relatively recent
evolutionary history or that the ability to produce DA is related to the environmental
conditions to which strains are acclimatized. Conversely, the differential production of
DA in strains from the same area cannot be explained following this logic. In any case,
it appears that the ancestral state had the ability to produce DA, which also explains the
occurrence of this toxin and its analogs in some other genera of diatoms and even red
algae [42–44]. This is unless the biosynthetic apparatus was acquired during evolutionary
history by horizontal gene transfer mechanisms perhaps on multiple occasions, as was
suggested by [45] and which is the presumed pathway for the acquisition of saxitoxin
production in dinoflagellates [46]. Horizontal gene transfer in protists is perhaps a ne-
glected phenomenon and may be exacerbated by widespread viral infections [47]. For this
hypothesis to be examined, a clear evolutionary role of DA should be established, which is
at the moment not the case since proposed roles range from grazer deterrence [10,11,48] to
metal chelation [4–6], while strains and species are all known to fare well in the absence
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of DA production. On the other hand, the competitive advantage of DA production may
be clearer when local environmental conditions are considered. The third possibility is
that the toxin was simply not produced at the time of sampling or that the methods were
not sensitive enough, as we have also shown in some cases in this work. To prove this,
we would need to trace the genes responsible for the production of DA in the genomes of
several species and strains, which is what we attempted next.

3.3. DabA in Selected Strains

For the first time since the discovery of the DA biosynthetic pathway [13], we iden-
tified the dabA gene in a species other than P. multiseries. Although the dabA sequence
of P. multistriata was deposited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/,
accessed on 14 December 2021) by genome sequencing [26], which allowed us to design
primers, we filled in the missing sites in the genome sequence that made it untranslatable.
The secondary structure of the protein appears to be conserved between P. multistriata and
P. multiseries, although the nucleotide sequence is only 84% similar, which may contribute
to the fact that the primers used did not amplify the gene in other species tested. P. multis-
triata and P. multiseries are closely related, whereas P. calliantha, P. mannii, P. galaxiae, and
P. delicatissima are more distantly related ([25], Figure 2). For the strains for which good
products were not obtained, the cause could be a missing gene or poor primers. If the latter
is the case, this may not be a trivial task since our preliminary data show that the genetic
as well as amino acid sequence differences between the closely related P. multiseries and P.
multistriata are quite large. Therefore, further genomic and transcriptomic experiments with
other Pseudo-nitzschia species—particularly those from Groups I–III and the P. delicatissima
complex—need to be performed to populate the reference databases, which will facilitate
the design of more universal dabA primers.

Recently, a transcriptomic study showed that only dabA and dabD of the dabABCD
cluster were expressed in DA-producing P. pungens, and only dabD was found in P. fraudu-
lenta transcripts. In contrast, P. australis expressed all four genes [41]. In the future, these
transcriptomes could be mined to obtain sequence data and design new primers. However,
there is also the possibility that the gene cluster is completely absent from the genome
of some species or strains that are not actually toxic [1] although such an explanation is
unlikely. This would indicate either multiple deletions or insertions of the gene cluster
during the evolutionary history of the genus. Such a mechanism could imply either the
horizontal gene transfer, discussed earlier, which is a plausible explanation for the occur-
rence of DabA analogs in red algae [45], or ongoing hybridization, which has, however,
been demonstrated in the genus [48,49].

There is an idea that measuring the copy number of genes involved in the synthesis of
DA—e.g., by qPCR—may be the key to accurately predict the threat of ASP. At the moment,
however, the design of suitable probes is hampered by the lack of sequences from different
species and could perhaps only be developed for P. multiseries and now with our data for
P. multistriata. We acknowledge that there are other genes involved in the biosynthesis of
DA [9,11] that we did not examine in this work and that may prove to be more conserved
and thus better targets for such efforts. However, the focus of this work was on the toxicity
profiles of NE Adriatic strains, and we hope that this work will open new opportunities for
the study of gene expression and the discovery of genes involved in the synthesis of DA.

