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Abstract: Harmful algal blooms (HABs) are considered one of the main risks for marine ecosys-
tems and human health worldwide. Climate change is projected to induce significant changes in
species geographic distribution, and, in this sense, it is paramount to accurately predict how it will
affect toxin-producing microalgae. In this context, the present study was intended to project the
potential biogeographical changes in habitat suitability and occurrence distribution of three key
amnesic shellfish toxin (AST)—producing diatom species (i.e., Pseudo-nitzschia australis, P. seriata,
and P. fraudulenta) under four different climate change scenarios (i.e., RCP-2.6, 4.5, 6.0, and 8.5) up to
2050 and 2100. For this purpose, we applied species distribution models (SDMs) using four abiotic
predictors (i.e., sea surface temperature, salinity, current velocity, and bathymetry) in a MaxEnt
framework. Overall, considerable contraction and potential extirpation were projected for all species
at lower latitudes together with projected poleward expansions into higher latitudes, mainly in the
northern hemisphere. The present study aims to contribute to the knowledge on the impacts of
climate change on the biogeography of toxin-producing microalgae species while at the same time
advising the correct environmental management of coastal habitats and ecosystems.

Keywords: biogeography; climate change; species distribution models; harmful algal blooms;
amnesic shellfish poisoning

Key Contribution: AST-producing species of Pseudo-nitzschia are projected to undergo poleward
shifts until the end of the century under four climate change scenarios.

1. Introduction

The continuing accumulation of greenhouse gases in the atmosphere (e.g., carbon
dioxide—CO2) over the past centuries has led to significant changes in the global ocean [1,2].
Among these, changing oceanic chemistry, rising sea surface temperatures, and shifting
oceanic currents are set to yield a vast array of negative impacts on marine ecosystems
worldwide [3,4]. The past few decades have revealed an increasing understanding of the
potential for marine climate change to significantly impact the frequency, magnitude, and
geographical extent of harmful algal blooms (HAB) [5–7]. These phenomena have gained
a particular degree of notoriety in the past few years due to their role in a wide variety
of environmental issues [8,9]. Indeed, when environmental conditions are conducive to
algal growth [10,11], there is the potential for the exacerbated population growth of marine
and freshwater phytoplankton, with a high risk of significantly impacting ecosystems and
human health [12,13]. Some of the more concerning impacts of HABs include mass die-offs
of fish and shellfish [14,15] and the deaths of marine mammals and seabirds [16,17], which
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could lead to the collapse of coastal ecosystem community structures [18]. At the same
time, HABs are also linked to outbreaks of human shellfish and finfish poisoning, which
severely threaten human health [11,19]. Approximately 6% of the existing microalgae
species (i.e., circa 300 out of 5000) have the potential to give rise to HAB events under
favorable conditions [12,20]. From these, more than one hundred marine phytoplanktonic
species can produce toxins with varying degrees of toxicity for marine species and other
organisms in the food web [13,21] and have been linked to significant harmful impacts on
marine communities and ecosystems [22].

One of the most serious HAB-related shellfish poisoning syndromes—amnesic shell-
fish poisoning (ASP)—is caused by domoic acid (DA) [23]. This potent neurotoxin is pro-
duced by diatom species (Bacillariophyceae) of the genera Pseudo-nitzschia and Nitzschia and
can be accumulated by a wide variety of shellfish species—from mollusks to crustaceans—
and some fish species [24,25], posing a severe risk for the health of animals and humans [21].
Indeed, DA is known to have widespread human health effects [26], negative impacts at
various levels within food webs, and severe economic consequences for molluscan shell-
fish harvesters [27]. The genus Pseudo-nitzschia is distributed globally, occurring in both
warm and cold climates, with a particular abundance in coastal areas [27,28]. Approxi-
mately twenty-six species are known to produce DA, including P. australis, P. seriata, and
P. fraudulenta. Changing oceanic conditions are known to have contributed to the increased
frequency and range of HABs in coastal areas worldwide [29]. Indeed, ocean warming and
increased CO2 availability are known to benefit HAB species compared to other microalgae
species [30,31]. At the same time, northward shifts for HAB species have been observed
in the Northeast Atlantic [32–34], which constitute potential poleward migrations with
progressive warming [6]. This is the case for species of Pseudo-nitzschia spp., with new
blooms occurring in previously unseen areas [35] and extreme events triggering intense
HAB events [36,37].

Given the high likelihood of HAB events to increase alongside CO2, temperatures,
and changing climate patterns [6], it is paramount to model potential changes in the
distribution of HAB species. One way to predict potential changes in the distribution of
HAB species under marine climate change is to employ species distribution models (SDMs).
In short, SDMs combine the biogeographic knowledge in climate change impact studies
and modeling, allowing the projection of the impacts of future environmental change on
biodiversity and ecosystem health [38–40]. These models take georeferenced occurrence
data for a given species or set of species, together with environmental and abiotic predictors
for a defined geographical extent, establishing a relationship between them and defining
a species’ ecological niche. This, in turn, allows researchers to project potential changes
in distribution ranges across time and/or space [41]. Although being bounded by a set
of assumptions and limitations which must be considered [42–45], these models offer a
suitable framework for predicting changes in species distributions and are applicable to
large species assemblages and across vast geographical and temporal spaces [46]. For this
reason, SDMs have observed a steep rise in their development and use in the past few
decades [47,48] and are increasingly being used to project the effects of climate change on
the distributions of species and communities [49–52].

