Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = Al–Cu–Mn–Fe alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9827 KiB  
Article
High-Temperature Mechanical and Wear Behavior of Hypoeutectic Al–Si–(Cu)–Mg Alloys with Hardening Mechanisms Dictated by Varying Cu:Mg Ratios
by Jaehui Bang, Yeontae Kim and Eunkyung Lee
Appl. Sci. 2025, 15(14), 8047; https://doi.org/10.3390/app15148047 - 19 Jul 2025
Viewed by 305
Abstract
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat [...] Read more.
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat treatment. Alloys A and B, with identical Si contents but differing Cu and Mg levels, were subjected to multiscale microstructural characterization and mechanical and wear testing at 25 °C, 150 °C, and 250 °C. Alloy A (Cu-rich) exhibited refined α-Al(FeMn)Si phases and homogeneously dissolved Cu in the Al matrix, promoting lattice contraction and dislocation pinning. In contrast, Alloy B (Mg-rich) retained coarse Mg2Si and residual β-AlFeSi phases, which induced local stress concentrations and thermal instability. Under tribological testing, Alloy A showed slightly higher friction coefficients (0.38–0.43) but up to 26.4% lower wear rates across all temperatures. At 250 °C, Alloy B exhibited a 25.2% increase in the wear rate, accompanied by surface degradation such as delamination and spalling due to β-AlFeSi fragmentation and matrix softening. These results confirm that the Cu:Mg ratio critically influences the dominant hardening mechanism—the solid solution vs. precipitation—and determines the high-temperature performance. Alloy A maintained up to 14.1% higher tensile strength and 22.3% higher hardness, exhibiting greater shear resistance and interfacial stability. This work provides a compositionally guided framework for designing thermally durable Al–Si-based alloys with improved wear resistance under elevated temperature conditions. Full article
(This article belongs to the Special Issue Characterization and Mechanical Properties of Alloys)
Show Figures

Figure 1

14 pages, 5677 KiB  
Article
Solidification Window in Al-Based Casting Alloys
by Simone Ferraro, Mauro Palumbo, Marcello Baricco and Alberto Castellero
Metals 2025, 15(5), 489; https://doi.org/10.3390/met15050489 - 26 Apr 2025
Viewed by 506
Abstract
Semi-solid processes of aluminium alloys, characterised by the coexistence of solid and liquid phases, offer advantages in terms of mechanical properties and fatigue resistance, thanks to the more globular microstructure. Thermodynamic models can be used to analyse the solidification behaviour and to predict [...] Read more.
Semi-solid processes of aluminium alloys, characterised by the coexistence of solid and liquid phases, offer advantages in terms of mechanical properties and fatigue resistance, thanks to the more globular microstructure. Thermodynamic models can be used to analyse the solidification behaviour and to predict the solidification window, ΔT. The CALPHAD method enables the calculation of the phases formed during solidification and the optimisation of alloy composition to meet specific industrial requirements. This study aims to assess how thermodynamic properties in both liquid and solid phases affect the ΔT. Initially, the influence of thermodynamic properties of pure components and interaction parameters was analysed in simplified regular binary systems. To compare these findings with real industrial systems, Al-based alloys were examined. Using available databases, the ΔT was estimated via the CALPHAD method adding alloying elements commonly found in secondary Al-alloys. Finally, the same minority alloying elements were added to Al-Si 8 and 11 wt.% alloys, and the corresponding ΔT were calculated. Cr, Fe, Mg, Mn, and Ti increase the ΔT, while Cu, Ni, and Zn decrease it. The obtained results may serve as a valuable tool for interpreting phenomenological observations and understanding the role of minority elements in the semi-solid processing of secondary Al-Si casting alloys. Full article
(This article belongs to the Special Issue Solidification and Phase Transformation of Light Alloys)
Show Figures