4. Materials and Methods
4.1. Species Cultures

The cultures used in toxicity tests were obtained from the National Institute of Bi-
ology—Marine Biology Station Piran, Slovenia culture collection and grown in 50 mL of
L1 medium in 150-mL Erlenmeyer flasks, as described in [13]. Cultures of P. calliantha,
P. delicatissima, P. galaxiae, P. mannii, P. multistriata, and P. subfraudulenta were used for
this study.

https://www.ncbi.nlm.nih.gov/genbank/
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4.2. Domoic Acid in Cultures

All cultures were tested at one point in the stationary growth phase. Fifty µL of the
culture were taken in triplicate for counting under an Olympus BX51 microscope (Olympus,
Tokyo, Japan) in a Fuchs–Rosenthal chamber (FRC). Then, depending on the number of
cells, 10–20 mL of the culture were taken in duplicate. One of the replicates was sonicated
on ice at 40 Hz for one minute to break up the cells and release the toxin. This sample was
then filtered through a Millex 0.22-µm syringe filter (Merck-Milipore, Darmstadt, Germany)
to remove debris, and the filtrate was stored at −20 ◦C. This represented the total DA (tDA).
The other sample was centrifuged at 4500× g for 30 min, and the supernatant was stored at
−20 ◦C. This was the dissolved DA (dDA) fraction. Since the centrifugation process is not
perfect, the supernatant was recounted in the FRC to account for the remaining live cells.
This was done as follows: the top layer of the supernatant was counted in duplicate, then a
fraction of the supernatant was pipetted for toxin analysis. Then, the bottom layer of the
supernatant was counted in duplicate. The cell count of both layers was then averaged,
assuming a gradual increase in cell count from top to bottom in a centrifuged tube. To
obtain the particulate DA concentration (pDA—toxin stored in cells), we subtracted the
dDA fraction from the tDA and divided the resulting concentration by the number of cells
in the lysate. A total of 33 strains from six species were tested.

For three strains of P. multistriata (119-A4, MS2, and MS3) and one strain of P. deli-
catissima (119-B3) that tested positive for DA in the first phase, an additional experiment
was performed, namely the monitoring of DA at different stages of culture growth. These
strains were cultured in 500 mL of L1 medium. Sampling was performed as described
above at days 7, 11, and 13 post inoculation for strains 119-A4 and 119-B3 and at days 4, 6,
and 11 and 4, 5, 6, 7, 11, and 13 post inoculation for strains MS2 and MS3, respectively.

4.3. Direct Competitive ELISA

The main method used to test most of the cultures examined was the competitive
ELISA assay for the detection of domoic acid (Eurofins Abraxis, Warminster, MA, USA).
The cultures were processed according to the manufacturer’s guidelines. A constant
temperature was maintained during plate preparation and pipetting. The reliability of the
procedure was verified using internal and external controls and standards. The absorbance
reader was turned on for an extended period of time prior to measurement to allow the
light source to settle. This method is approved by the European Commission as a screening
method for the determination of DA in shellfish (Commission Implementing Regulation
(EU) 2019/627). Samples were diluted 1:25 with the dilution buffer provided and further
diluted to 1:50 if the signal was still saturated. If the signal was borderline or unquantifiable,
the samples were diluted less to 1:10. Some samples were not reanalyzed at higher or lower
dilutions and are only reported as positive. Due to inconsistencies between ELISA and the
analytical methods, some samples were measured multiple times by ELISA to confirm the
presence or absence of toxin.

4.4. HPLC-UV Method for Selected Cultures

This method is generally intended for regulatory purposes, as it is sufficiently sensitive
to detect toxicity when the toxin concentration approaches or exceeds the threshold. It is
also capable of accurately measuring high concentrations of DA in cultures. Domoic acid
content was determined after chromatographic separation on a reversed phase column
(C18 reversed phase, 5 µm, 250 mm × 4.6 mm) under isocratic conditions (acetonitrile 5%
with TFA 0.1% v/v). The analysis was performed with a UV-VIS detector set to 242 nm.