Not surprisingly, these models have already been employed to project potential marine
climate change induced impacts in the distribution of phytoplankton [30], especially for
HAB species [5,53,54]. In this context, the objective of the present study was to evaluate
the potential effects of future marine climate change on the distribution of three amnesic
shellfish toxin (AST)-producing Pseudo-nitzschia species: (i) P. australis; (ii) P. seriata; and
(iii) P. fraudulenta. To achieve this, this study implemented an SDM workflow using MaxEnt
modeling to model the present-day habitat suitability and species distribution, projecting
these into two future time periods (i.e., 2050 and 2100) and four representative concentration
pathways (RCP; RCP-2.6, -4.5, -6.0, and -8.5; CMIP5) and quantifying spatiotemporal trends.
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2. Results
2.1. Variable Contributions

Regarding the variable contributions in the ensemble models, the bathymetry predictor
was consistently the most important variable across all three species, at over 60% (Table 1),
while the dynamic environmental variables contributed considerably less (i.e., 15% and
under). Specifically, the next three most important variables for the three species were
temperature-related layers, apart from Pseudo-nitzschia fraudulenta, in which the salinity
minimum was the second most important predictor, at 15.2%.

Table 1. Top four most important variables in the ensemble model for each species.

Species #1 #2 #3 #4

P. australis Bathymetry
71.4%

Temperature Maximum
9.7%

Temperature Range
5.4%

Temperature Minimum
3.4%

P. seriata Bathymetry
81.9%

Temperature Minimum
9.5%

Temperature Range
4.7%

Temperature Mean
0.9%

P. fraudulenta Bathymetry
61.9%

Salinity Minimum
15.2%

Temperature Mean
5.4%

Temperature Maximum
4.6%

2.2. General Patterns of Habitat Suitability

Concerning the projected changes in the average distribution, a common trend was
found between the three species. First, the latitudinal distribution centroids for all species
were predicted to occur in the northern hemisphere. Then, concerning the projected
changes, all species exhibited a northward shift in their centroid of latitudinal distribution
until the middle of the century (Figure 1). However, between 2050 and the year 2100,
the species’ responses were different. For P. australis, the ensemble model projected a
considerable northward movement of the species between the present day and the middle
of the century (i.e., 2050), moving back southward for RCP-2.6 and 4.5, continuing its
movement northward for RCP-6.0 (albeit to a considerably lesser extent) or stabilizing until
the end of the century for RCP-8.5 (Figure 1A). Regarding P. seriata, this species exhibited
a continuous northward movement between the present day and 2050 and until 2100,
which was exacerbated with increasing RCP scenario severity, a trend that was particularly
evident when comparing the species position by 2100 across RCP scenarios (Figure 1B).
Finally, P. fraudulenta exhibited a clear expansion northward, followed by a contraction
southward for most RCP scenarios, except for RCP-8.5 (Figure 1C), where the species
continued its movement northward until the end of the century.
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(A) Pseudo-nitzschia australis, (B) P. seriata, and (C) P. fraudulenta. Positions calculated for 2050 
(orange circles) and 2100 (green circles). The dark blue, horizontal dashed line represents the 
centroid position for the present day (i.e., 2000–2014, based on monthly averages). 
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This decreasing trend relative to the present day baseline not only increased in magnitude 
between 2050 and 2100 but was also exacerbated along the RCP scenarios, with RCP-6.0 
and -8.5 exhibiting the greatest differences compared to the present day, mainly until the 
end of the century (Figure 2F,H). Very limited latitudinal bins were projected to 
experience increasing mean habitat suitability, which were mostly confined to the higher 
latitudes in the northern hemisphere, with the maximum values being projected for the 
2100 horizon for RCP-4.5 and RCP-6.0 (Figure 2D,F).  
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Figure 1. Changes in the position of the centroid of latitudinal distribution (i.e., the mean latitude
of the occupied cells) across time and RCP scenarios (i.e., RCP-2.6, -4.5, -6.0, and -8.5; CMIP5) for
(A) Pseudo-nitzschia australis, (B) P. seriata, and (C) P. fraudulenta. Positions calculated for 2050 (orange
circles) and 2100 (green circles). The dark blue, horizontal dashed line represents the centroid position
for the present day (i.e., 2000–2014, based on monthly averages).

2.3. Habitat Suitability and Occurrence Distribution: Latitudinal Trends

The following section holds the outputs for the latitudinal trends in mean habitat
suitability for the three species and the projected differences in the binary occurrence
distribution across time for each RCP scenario. Regarding P. australis, the mean latitudinal
habitat suitability decreased over time for almost the entire latitudinal profile (Figure 2).
This decreasing trend relative to the present day baseline not only increased in magnitude
between 2050 and 2100 but was also exacerbated along the RCP scenarios, with RCP-6.0
and -8.5 exhibiting the greatest differences compared to the present day, mainly until the
end of the century (Figure 2F,H). Very limited latitudinal bins were projected to experience
increasing mean habitat suitability, which were mostly confined to the higher latitudes in
the northern hemisphere, with the maximum values being projected for the 2100 horizon
for RCP-4.5 and RCP-6.0 (Figure 2D,F).

