Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = AlN-TiN(BN) composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6055 KiB  
Article
Hot-Pressing of Ti-Al-N Multiphase Composite: Microstructure and Properties
by Ryszard Sitek, Kamil Bochenek, Piotr Maj, Michał Marczak, Krzysztof Żaba, Mateusz Kopec, Grzegorz Piotr Kaczmarczyk and Janusz Kamiński
Appl. Sci. 2025, 15(3), 1341; https://doi.org/10.3390/app15031341 - 27 Jan 2025
Viewed by 784
Abstract
This study focuses on the development and characterization of a bulk Ti-Al-N multiphase composite enriched with BN addition and sintered through hot pressing. The research aimed to create a material with optimized mechanical and corrosion-resistant properties suitable for demanding industrial applications. The composite [...] Read more.
This study focuses on the development and characterization of a bulk Ti-Al-N multiphase composite enriched with BN addition and sintered through hot pressing. The research aimed to create a material with optimized mechanical and corrosion-resistant properties suitable for demanding industrial applications. The composite was synthesized using a powder metallurgy approach with a mixture of AlN, TiN, and BN powders, processed under a high temperature and pressure. Comprehensive analyses, including microstructural evaluation, hardness testing, X-ray tomography, and electrochemical corrosion assessments, were conducted. The results confirmed the formation of a multiphase microstructure consisting of TiN, Ti₂AlN and Ti₃AlN phases. The microstructure was uniform with minimal porosity, achieving a hardness within the range of 500–540 HV2. Electrochemical tests revealed the formation of a passive oxide layer that provided moderate corrosion resistance in chloride-rich environment. However, localized pitting corrosion was observed under extreme conditions. The study highlights the potential of a BN admixture to enhance mechanical and corrosion-resistant properties and suggests directions for further optimization in sintering processes and material formulations. Full article
Show Figures

Figure 1

23 pages, 24751 KiB  
Article
From Powders to Performance—A Comprehensive Study of Two Advanced Cutting Tool Materials Sintered with Pressure Assisted Methods
by Kinga Momot, Piotr Klimczyk, Beata Leszczyńska-Madej, Marcin Podsiadło, Yuliia Rumiantseva and Agnieszka Gubernat
Materials 2025, 18(2), 461; https://doi.org/10.3390/ma18020461 - 20 Jan 2025
Viewed by 1055
Abstract
This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure–High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 [...] Read more.
This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure–High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 vol% cubic boron nitride (cBN), was sintered from the cBN–TiN–Ti3SiC2 system using the HPHT technique at a pressure of 7.7 GPa. The second composite (marked as AZW) was fabricated from the Al2O3–ZrO2–WC system using SPS at a pressure of 63 MPa. The final phase composition of BNT material differed significantly from the initial composition due to reactions occurred during sintering. In contrast, the phase composition of the AZW ceramic composite before and after sintering was similar. The materials exhibited high quality, as evidenced by a Young’s modulus of 580 GPa for BNT and 470 GPa for AZW, along with hardness of 26 GPa for BNT and 21 GPa for AZW. Both composites were used to prepare cutting inserts that were evaluated for their performance in machining Inconel 718 alloy. While both inserts showed durability comparable to their respective reference commercial inserts, they differed in performance and price relative to one another. Full article
Show Figures

Figure 1

14 pages, 8883 KiB  
Article
Microstructure and Wear Resistance of Grx-Ti-BN Composite Coating on TC4 by Argon Arc Cladding
by Qindong Li, Junsheng Meng, Hao Ding, Yilin Hou, Sijie Li, Chenfan Hao and Xiaoping Shi
Metals 2024, 14(4), 403; https://doi.org/10.3390/met14040403 - 29 Mar 2024
Cited by 1 | Viewed by 1349
Abstract
The TC4 (Ti-6Al-4V) alloy has problems such as low material hardness, poor wear resistance, and abnormal sensitivity to adhesive wear and fretting wear. In this study, we used graphene-reinforced Ti/BN composite coatings prepared on the surface of the TC4 alloy by argon arc [...] Read more.
The TC4 (Ti-6Al-4V) alloy has problems such as low material hardness, poor wear resistance, and abnormal sensitivity to adhesive wear and fretting wear. In this study, we used graphene-reinforced Ti/BN composite coatings prepared on the surface of the TC4 alloy by argon arc cladding technology. We explored the optimal content of graphene to improve its hardness and wear resistance. The physical phases and microstructures of the coatings were analyzed using an X-ray diffractometer, metallurgical microscope, and scanning electron microscope. Microhardness and wear properties of the cladding coating were measured by a Vickers hardness tester and a universal friction and wear tester. The incorporation of graphene resulted in a transformation of the reinforcing phase in the coating from TiN to Ti(N, C). The C element in the molten pool was substituted with the N element in an unending solid solution, resulting in the formation of Ti(N, C) through intermittent nucleation. As the amount of graphene in the molten pool increases, the concentration of carbon (C) also increases. This leads to the continuous growth of Ti(N, C) particles, resulting in a coarser coating structure and a decrease in coating performance. When the graphene content is 5 wt.%, the microstructure refinement of the coating is the most obvious, the microhardness is 900 HV0.2, which is 3 times higher than that of the matrix, and the wear rate is 4.9 × 10−5 mm3/(N·m), which is 4.9 times higher than that of the matrix. The wear mechanism of the coating is primarily abrasive wear with some slight adhesive wear. Full article
Show Figures