Figure 1

20 pages, 7246 KiB  
Article
Coated Mg Alloy Implants: A Spontaneous Wettability Transition Process with Excellent Antibacterial and Osteogenic Functions
by Sijia Yan, Shu Cai, You Zuo, Hang Zhang, Ting Yang, Lei Ling, Huanlin Zhang, Jiaqi Lu and Baichuan He
Materials 2025, 18(9), 1908; https://doi.org/10.3390/ma18091908 - 23 Apr 2025
Viewed by 518
Abstract
AZ31B magnesium alloy (wt.%: Al 2.94; Zn 0.87; Mn 0.57; Si 0.0112; Fe 0.0027; Cu 0.0008; Ni 0.0005; Mg remaining) has appropriate mechanical properties, good biodegradability and biocompatibility and can be used as a good orthopedic implant material. AZ31B magnesium alloy with a [...] Read more.
AZ31B magnesium alloy (wt.%: Al 2.94; Zn 0.87; Mn 0.57; Si 0.0112; Fe 0.0027; Cu 0.0008; Ni 0.0005; Mg remaining) has appropriate mechanical properties, good biodegradability and biocompatibility and can be used as a good orthopedic implant material. AZ31B magnesium alloy with a superhydrophobic surface exhibits excellent corrosion resistance and antibacterial adhesion performance, but superhydrophobic surfaces also hinder osteoblast adhesion and proliferation on the implants, resulting in unsatisfactory osteogenic properties. Therefore, it is necessary to achieve the wettability transition of the superhydrophobic surface at an early stage of implantation. In this work, superhydrophobic hydroxyapatite (HA)/calcium myristate (CaMS)/myristic acid (MA) composite coatings were prepared on AZ31B magnesium alloy using the hydrothermal and immersion methods. The composite coatings can spontaneously undergo the wettability transition from superhydrophobic to hydrophilic after complete exposure to simulated body fluid (SBF, a solution for modeling the composition and concentration of human plasma ions) for 9 h. The wettability transition mainly originated from the deposition and growth of the newly formed CaMS among the HA nanopillars during immersing, which deconstructed the micro-nano structure of the superhydrophobic coatings and directly exposed the HA to the water molecules, thereby significantly altering the wettability of the coatings. Benefiting from the superhydrophobic surface, the composite coating exhibited excellent antibacterial properties. After the wettability transition, the HA/CaMS/MA composite coating exhibited superior osteoblast adhesion performance. This work provides a strategy to enable a superhydrophobic coating to undergo spontaneous wettability transition in SBF, thereby endowing the coated magnesium alloy with a favorable osteogenic property. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