Toxins 2022, 14, x FOR PEER REVIEW 5 of 5 
 

 

 
Figure 2. Mean latitudinal habitat suitability temporal changes (i.e., gains in red and losses in blue) 
between the present day and 2050 (left–A,C,E,G) and 2100 (right–B,D,F,H) for Pseudo-nitzschia 
australis across the four representative concentration pathway scenarios (RCP-2.6, -4.5, -6.0, and -
8.5; CMIP5). The vertical dashed line at ‘0’ represents the present-day baseline.  

Figure 2. Cont.



Toxins 2023, 15, 9 5 of 23

Toxins 2022, 14, x FOR PEER REVIEW 5 of 5 
 

 

 
Figure 2. Mean latitudinal habitat suitability temporal changes (i.e., gains in red and losses in blue) 
between the present day and 2050 (left–A,C,E,G) and 2100 (right–B,D,F,H) for Pseudo-nitzschia 
australis across the four representative concentration pathway scenarios (RCP-2.6, -4.5, -6.0, and -
8.5; CMIP5). The vertical dashed line at ‘0’ represents the present-day baseline.  

Figure 2. Mean latitudinal habitat suitability temporal changes (i.e., gains in red and losses in blue)
between the present day and 2050 (left—(A,C,E,G)) and 2100 (right—(B,D,F,H)) for Pseudo-nitzschia
australis across the four representative concentration pathway scenarios (RCP-2.6, -4.5, -6.0, and -8.5;
CMIP5). The vertical dashed line at ‘0′ represents the present-day baseline.

These changes were followed by dynamic trends in this species’ occurrence distribu-
tion over time (Figure 3). Indeed, for all RCP scenarios the areas of projected extirpation
outnumbered those of projected expansion, a trend that was exacerbated by RCP scenario
severity. Specifically, in RCP-2.6, the projected distribution loss was relatively limited, with
major areas including some areas of the Atlantic Ocean (North Carolina, the Gulf of Mexico,
and southern Brazil (by 2050) and the offshore Bay of Biscay and North Sea (by 2100));
Southeastern Pacific Ocean (Chilean seas (2100)); and the Bass Strait (by 2050 and 2100)
in the Indian Ocean (Figure 3A). The larger areas of projected expansion for this species
were located in some areas of the Northeastern Atlantic Ocean (by 2050 and 2100) and in
the northern North Sea. Other localized expansions also occurred in the Iberian Peninsula
(2050) and Morocco (2050), and lastly in northern New Zealand (2050). This scenario also
predicted large areas of projected transitory fluctuations, namely areas of contraction fol-
lowed by expansion in the Caribbean Sea and northern South America and on the Peruvian
coastline and the north coast of Australia. Projected expansion followed by distribution
contraction occurred, namely in the North Sea and on the African coastlines of the Benguela
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current. RCP-4.5 exhibited a relative exacerbation of these trends (Figure 3B). Indeed,
most of the predicted areas of occurrence in the Western Atlantic exhibited extirpation by
2050 (Gulf of Mexico and Caribbean Sea). At the same time, localized losses also occurred
on the northeastern Australian coastline and in the Bering Strait (2050). In this scenario,
however, the Northeastern Atlantic Ocean and the North Sea did not exhibit distributional
losses, with these regions exhibiting the largest gains until the end of the century. As in the
previous scenario, localized gains also occurred along the northern and southern coastlines
of the Iberian Peninsula (2050) and Morocco (2100) as well as sparsely along the eastern
Australian and northern New Zealand coasts. For RCP-6.0, a smaller relative change in
mean habitat suitability until 2050 (Figure 2E) compared to RCP-4.5 led to considerably
fewer areas of projected extirpation occurring by 2050 (Figure 3C). However, a considerable
decrease until 2100, more severe than that projected for RCP-4.5 (Figure 2F), resulted in a
substantial surge in areas of extirpation by the end of the century. Indeed, extirpation was
projected for most of the Western Atlantic Ocean and the Eastern Australian coastline, with
localized losses also occurring in the North and Norwegian seas and on the coast of the tip
of south America (i.e., southern Chile and Argentina). In this scenario, gains were again
mostly limited to the Northeastern Atlantic Ocean (2050), parts of the North Sea (2100), the
Iberian Peninsula (2050/2100), and Morocco (2100). Major areas of fluctuation included
areas of expansion followed by contraction in 2100 on the North and Eastern Australian
coastlines and in the North Sea and southern Argentina, while contraction followed by
end-of-century expansion were projected for the Celt Sea. Lastly, in RCP-8.5 these changes
were again aggravated, with most of the Eastern and Western Australian coasts exhibiting
losses in distribution as well as most of the western Atlantic Ocean (Figure 3D). In this
scenario, gains remained sparse in the Iberian Peninsula and Morocco, while again the
Celt and North Seas and the Northern Atlantic Ocean exhibited the largest expansion areas
until the end of the century.
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Figure 3. Projected spatiotemporal changes in distribution for Pseudo-nitzschia australis between the
present day, 2050, and 2100 across four representative concentration pathway scenarios: (A) RCP-2.6,
(B) RCP-4.5, (C) RCP-6.0, and (D) RCP-8.5. Projected occurrence distribution changes are represented:
unidirectional range shifts (i.e., projected expansions in red and orange and projected contractions in
dark and light blue) and transitory fluctuations (i.e., range contraction followed by expansion in pink
and vice versa in purple).