The amount of domoic acid was calculated using a certified DA standard from the
National Research Council of Canada, which was used to prepare three dilutions that were
used to calibrate the HPLC system.
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4.5. LC-MS/MS for Selected Cultures

The LC-MS/MS analysis of domoic acid in extracts was performed using an Agilent
UHPLC Infinity II (Agilent Technologies Inc., Santa Clara, CA, USA) equipped with an
Agilent POROSHELL 120 EC C18, 2.1 × 100-mm 2.7-µm—LC column (Agilent Technologies
Inc., Santa Clara, CA, USA) coupled to an Agilent 6460 Triple Quad Mass Spectrometer
(Agilent Technologies Inc., Santa Clara, CA, USA). A certified DA standard from NRC-
Canada was used to prepare five standard solutions that were used to calibrate the LC-
MS/MS system in the multiple reaction monitoring (MRM) mode. The identification of
the analyte was based on monitoring two ion products of DA (m/z 312 > 266, 312 > 161
from DA precursor ion (M + H) + m/z 312) in positive electrospray ionization (ESI+) mode.
The most abundant fragment, 266, was selected for quantification, while the 161 ion was
used for qualitative confirmation. A methanol/water solution of ammonium acetate/acetic
acid was chosen the mobile phase for chromatographic separation. A total of 5 µL of the
sample was injected into the LC-MS/MS system, and a 14 min gradient elution was used
to separate the toxins.

4.6. ITS-2 Phylogeny Reconstruction with Tested Strains

The complete ITS region was sequenced as described in [13]. Sequences used for phy-
logenetic tree reconstruction were selected based on two factors: whether the publications
under which they were published contained toxicity data and whether they were geo-
graphically representative. Phylogenetic trees based on the ITS2 region were constructed
separately for each species with the phangron [50] and ape [51] packages implemented
in R [52] using the implemented maximum likelihood algorithm with nearest neighbor
interchange (NNI) optimization and a transversion model with estimated invariant sites
and a gamma distribution of rates (TVM + G + I) that was established by the model-
Test() command. Ten thousand bootstraps of the tree space were performed using the
bootstrap.pml() command.

4.7. Amplification and Sequence Analysis of the dabA Gene

For the amplification of the dabA gene, we first unsuccessfully tried the primers
published in [9]. Then, we designed new primers (Table 2) based on the alignment of
sequences from shotgun sequencing of the P. multistriata genome [26], BioProject accession:
PRJEB9419 (https://www.ncbi.nlm.nih.gov/bioproject/PRJEB9419/; accessed on 13 April
2021) and [9]. Internal sequencing primers were also designed to complete the gene
region. Amplification was performed using Phusion HiFi Polymerase (New England
Biolabs, Ipswich, MA, USA). For PCR reactions that resulted in nonspecific products, bands
containing products of the appropriate size (~1500 bp) were excised from the agarose
gels. To do this, products were run at 200 V for 30 s in pre-cut wells in the gel, followed
by precipitation with 3M sodium acetate and isopropanol at −20 ◦C for one hour. The
precipitates were then washed with 70% ethanol and dissolved in 1× Tris Low-EDTA
(TLE). Products were also purified with exonuclease I and Alkaline Phosphatase—FastAP
(Thermo Fisher Scientific, Waltham, MA, USA). Alternatively, bands were excised from
the gel with a sterile scalpel when possible, and gel purification was performed with
NucleoSpin Gel and PCR Clean-up (Machery-Nagel, Düren, Germany). The 3D structure of
the predicted proteins was predicted using Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2
/html/page.cgi?id=index; accessed on 22 January 2021) [53].

https://www.ncbi.nlm.nih.gov/bioproject/PRJEB9419/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
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Table 2. Primers used for amplification and sequencing of the dabA gene in P. multistriata.

Primer Name Primer-Sequence Type

DabA_multF ATGAAATTTGCAACGTCCATTGTC PCR
DabA_degF ATGAARTTTGCAACRTCCATYGTC PCR

N1_R TCCAAAAACGCTTTCATCAA PCR
N2_R AACGCTTTCATCAATGGTTTGTGG PCR

Internal_multistriataF CGATTGGATGAAGATCCCTTCA Sequencing
Internal_multistriataR GCAGAAGTCGACCATCCA Sequencing

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14010060/s1, Figure S1. Homology modelling of the
translated sequence of the dabA gene from Pseudo-nitzschia multistriata, strain MS3. Most of the
secondary structures are recovered and the protein resembles the published crystalline structure.
Table S1. ITS and dabA accession numbers of strains used in the phylogeny reconstruction.
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