15 pages, 5413 KiB  
Article
Microstructural Optimization and Erosion–Corrosion Resistance of Cu-10Ni-3Al-1.8Fe-0.8Mn Alloy via Tailored Heat Treatment
by Yi Yuan, Yizhi Zhao, Yicheng Cao, Lue Huang, Hao Chu, Hongqian Wang, Dongyan Yue and Wenjing Zhang
Materials 2025, 18(7), 1511; https://doi.org/10.3390/ma18071511 - 27 Mar 2025
Viewed by 371
Abstract
This study systematically investigated the effects of tailored heat treatments on the microstructural evolution, mechanical properties, and erosion–corrosion resistance of Cu-10Ni-3Al-1.8Fe-0.8Mn alloy. Four heat treatment conditions—as-cast (AC-1); homogenized (H-2); and deformation–aged at 500 °C (D-3) and 750 °C (D-4)—were applied to elucidate the [...] Read more.
This study systematically investigated the effects of tailored heat treatments on the microstructural evolution, mechanical properties, and erosion–corrosion resistance of Cu-10Ni-3Al-1.8Fe-0.8Mn alloy. Four heat treatment conditions—as-cast (AC-1); homogenized (H-2); and deformation–aged at 500 °C (D-3) and 750 °C (D-4)—were applied to elucidate the interplay between microstructure and performance. The D-3 specimen, subjected to deformation followed by aging at 500 °C for 0.5 h, demonstrated superior properties: a Vickers hardness of 118 HV5 (83.3% higher than H-2) and an erosion–corrosion rate of 0.0075 mm/a (84.1% reduction compared to H-2). These enhancements were attributed to the uniform dispersion of nanoscale Ni3Al precipitates within the matrix, which optimized precipitation strengthening and reduced micro-galvanic corrosion. The D-3 specimen also formed a dense, crack-free Cu2O corrosion product film with a flat matrix interface, confirmed by SEM cross-sectional analysis and electrochemical impedance spectroscopy (EIS), exhibiting the highest charge transfer resistance and film impedance. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 4789 KiB  
Article
The Design and Preparation of New Fe(21-x)CoNiCuAlTix High-Entropy-Alloy Wear- and Corrosion-Resistant Coatings and an Investigation of Their Performance
by Chun Guo, Guangcan Huang, Ruizhang Hu, Qingcheng Lin, Xinyu Zhang, Wenqing Li and Linting Chen
Coatings 2025, 15(4), 396; https://doi.org/10.3390/coatings15040396 - 27 Mar 2025
Viewed by 374
Abstract
The purpose of this study is to prepare new Fe(21-x)CoNiCuAlTix alloy coatings and to investigate the phase composition, microstructure, wear resistance, and corrosion resistance of these high-entropy-alloy coatings with varying Ti content. High-entropy Fe(21-x)CoNiCuAlTix (x = 0; [...] Read more.
The purpose of this study is to prepare new Fe(21-x)CoNiCuAlTix alloy coatings and to investigate the phase composition, microstructure, wear resistance, and corrosion resistance of these high-entropy-alloy coatings with varying Ti content. High-entropy Fe(21-x)CoNiCuAlTix (x = 0; 2; 4; 6; 8) alloy coatings were prepared on 65Mn steel substrates via laser cladding. The results showed that the addition of Ti promoted the formation of the BCC phase, which increased the hardness of the coatings and improved their wear resistance due to the hardening of the solid solution and grain refinement. The microhardness of the coating was 689.08HV0.2 at x = 8, 2.056 times that of the base metal, and the wear resistance was 2.565 × 10−7 g/(N·m). The corrosion potential and corrosion current density were −0.199 V and 3.513 × 10−7 A/cm2, respectively, indicating excellent corrosion resistance. The addition of titanium significantly enhanced the formation of the BCC phase, improved the microstructure through solid-solution hardening and grain refinement, and caused lattice distortion. These effects, as well as the formation of solid bonds, significantly improved the wear and corrosion resistance of the coatings. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

18 pages, 10407 KiB  
Article
Kinetics of Precipitation Hardening Phases in Recycled 2017A Aluminum Alloy
by Grażyna Mrówka-Nowotnik, Grzegorz Boczkal and Damian Nabel
Materials 2025, 18(6), 1235; https://doi.org/10.3390/ma18061235 - 11 Mar 2025
Viewed by 975
Abstract
This study investigated the effect of the recycling process on the microstructure, hardness, and precipitation kinetics of strengthening phases in the 2017A aluminum alloy. Light microscopy (LM) and X-ray diffraction (XRD) analyses revealed that the as-cast microstructure of the recycled 2017A alloy contained [...] Read more.
This study investigated the effect of the recycling process on the microstructure, hardness, and precipitation kinetics of strengthening phases in the 2017A aluminum alloy. Light microscopy (LM) and X-ray diffraction (XRD) analyses revealed that the as-cast microstructure of the recycled 2017A alloy contained intermetallic phases, including θ-Al2Cu, β-Mg2Si, Al7Cu2Fe, Q-Al4Cu2Mg8Si7, and α-Al15(FeMn)3(SiCu)2, and was comparable to that of the primary alloy, confirming its potential for high-performance applications. During solution heat treatment, most of the primary intermetallic precipitates, such as Al2Cu, Mg2Si, and Q-Al4Cu2Mg8Si7, dissolved into the solid Al matrix. DSC analysis of the solution-treated alloy established the precipitation sequence as follows: α-ss → GP/GPB zones → θ″ → θ′/Q′ → θ-Al2Cu/Q-Al4Cu2Mg8Si7. The combined results from XRD, LM, TEM, and DSC confirmed that both θ and Q phases contributed to strengthening, with θ″ and θ′ phases playing a dominant role. Brinell hardness measurements during natural and artificial aging revealed that hardness increased with aging time, reaching a maximum value of 150.5 HB after ~22 h of artificial aging at 175 °C. The precipitation kinetics of the recycled 2017A alloy was studied via DSC measurements over a temperature range of ~25 to 550 °C, at heating rates of 5, 10, 15, 20, and 25 °C/min. The peak temperatures of clusters, GP zones, and hardening phases (θ′, θ″, θ, and Q) were analyzed to calculate the activation energy using mathematical models (Kissinger, Ozawa, and Boswell). The obtained values of activation energies of discontinuous precipitation were comparable across methods, with values for the θ″ phase of 89.94 kJ·mol−1 (Kissinger), 98.7 kJ·mol−1 (Ozawa), and 94.33 kJ·mol−1 (Boswell), while for the θ′ phase, they were 72.5 kJ·mol−1 (Kissinger), 81.9 kJ·mol−1 (Ozawa), and 77.2 kJ·mol−1 (Boswell). These findings highlighted the feasibility of using recycled 2017A aluminum alloy for structural applications requiring high strength and durability. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (3rd Edition))
Show Figures