Regarding P. seriata, the mean latitudinal habitat suitability changes showed an overall
decrease until the end of the century for most of the latitudinal profile (Figure 4), together
with a considerable increase in suitability for the northernmost latitude bands (i.e., the
subarctic and arctic latitudes). Habitat suitability for this species did not change, overall,
for the southern hemisphere, despite a relative decrease south of the equator, which
became more apparent with increasing RCP severity (e.g., see Figure 4B,H). In the northern
hemisphere, however, subtemperate and temperate regions exhibited the greatest losses
in habitat suitability until the year 2100, particularly in the two most extreme scenarios
(Figure 4F,H). In the northernmost latitudes, habitat suitability could be seen to increase
consistently alongside time and to a greater magnitude with increasing scenario severity.
In terms of changes in occurrence distribution (Figure 5), there was a persistent pattern
across RCP scenarios of distribution loss at lower latitudes and distribution gains at higher
latitudes in the northern hemisphere. Changes in distribution were minimized for RCP-2.6
(Figure 5A). Indeed, in this scenario, areas of loss were very restricted in space and time,
with some occurring in the northern area of the Black Sea (2050) and on the Canadian
and Greenlandic shores of the Labrador Sea (2050). Areas of expansion included northern
Canada (in Hudson Bay), in the Arctic Ocean (e.g., Svalbard and the Barents Sea), and
in the Okhotsk Sea in the Pacific Ocean. For RCP-4.5 (Figure 5B), the species underwent
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a considerable distribution restriction in the Black Sea (2050) while also experiencing
distribution loss in the Labrador Sea (2050), as in the previous scenario. In terms of gains,
this species expanded again in the northernmost latitudes, namely in Hudson Bay, the Artic
Ocean, and the Okhotsk Sea (2050 and 2100), and was projected to expand considerably
into the northern Baltic Sea. In RCP-6.0, decreasing habitat suitability over most of the
latitudinal profile led to a projected loss approaching the known species distribution from
the south (Figure 5C). In its current range, however, P. seriata was projected to undergo more
limited losses in the Black and Labrador seas compared to the previous scenarios. Indeed,
along the Canadian and Greenlandic shores of the Labrador Sea, it exhibited oscillating
habitat suitability between the present day, the year 2050, and 2100, leading to a projected
contraction in this region until the middle of the century, followed by a new expansion
until 2100. In this scenario, the species mostly expanded in the Bering and Okhotsk seas
and in the Arctic Ocean, with limited expansion in the northern Baltic Sea and in Hudson
Bay. Lastly, under RCP-8.5, the decreasing habitat suitability over most of the temperate
latitudes of the northern hemisphere led to an encroaching loss of potential distribution
(Figure 5D). However, gains were also maximized in RCP-8.5 in the same regions as in the
previous scenarios, albeit with most occurring only by the end of the century.
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Figure 5. Projected spatiotemporal changes in distribution for Pseudo-nitzschia seriata between the
present day, 2050, and 2100 across four representative concentration pathway scenarios (A) RCP-2.6,
(B) RCP-4.5, (C) RCP-6.0, and (D) RCP-8.5. Projected occurrence distribution changes are represented:
unidirectional range shifts (i.e., projected expansion in red and orange and projected contractions in
dark and light blue) and transitory fluctuations (i.e., range contractions followed by expansions in
pink and vice versa in purple).

Finally, concerning P. fraudulenta, this species again exhibited decreasing habitat suit-
ability over most of the latitudinal profile (Figure 6), except for the highest latitudes in both
the northern and southern hemispheres. Decreasing mean habitat suitability was also max-
imized, in general, for the southern tropical and northern temperate latitudes, a trend that
was exacerbated by increasing RCP severity (see Figure 6B,H). However, it is worth noting
that the magnitude of suitability change did not increase over time for all scenarios. Indeed,
for RCP-2.6 and RCP-6.0, changing habitat suitability was greater between the present day
and the year 2050 than between the present day and the end of the century (Figure 6A–D).
Regarding the distribution of P. fraudulenta, this species exhibited sparse areas of projected
extirpation in most of the world’s oceans by 2050 (Figure 7A), namely some areas of the
Mediterranean Sea (e.g., in the Adriatic and on the Spanish coast); in the Northeast Atlantic
(e.g., the Celt Sea and north of Scotland); in the Indic Ocean (i.e., near Pakistan and India);
in the Pacific Ocean (i.e., in the southeast of the Sea of Japan and in the Gulf of California);
and finally in the Gulf of Mexico and in northern Australia. In terms of gains, these were



Toxins 2023, 15, 9 11 of 23

again very limited for this scenario and were mainly located at the highest latitudes of both
hemispheres (i.e., in the northwestern Atlantic and northeastern Pacific oceans, certain
areas of the Arctic Ocean, and in southern areas offshore Argentina and Chile). For RCP-4.5,
the projected areas of expansion remained similar, but there were increases in the areas
of projected loss, concurrent with decreasing habitat suitability (Figure 7B). Indeed, the
abovementioned areas of projected loss underwent projected growth until the end of the
century for this scenario, mainly in the Arafura Sea in Northern Australia (2100) and in
the Pacific and Indic oceans. Under RCP-6.0 and RCP-8.5, considerably larger decreases
in habitat suitability led to considerably larger areas of extirpation in most of the world’s
oceans, e.g., in the Western Pacific, in the Mediterranean Sea, and sparsely spread around
the Atlantic Ocean (Figure 7C,D). In these scenarios, expansion was particularly evident in
the Gulf of Alaska and the Arctic Ocean (e.g., in the Barents Sea and Svalbard) and near the
southern tip of South America.
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Figure 7. Projected spatiotemporal changes in distribution for Pseudo-nitzschia fraudulenta between the
present day, 2050, and 2100 across four representative concentration pathway scenarios (A) RCP-2.6,
(B) RCP-4.5, (C) RCP-6.0, and (D) RCP-8.5. Projected occurrence distribution changes are represented:
unidirectional range shifts (i.e., projected expansions in red and orange and projected contractions in
dark and light blue) and transitory fluctuations (i.e., range contractions followed by expansions in
pink and vice versa in purple).