Figure 1

20 pages, 5553 KiB  
Article
Thermomechanical and Microstructural Analysis of the Influence of B- and Ti-Content on the Hot Ductility Behavior of Microalloyed Steels
by Marina Gontijo, Arnab Chakraborty, Richard F. Webster, Sergiu Ilie, Jakob Six, Sophie Primig and Christof Sommitsch
Metals 2022, 12(11), 1808; https://doi.org/10.3390/met12111808 - 25 Oct 2022
Cited by 6 | Viewed by 2008
Abstract
The effects of the combined addition of B and Ti, as well as the influence of different strain rates on the hot ductility behavior of low carbon, continuously cast, microalloyed steels were investigated in this work. Tensile tests, microstructure analyses, and thermokinetic simulations [...] Read more.
The effects of the combined addition of B and Ti, as well as the influence of different strain rates on the hot ductility behavior of low carbon, continuously cast, microalloyed steels were investigated in this work. Tensile tests, microstructure analyses, and thermokinetic simulations were performed with in situ melted samples. Furthermore, prior austenite grain evaluations were carried out for the two different microalloyed steels. Increasing the strain rate brought improvements to the ductility, which was more significant in the steel with the leanest composition. The steel containing more B and Ti presented a better hot ductility behavior under all conditions tested. The main causes for the improvements rely on the precipitation behavior and the austenite–ferrite phase transformation. The preferential formation of TiN instead of fine BN and AlN was seen to be beneficial to the ductility, as well as the absence of MnS. Grain boundary segregation of free B that did not form BN retarded the ferrite formation, avoiding the brittleness brought by the thin ferrite films at the austenite grain boundaries. Furthermore, it was revealed that for the steels in question, the prior austenite grains have less influence on the hot ductility behavior than the precipitates and ferrite formation. Full article
(This article belongs to the Special Issue Continuous Casting and Hot Ductility of Advanced High-Strength Steels)
Show Figures

Figure 1

38 pages, 22524 KiB  
Review
Laser Powder-Bed Fusion of Ceramic Particulate Reinforced Aluminum Alloys: A Review
by Tatevik Minasyan and Irina Hussainova
Materials 2022, 15(7), 2467; https://doi.org/10.3390/ma15072467 - 27 Mar 2022
Cited by 42 | Viewed by 6681
Abstract
Aluminum (Al) and its alloys are the second most used materials spanning industrial applications in automotive, aircraft and aerospace industries. To comply with the industrial demand for high-performance aluminum alloys with superb mechanical properties, one promising approach is reinforcement with ceramic particulates. Laser [...] Read more.
Aluminum (Al) and its alloys are the second most used materials spanning industrial applications in automotive, aircraft and aerospace industries. To comply with the industrial demand for high-performance aluminum alloys with superb mechanical properties, one promising approach is reinforcement with ceramic particulates. Laser powder-bed fusion (LPBF) of Al alloy powders provides vast freedom in design and allows fabrication of aluminum matrix composites with significant grain refinement and textureless microstructure. This review paper evaluates the trends in in situ and ex situ reinforcement of aluminum alloys by ceramic particulates, while analyzing their effect on the material properties and process parameters. The current research efforts are mainly directed toward additives for grain refinement to improve the mechanical performance of the printed parts. Reinforcing additives has been demonstrated as a promising perspective for the industrialization of Al-based composites produced via laser powder-bed fusion technique. In this review, attention is mainly paid to borides (TiB2, LaB6, CaB6), carbides (TiC, SiC), nitrides (TiN, Si3N4, BN, AlN), hybrid additives and their effect on the densification, grain refinement and mechanical behavior of the LPBF-produced composites. Full article
(This article belongs to the Special Issue Emerging Materials for Additive Manufacturing)
Show Figures