Figure 1

9 pages, 2511 KiB  
Proceeding Paper
Surface, Microstructure, and Wear Characterization of Annealed Cold-Sprayed HEA Coatings
by Nazanin Sheibanian, Raffaella Sesana, Mohsen Dehghanpour Abyaneh, Sedat Özbilen and Rocco Lupoi
Eng. Proc. 2025, 85(1), 35; https://doi.org/10.3390/engproc2025085035 - 6 Mar 2025
Viewed by 400
Abstract
Surface coatings are essential for enhancing the mechanical and functional properties of materials. Among these, annealed high-entropy alloy (HEA) coatings have gained attention for improving wear resistance and durability. This study comprehensively analyzes HEA-annealed coatings, focusing on their surface roughness and wear behavior. [...] Read more.
Surface coatings are essential for enhancing the mechanical and functional properties of materials. Among these, annealed high-entropy alloy (HEA) coatings have gained attention for improving wear resistance and durability. This study comprehensively analyzes HEA-annealed coatings, focusing on their surface roughness and wear behavior. A systematic and thorough approach is employed to examine the impact of annealing on coating characteristics. The research involves depositing Al 0.1–0.5 CoCrCuFeNi and MnCoCrCuFeNi coatings using the cold spray (CS) method, followed by a controlled annealing process. Surface roughness is evaluated through profilometry and microscopy techniques to assess modifications due to annealing. Tribological tests are conducted to investigate the wear performance of the coatings, and the findings are correlated with roughness measurements, offering insights into the relationship between surface texture and wear resistance. Full article
Show Figures

Figure 1

14 pages, 59884 KiB  
Article
Analysis of the Structure and Properties of Welded Joints Made from Aluminum Alloys by Electron Beam Welding (EBW) and Friction Stir Welding (FSW)
by Sonia Boczkal, Monika Mitka, Joanna Hrabia-Wiśnios, Bartłomiej Płonka, Marek St. Węglowski, Aleksandra Węglowska and Piotr Śliwiński
Crystals 2025, 15(3), 208; https://doi.org/10.3390/cryst15030208 - 22 Feb 2025
Cited by 1 | Viewed by 678
Abstract
One of the new areas that requires extensive study of the structure and properties of welded joints is the heat-affected zone (HAZ). This issue is particularly important for new constructions made of aluminium alloys intended for battery housing for powering electric car engines. [...] Read more.
One of the new areas that requires extensive study of the structure and properties of welded joints is the heat-affected zone (HAZ). This issue is particularly important for new constructions made of aluminium alloys intended for battery housing for powering electric car engines. Modern welding methods, such as EBW and FSW, meet the requirements related to the high precision of the process and the quality of the welded joint itself. This article presents the results of an analysis of the structure and strengthening of the HAZ of chemically modified AlMgSi(Cu) alloys via EBW and FSW. Microstructural observation was performed via SEM for each welded joint to determine the morphology of the precipitates. In the HAZ, β-Mg2Si, Q-Al,MgCu,Si and α-Al,Fe,Si (Mn,Cu) phases with larger sizes and rounded shapes were visible than they were directly in the weld made via the EBW method. The joints produced by the FSW method were characterised by a wide weld area and an irregular weld line. Analysis of the crystallographic orientation via EBSD and grain orientation spread (GOS) revealed differences in the shape of the grains and the degree of recrystallisation in the weld area between the FSW and EBW methods. The distributions of HB (FSW) hardness and HV (EBW) microhardness measurements revealed a slight decrease in hardening in the HAZ. In joints welded by both methods, the hardness of the welds for alloys with increased copper and chromium contents increased by approximately 5%. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