3. Discussion

The present article aimed to conduct a global analysis of the biogeographic responses of
three AST-producing diatom species to the effects of marine climate change until the end of
the century, akin to previous work conducted on paralytical shellfish toxin (PST)-producing
species [54]. Overall, the models were able to accurately predict the accepted present-day
distribution of each Pseudo-nitzschia species (Table 2) [27,35], despite some instances of over-
and underprediction (e.g., P. seriata had wide overprediction in the southern hemisphere),
and common trends were found between the three AST-producing species.
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Table 2. Summary list of the ensemble MaxEnt model predictions for each AST-producing species.
Accurate, over-, and underpredictions of distribution based on Trainer et al. [27] and Bates et al. [35].

Species Accurate prediction Overprediction Underprediction

P. australis

W Atlantic (Gulf of Mexico, Argentina,
Gulf of Maine, South Brazil) Southern Ocean

Bay of Fundy
Gulf of Alaska
Bering Strait

N Atlantic (Celt Sea, Ireland, Scotland,
Galicia, Portugal, Morocco) Arctic Ocean

SE Atlantic (Benguela, Namibia) Indonesia
Eastern Pacific (Mexico, Baja California,

USA, Alaska, Canada, Peru, Chile) Indian Ocean (Oman)

Bering Strait and Bering Sea NW Pacific (Okhotsk Sea, Sea of
Japan, Eastern China Sea)

Oceania (Australia, New Zealand) Mediterranean Sea
Atlantic (northern South America)

P. seriata

NW Pacific (Okhotsk Sea, Sea of Japan,
Bering Sea)

Southern Hemisphere Singapore
NW Atlantic (Gulf of St.
Lawrence, Greenland)

Gulf of Mexico
Arctic Ocean

Black Sea

P. fraudulenta

NW Atlantic (USA, Canada)

Madagascar
Indonesia
SE Pacific
Red Sea

Arctic Ocean

Marmara Sea (Turkey)

NE Atlantic (Morocco, Celt Sea, Scotland)
North Sea

Mediterranean Sea (NW Mediterranean,
Adriatic, Morocco)

Gulf of Mexico
SW Atlantic (South Brazil, Argentina)

NE Pacific (Washington, Gulf of
California, Baja California, Mexico, Chile)
NW Pacific (Okhotsk Sea, Sea of Japan)

Oceania (Australia, New Zealand)
Indian Ocean (Pakistan)

All species were projected to undergo considerable decreases in mean habitat suitabil-
ity across most of the latitudinal profile, regarding the present day, leading to potential
extirpations across (when the species is currently present) equatorial, tropical, and temper-
ate regions. Moreover, despite decreasing along most of the latitudinal profile, the mean
habitat suitability was seen to increase over time and across RCP scenarios for all species at
higher latitudes (i.e., the polar and subpolar regions). These changes in habitat suitability
resulted in specific distributional changes, which despite being different between species,
shared considerable northward shifts in the distributional centroids between the present
day and (at least) the middle of the century (followed by some relative oscillations for
P. australis and P. fraudulenta) and the year 2100 (for P. seriata). These results hint at potential
poleward distributional shifts until the end of the century for these Pseudo-nitzschia species.
Concerning the variable contributions, bathymetry was the most important variable for all
species, with values between approximately 61% (P. fraudulenta) and approximately 82%
(P. seriata). This trend was also observed in SDMs with PST-producing dinoflagellates [54]
and is to be expected when dealing with neritic species and with occurrence data mostly
obtained from coastal monitoring programs. At the same time, Pseudo-nitzschia blooms
are known to be linked to upwelling regions [55,56]. Afterwards, temperature layers were,
overall, the most ecologically relevant predictors. Indeed, rising salinity has been shown
to favor Pseudo-nitzschia spp. abundances [57], and as such, the salinity minimum held a
significant contributive role for the models of P. fraudulenta.