Graphical abstract

12 pages, 4872 KiB  
Article
Effects of TiAl Alloy as a Binder on Cubic Boron Nitride Composites
by Yuxi Liu, Wei Zhang, Yingbo Peng, Guojiang Fan and Bin Liu
Materials 2021, 14(21), 6335; https://doi.org/10.3390/ma14216335 - 23 Oct 2021
Cited by 5 | Viewed by 2387
Abstract
Owing to their extreme hardness, cubic boron nitride (cBN) composites are widely used in cutting applications. The performance of cBN composites is closely related to the characteristics of the binder. Therefore, novel binders must be developed to improve the performance of cBN composites. [...] Read more.
Owing to their extreme hardness, cubic boron nitride (cBN) composites are widely used in cutting applications. The performance of cBN composites is closely related to the characteristics of the binder. Therefore, novel binders must be developed to improve the performance of cBN composites. In the present work, TiAl intermetallics were used as binders to fabricate cBN composites by employing a high-temperature and high-pressure sintering method. The phase transformation, sintering reaction mechanism, thermal stability, and mechanical properties of the resultant cBN composites were investigated. It was found that during the sintering process, Ti atoms preferentially reacted with boron nitride particles, whereas Al atoms enriched and transformed into TiAl3 phases and formed cBN/AlN, AlB2/TiN, and TiB2/TiAl3-layered structures eventually. The composites maintained good oxidation resistance at 1200 °C. A decrease in the particle size of the TiAl binder improved the uniformity of particle size distribution and increased the flexural strength of the composites. Full article
(This article belongs to the Topic Metallurgical and Materials Engineering)
Show Figures

Figure 1

17 pages, 10600 KiB  
Article
Comparison of the Microstructure Evolution and Wear Resistance of Ti6Al4V Composite Coatings Reinforced by Hard Pure or Ni-plated Cubic Boron Nitride Particles Prepared with Laser Cladding on a Ti6Al4V Substrate
by Shuren Fu, Lijing Yang, Pei Wang, Shaopeng Wang and Zhengxian Li
Coatings 2020, 10(7), 702; https://doi.org/10.3390/coatings10070702 - 20 Jul 2020
Cited by 23 | Viewed by 4684
Abstract
Titanium alloy is a major structural material with excellent high specific strength in aerospace applications. Cubic boron nitride (cBN) is a synthetic wear-resistant material with high hardness, similar to that of diamond, that is used in mechanical cutting and grinding. In addition, the [...] Read more.
Titanium alloy is a major structural material with excellent high specific strength in aerospace applications. Cubic boron nitride (cBN) is a synthetic wear-resistant material with high hardness, similar to that of diamond, that is used in mechanical cutting and grinding. In addition, the thermal stability of cubic boron nitride particles is much better than that of diamond. In order to further enhance the wear resistance of the Ti6Al4V alloy, the laser cladding (LC) technology characteristics of metallurgical bonding were used to prepare cubic boron nitride/Ti6Al4V and Ni-plated cubic boron nitride/Ti6Al4V composite coatings on Ti6Al4V substrates in this paper. However, in the laser molten pool, it is difficult to retain the raw properties of cubic boron nitride particles under laser radiation. Both composite coatings were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The microstructures and interface bonding between cubic boron nitride particles and the Ti6Al4V matrix were examined using SEM, and the wear resistance and the worn track morphology of the composite coatings were evaluated using the ball-on-disc wear test and step profiler (WTM-2E). The results indicated that the Ni-plated cubic boron nitride/Ti6Al4V composite coating showed fewer thermal defects in comparison with the cubic boron nitride/Ti6Al4V coating. The Ni plating on the surface of cubic boron nitride particles was able to avoid the generation of thermal cracking of the cubic boron nitride particles in the composite coating. The TiN reaction layer was formed between the cubic boron nitride particles and Ti6Al4V matrix, which effectively prevented the further decomposition of the cubic boron nitride particles. The XRD and XPS results confirmed that the TiN reaction layer formed between the cubic boron nitride particles and Ti6Al4V. The Ni plating on the surface of the cubic boron nitride particles was also beneficial for increasing the wear resistance of the composite coating. Full article
Show Figures

Figure 1

Back to TopTop