14 pages, 3629 KiB  
Article
Correlation of Solidification Thermal Variables with Microstructure and Hardness in CuMn11Al8Fe3Ni3 Manganese–Aluminum–Bronze Alloy
by Ricardo de Luca, Paulo Henrique Tedardi do Nascimento, Vinicius Torres dos Santos, Marcio Rodrigues da Silva, Flavia Gonçalves Lobo, Rogerio Teram, Mauricio Silva Nascimento, Antonio Augusto Couto, Anibal de Andrade Mendes Filho and Givanildo Alves dos Santos
Materials 2025, 18(2), 234; https://doi.org/10.3390/ma18020234 - 8 Jan 2025
Cited by 1 | Viewed by 951
Abstract
The mechanical properties of a final product are directly influenced by the solidification process, chemical composition heterogeneity, and the thermal variables during solidification. This study aims to analyze the influence of solidification thermal variables on the microstructure, hardness, and phase distribution of the [...] Read more.
The mechanical properties of a final product are directly influenced by the solidification process, chemical composition heterogeneity, and the thermal variables during solidification. This study aims to analyze the influence of solidification thermal variables on the microstructure, hardness, and phase distribution of the CuMn11Al8Fe3Ni3. The alloy was directionally and upward solidified from a temperature of 1250 °C. Heat extraction occurred through a water-cooled AISI 1020 steel interface. The thermal variables were recorded using a data acquisition system, with temperature monitored at seven different positions, where cooling rates varied from 13.03 °C/s at the closest position to 0.23 °C/s at the farthest. The Brinell hardness decreased from 199 HB at the highest cooling rate position to 184 HB at the slowest cooling rate position. This indicates that higher cooling rates increase the hardness of the alloy, which can be attributed to the stabilization of the metastable β phase with refined and equiaxial grains due to iron addition. Vickers microhardness was observed in regions subjected to slower cooling (244 HV) compared to faster cooling regions (222 HV). Therefore, the correlation between solidification thermal variables and alloy properties provides valuable insights into the relationship between microstructure and the properties of the CuMn11Al8Fe3Ni3 alloy. Full article
Show Figures

Figure 1

10 pages, 2196 KiB  
Article
Revisiting the Structural and Magnetic Properties of SmCo5/Sm2Co17 Interface from First-Principles Investigations
by Xu Sun, Haixia Cheng, Songqi Cheng, Yikun Fang, Minggang Zhu, Hang Su and Wei Li
Metals 2024, 14(12), 1356; https://doi.org/10.3390/met14121356 - 27 Nov 2024
Viewed by 1145
Abstract
The formation and evolution of SmCo5/Sm2Co17 (1:5H/2:17R/H) cellular structures play an essential role in understanding the coercivity of Sm-Co magnets. Herein, the pristine and different elemental-doped 1:5/2:17R and 1:5/2:17H interfaces are investigated [...] Read more.
The formation and evolution of SmCo5/Sm2Co17 (1:5H/2:17R/H) cellular structures play an essential role in understanding the coercivity of Sm-Co magnets. Herein, the pristine and different elemental-doped 1:5/2:17R and 1:5/2:17H interfaces are investigated to evaluate the elemental site preferences, interface configurations, and magnetic properties in Sm2Co17-type magnets with general alloy elements M (M = Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Al, Si, and Ga). Comparing the calculated results of 1:5/2:17H with those of the 1:5/2:17R interface, we found that Cu and Mn always segregate at the 1:5 phase, and Ga elements first appear at the 1:5 phase in 1:5/2:17H and then change to the 2:17 phase in 1:5/2:17R. While Ti, V, Fe, Zn, Al, and Si elements always tend to segregate at the 2:17 phase, Ni first segregates at the 2:17 phase in 1:5/2:17H and then occupies the 1:5 phase of 1:5/2:17R. The 1:5/2:17H interface along the c-axis expands about 1.98~3.28%, while the 1:5/2:17R interface slightly shrinks about 0.04~0.87% after element doping. This suggests that different interface stress behaviors exist for high-temperature and room-temperature phase Sm2Co17-type magnets. Furthermore, Mn, Fe, and Ga doping improved the saturation magnetization strength. Our results provide new insights into understanding the effect of elemental doping at the interfaces of 1:5H/2:17R cellular structures. Full article
(This article belongs to the Special Issue Novel Insights into Magnetic Properties of Metals and Alloys)
Show Figures