Rising temperatures have been linked to poleward shifts in the thermal niches of
phytoplankton until the end of the century, akin to a wide variety of marine taxa [58,59],
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suggesting sharp declines in tropical phytoplankton diversity in the absence of adaptation
to warming [60]. Indeed, several prior studies projecting biogeographical climate change
effects suggested similar phenomena could occur for phytoplankton species. Indeed, di-
noflagellates in the Atlantic and Pacific oceans have been found to closely follow the rate of
isotherm movement [10,61–63] as the range of the optimal environmental conditions shifts,
effectively pressuring their ability to survive and adapt at lower latitudes and opening
the possibility of HAB events in newer regions. Borges et al. [54] also projected poten-
tial poleward shifts for PST-producing dinoflagellate species (i.e., Alexandrium minutum;
A. catenella; and Gymnodinium catenatum), while other groups such as Cocolitophores [64]
also exhibited the same distributional changes. Changes in temperature have also been
shown to induce significant impacts in diatoms, with warming being linked to lower cell
yields and promoted growth in Pseudo-nitzschia species [65], while extreme events such
as heatwaves have also triggered pelagic HAB events [37]. Indeed, a record-setting HAB
event by Pseudo-nitzschia occurred as a direct consequence of a marine heatwave in the
northeast Pacific Ocean between 2013 and 2015 [36]. Additionally, North Atlantic diatoms
have been projected to shift the central positions of their core range poleward, leading to
a significant reshuffling of the phytoplankton communities, with broad effects on food
webs and biogeochemical cycles [30]. The present study presents similar results, partic-
ularly regarding the cold-water species P. seriata, which was projected to further restrict
its southern limit of distribution in the northern hemisphere and consequently expand
its range in the Arctic and subarctic regions. Despite exhibiting similar trends, P. australis
and P. fraudulenta exhibited relatively smaller shifts north, expanding more limitedly in
northern temperate and subarctic regions but also exhibiting significant restrictions at
lower latitudes. Diatoms are known to have a lower activation energy compared to other
phytoplankton groups [66], and tropical species have been shown to adapt to multigenera-
tional exposure to warming through various thermal strategies, i.e., either by increasing the
optimal growth temperature and maximum growth rate or by shifting from specialist to
generalist, increasing the maximum critical thermal limit, albeit trading off photosynthetic
efficiency, high irradiance stress, and a lower growth rate [67]. Despite their potential to
adapt, the lower competitive fitness of diatom species induced by thermal stress could
eventually lead to species extirpation at lower latitudes, where the ocean becomes too warm
to support growth [39]. The concomitant migration of Pseudo-nitzschia into new ecosystems
at higher latitudes, alongside their environmental thermal optimum, poses a significant
risk to marine communities and to the human societies inhabiting these regions [6,35],
with these new regions supporting a widening window of optimal conditions for blooms
to develop [5,68]. However, since HAB events result from a complex interplay of abiotic
and biotic interactions, the present results do not present a prediction of likelihood of
ASP events. Instead, they contribute towards the projection of species’ movements and
identifying potential areas at risk.

Lastly, any modeling endeavor is required to address the existence of potential limita-
tions in the analysis, which arise from methodological choices and assumptions. First, the
models were susceptible to instances of over- and underprediction for the three species.
Overprediction in SDMs is quite common, since the models assume that species will com-
pletely occupy areas that are calculated to be climatically suitable [42], ignoring other
factors, such as unaccounted predictors, environmental variables, geographical barriers,
etc., which prevent species occurrence at a local or regional scale [69]. In the present
manuscript, the lack of readily available downscaled projections of environmental predic-
tors such as nutrient ratios and light for the future and for each of the RCP scenarios that
were employed presented a limitation to the ecological relevance of the models. Nutrient
and light conditions are of paramount importance for shaping marine phytoplankton abun-
dance and distribution, particularly for Pseudo-nitzschia spp. blooms [55–57]. In this sense,
the ecological modeling of future marine climate change biodiversity impacts requires the
expansion of already existing environmental and abiotic layer online databases (such as
Bio-ORACLE, MARSPEC, etc.) so that these types of layers are readily available at global
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scales whenever possible. Concurrently, failing to predict the species presence in areas
with existing historical records (i.e., underprediction) is directly linked to the nature of
the occurrence point data. These data were mainly retrieved from online databases such
as GBIF and OBIS (i.e., the Ocean and Biodiversity Information System), which do not
provide a full inventory of a species’ known distribution, mainly due to geographical
biases associated with sampling efforts due to accessibility and funding [70]. Nonetheless,
instances of over or underprediction, given that they are not dominant in the model predic-
tions, do not diminish the analysis’s predictive potential in suggesting the global trends of
future poleward shifts or major extirpations of species’ distributions. Moreover, long-term
SDM projections do not account for seasonal changes in the abundance of each species,
which directly impact the existence of an algal bloom. Lastly, single-trophic-level SDMs
do not incorporate the contributions of other trophic levels into the potential expansion or
restriction in distribution induced by, for instance, predator species. Indeed, phytoplankton
are vulnerable to strong predation pressure by many protozoan and metazoan grazers [71],
which has been shown to influence toxin production in toxic species (e.g., P. seriata) and
Pseudo-nitzschia species that were previously considered nontoxic (e.g., P. obtusa) [72,73].
As such, including these types of trophic interactions in the models by incorporating the
projected distributions of relevant grazer species under the same scenarios could lead to
more accurate estimates [74,75].

4. Conclusions

The present manuscript suggests an overall decrease in habitat suitability at lower lati-
tudes at a global scale, followed by changes in the distribution ranges of the three modeled
species into areas where they previously did not occur or only occurred locally. Indeed,
for all species, poleward distribution shifts were projected by the ensemble models. These
shifts pose serious ecosystem risks, opening the possibility of nuisance blooms in novel
areas [76]. The inclusion of ecological modeling predictions and projections for marine
species in management action, such as marine spatial planning, fisheries, aquaculture,
and even coastal development, is of paramount importance when crossed with expert
knowledge, as they allow for an accurate overview of potential future scenarios that might
threaten ecosystem health and ecosystem service provisioning.

5. Materials and Methods
5.1. Data Collection and Curation

Data on each species’ occurrence were collected using the ‘OccurrenceCollection’
function of the ‘megaSDM’ package. This function, in short, collects occurrence data
from the Global Biodiversity Facility (GBIF) database [77], with some degree of data
precuration [78]. GBIF is an online network that links diverse data sources to compile
and provide biodiversity data. To restrict the data retrieved in each dataset, a common
set of filters was used when retrieving the occurrence data, specifically selecting “Human
Observation” and “Preserved Specimen” as the bases of records and georeferenced data. At
the same time, data featuring duplicate observations, improper datum conversion points,
missing latitude or longitude values, and rounded coordinates were filtered out. The
resulting compiled dataset was then curated using RStudio [79]. Since SDMs must ideally
restrict model calibration to only accessible areas, all occurrences were restricted by a
maximum depth limit of approximately 200 m, which is the accepted value for the mean
maximum depth of the continental shelf [80]. To achieve this, the occurrence data for
each species were converted into spatial polygon objects, which were used to extract the
depth values at each point coordinate from a bathymetry raster layer (at a resolution of
5 arcmin) obtained from ocean climate layers for marine spatial ecology (MARSPEC) [81].
This was performed using the function ‘extract’ from the package ‘raster’. Afterwards, the
spatial polygon objects were converted into the data frame format and merged with the
georeferenced depths, and the new data frames were divided to exclude depths greater
than 200 m [5,54]. A second restriction clipping was employed to remove all points based
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on land. To achieve this, a shapefile from the world’s ocean bodies (Natural Earth Data,
https://www.naturalearthdata.com (accessed on 14 February 2022)) was used to remove
spatial points outside the world’s oceans. Table 3 presents the postcuration number of valid
entries per species. The curated occurrence dataset, the plotted dataset occurrences, and
the R script used in this section are presented in the Supplementary Materials.

Table 3. Precuration, postcuration, and post-environmental-filtering numbers of valid occurrences
for each AST-producing species included in the present analysis.

Species Precuration Curated Post-Environmental Filtering

Pseudo-nitzschia australis A 57 32 30
Pseudo-nitzschia seriata B 1997 834 782

Pseudo-nitzschia fraudulenta C 162 129 124
A. Pseudonitzschia australis Frenguelli, 1939 in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist
dataset: https://doi.org/10.15468/39omei, accessed via GBIF.org on 17 March 2022. B. Pseudo-nitzschia seriata
(Cleve) H.Peragallo, 1899 in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset: https://doi.
org/10.15468/39omei, accessed via GBIF.org on 17 March 2022; C. Pseudo-nitzschia fraudulenta (Cleve) Hasle,
1993 in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset: https://doi.org/10.15468/39omei,
accessed via GBIF.org on 17 March 2022.

5.2. Environmental Predictors

The present study used a total of four main predictor variables, specifically three
oceanographic predictors: the sea surface temperature (SST), salinity, and current veloc-
ity (each including the global mean, maximum, minimum, and range layers) and one
topographic variable (i.e., bathymetry). The predictor choice was based primarily on
the availability of both present layers (i.e., 2000–2014 averages) and future projections
(i.e., 2040–2050 and 2090–2100) for the four RCP scenarios of interest (i.e., RCP-2.6, -4.5,
-6.0, and -8.5; CMIP5). These four RCP scenarios present different climate forcing possibil-
ities, depending on the cumulative greenhouse gas emission trends until the end of the
century. The scenarios employed in this article belong to the fifth phase of the Coupled
Model Intercomparison Project (CMIP5), which is one of the latest climatic model phases
that features downscaled layers. Specifically, the most optimistic scenario (i.e., RCP-2.6)
requires a continuous decline in CO2 emissions between 2020 and 2100, projecting global
temperatures to rise by less than two degrees by the end of the century. In RCP-4.5, the
intermediate scenario, emissions would peak by 2045, resulting in a temperature increase
of between 2 and 3 ◦C. The high-greenhouse-gas scenario (i.e., RCP-6.0), would result in
a potential increase of 3 to 4 ◦C, while the “worst case scenario”, RCP-8.5, is based on
continuously increasing emissions, leading to an increase of over 4 ◦C [82,83]. The layers
for the three oceanographic variables were obtained from Bio-ORACLE, which offers global
geophysical, biotic, and climate layers at a common spatial resolution (i.e., 5 arcmin) and a
uniform landmask [84,85]. In turn, the bathymetry layer was retrieved from MARSPEC, as
described in the previous subsection.

5.3. Premodeling Procedures

A series of premodeling procedures was conducted using the package ‘megaSDM’ [78],
which was also the main modeling package used in the analysis. Since ‘megaSDM’ relies
on MaxEnt modeling, there was a need to reproject all predictor variables to an equal-area
projection (i.e., the cylindrical equal-area projection: “+proj = cea + lat_ts = 0 + lon_0
= 0 + x_0 = 0 + y_0 = 0 + datum = WGS84 + no_defs”) using the method of the nearest
neighbor. This was performed since MaxEnt randomly samples grid cells from the available
geographic space, implicitly assuming cells of equal area in the entire extent of a given
layer [86], which would inadvertently introduce sampling bias since conventional nonequal
area projections have grid cells that vary in their areas when moving away from the equator.
Afterwards, the functions ‘TrainStudyEnv’ and ‘PredictEnv’ were used to standardize
the present and future input environmental data by clipping and resampling the raster

https://www.naturalearthdata.com
https://doi.org/10.15468/39omei
https://doi.org/10.15468/39omei
https://doi.org/10.15468/39omei
https://doi.org/10.15468/39omei
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predictors while also defining the training area where the occurrence and background
points were located and the study area where the model would be tested [78].

To deal with the inherent bias of occurrence data collected from online databases [87,88],
which decreases the overall accuracy of SDMs [87,89,90], the ‘megaSDM’ package employs
environmental filtering of the occurrence data [90]. This procedure mitigates environmental
and spatial biases by dividing the environmental data into a set number of bins (n = 25
in the present analysis) and selecting one point from each unique combination of bins to
create a subset of occurrence points that have been filtered by the environment [78]. In
short, this method allows for the removal of oversampled or clustered occurrence records,
all the while maintaining the range of environments in which a species was found [90].
The number of post-environmental-filtering occurrences used in the present analysis is
presented in Table 2. The script for the SDM analysis is presented in the Supplementary
Materials (see “sdm_analysis.R”).

Since the collected occurrence data only featured presence data and SDMs must
account for absence data by either incorporating true data or pseudo-absence data [91], a
set of background points (n = 1000 per species) describing the environmental conditions of
the training area were created for each species. The background points were created using a
‘combined’ method, which samples points both randomly and with a spatially constrained
method [78]. In short, 50% of the background points were randomly sampled from the
entire study area [92], while the other half were sampled from within buffers created around
each true presence point. In the latter, the radius of each buffer was proportional to the
95% quantile of the distance to the nearest neighbor for each point [78]. This combined
generation method has been shown to allow for a reduction in the model environmental
suitability overestimation in regions with greater occurrence point density, which can occur
in more easily sampled areas and constitutes a type of spatial bias [93,94]. At the same
time, this method also reduces the susceptibility to errors of extreme extrapolation and
overfitting induced by using purely spatially constrained methods [95]. The background
points were also subjected to the process of environmental filtering, creating an even spread
across the available environmental space while still retaining their spatial weighting [78].

5.4. Modeling

The ‘megaSDM’ package uses MaxEnt modeling to calculate the present habitat suit-
ability and distribution of a given species [78]. The use of MaxEnt instead of several
different modeling algorithms aims to prevent the introduction of uncertainty in the con-
sensus model [95]. This technique employs maximum entropy methods and machine
learning and is known to perform particularly well with presence-only species records [96]
while maintaining a competitive predicted performance when compared with the highest-
performing methods [95,96]. Moreover, this package allows for replication with subsequent
ensembles to generate statistically rigorous models [78]. A replicate number of 5 was
employed, meaning that the MaxEnt algorithm ran five times per species, each time with a
different subset of occurrence points.

The function ‘MaxEntProj’ was used to evaluate each model replicate and the final
ensemble. In short, this function compared the area under the curve (AUC) values for
each model replicate, comparing them to null models where the multiple occurrence point
replicates were placed randomly across the training area and to a random subset of the
null model [78,97]. Afterwards, the function removed all models with a validation AUC
lower than 0.70. The evaluation plots and tables for each species are presented in the
Supplementary Materials (see the “Evaluation” folder). The ‘MaxEntProj’ function was
then used to project all models onto the current and future environments and across
all four RCP scenarios. Subsequently, the median value of each pixel was calculated to
create the ensemble raster of all replicate maps, thus reducing the potential effects of any
existing outliers [78,98]. Binary maps of probability of occurrence (0 or 1) were obtained by
employing a threshold value, specifically the mean model TSS criteria of model evaluation,
the ‘maximum test sensitivity and specificity’ logistic threshold, which maximizes the
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specificity and sensitivity of the receiver operating curve (ROC) and is particularly effective
for presence-only data [99] on continuous habitat suitability maps. The ensembles of
habitat suitability for each species, time, and RCP scenario as well as the respective binary
maps of probability of occurrence are supplied in the Supplementary Materials (see the
“Projections” folder).

5.5. Postanalysis

To investigate any potential changes in habitat suitability and species distribution
across time and space, a series of visual and quantitative postanalysis procedures were
employed. These procedures were the same as in Borges et al. [54], and the R scripts that
were employed can be found in the Supplementary Materials (see the “Post_analysis”
folder). First, changes in the global latitudinal distribution were assessed by plotting the
latitudinal centroid (i.e., the arithmetic mean latitude for the species-occupied cells) for
each time and scenario. Second, the latitudinal trends in habitat suitability were calculated
by converting each habitat suitability ensemble into a matrix, from which the mean value
of each row (i.e., the latitudinal band) was calculated, resulting in a vector of mean habitat
suitability across the latitudinal profile. The present-day vector was subtracted from the
future projection vectors (i.e., 2050 and 2100), obtaining a vector of the changes in mean
habitat suitability by latitude, which was plotted to visualize potential changes across time
and RCP scenarios [78]. Then, changes in distribution were assessed by processing the
binary maps of the probability of occurrence using the ‘createTimeMaps’ function of the
‘megaSDM’ package. This function generates maps that incorporate information on both
projected unidirectional range shifts (i.e., range contractions or expansions) and transitory
fluctuations (i.e., range contractions followed by expansions or vice versa) [78,100]. To
achieve this, the function subtracts the projected future distribution of a given species from
its predicted present-day distribution, generating a map of distributional change across
time. The time maps for each species are supplied in the Supplementary Materials (see the
“Projections” folder).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxins15010009/s1. The supplementary materials include high-resolution
versions of the manuscript figures; the curated species datasets used in the models; species occurrence
plots (html files); the MaxEnt evaluation outputs for each species; the output binary, ensemble, and time
maps for each species and each scenario; and the data curation, SDM analysis, and postanalysis scripts.
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