Figure 1

13 pages, 8934 KiB  
Article
Hot Uniaxial Pressing and Pressureless Sintering of AlCrCuFeMnNi Complex Concentrated Alloy—A Comparative Study
by Tiago Silva, Pedro Simões and Augusto Lopes
Materials 2024, 17(22), 5457; https://doi.org/10.3390/ma17225457 - 8 Nov 2024
Viewed by 972
Abstract
External pressure is often applied during sintering to obtain materials with improved properties. For complex concentrated alloys (CCAs), this processing step is commonly performed in vacuum. However, this can promote the evaporation of elements and increase the oxide content, thereby degrading the properties [...] Read more.
External pressure is often applied during sintering to obtain materials with improved properties. For complex concentrated alloys (CCAs), this processing step is commonly performed in vacuum. However, this can promote the evaporation of elements and increase the oxide content, thereby degrading the properties of the alloy. In this study, we compared the microstructures and properties of AlCrCuFeMnNi CCA samples obtained by hot uniaxial pressing sintering (HPS) and pressureless sintering (PLS) using a helium atmosphere purified by an oxygen getter system. The powders were prepared from mixtures of CrFeMn, AlNi and Cu and sintered by HPS at 900 °C for 1 h with an applied pressure of 30 MPa and by PLS at 1050 °C for 1 h. The samples were characterised using X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron backscattering diffraction, density measurements and hardness tests. It was found that the oxygen getter system promoted oxygen partial pressure values at sintering temperatures similar to those of a mixture of 90% helium and 10% hydrogen. The HPS allowed us to obtain almost fully dense samples with a smaller average grain size and finer distribution of aluminium oxides than PLS. These differences increased the hardness of the samples sintered under pressure. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

14 pages, 13311 KiB  
Article
Effects of Thermal Variables of Solidification on the Microstructure and Hardness of the Manganese Bronze Alloy Cu-24Zn-6Al-4Mn-3Fe
by Flávia Gonçalves Lobo, Márcio Rodrigues da Silva, Vinícius Torres dos Santos, Paulo Henrique Tedardi do Nascimento, Rogerio Teram, Maurício Silva Nascimento, Marcela Bergamaschi Tercini, Daniel Ayarroio Seixas, Givanildo Alves dos Santos and Alejandro Zuniga Paez
Metals 2024, 14(10), 1186; https://doi.org/10.3390/met14101186 - 18 Oct 2024
Cited by 1 | Viewed by 1267
Abstract
The Cu-24Zn-6Al-4Mn-3Fe alloy is mainly used for the manufacture of sliding bushings in the agricultural sector due to its high mechanical properties in the cast state. Understanding how the casting thermal parameters affect the microstructure and impact the properties of alloys is fundamental [...] Read more.
The Cu-24Zn-6Al-4Mn-3Fe alloy is mainly used for the manufacture of sliding bushings in the agricultural sector due to its high mechanical properties in the cast state. Understanding how the casting thermal parameters affect the microstructure and impact the properties of alloys is fundamental to optimizing manufacturing processes and improving performance during their application. In this study, the Cu-24Zn-6Al-4Mn-3Fe alloy was unidirectionally solidified under non-steady heat flow conditions using a water-cooled graphite base for heat exchange. Seven points were monitored along the longitudinal region of this ingot, and the data to obtain the solidification variables were extracted using an acquisition system. The cooling rates varied from 4.50 °C/s to 0.22 °C/s from the closest to the furthest position from the heat extraction point. The microstructure was analyzed via optical microscopy, scanning electron microscopy and X-ray diffraction in order to characterize the phases and intermetallic elements present in the material. The mechanical properties were evaluated through hardness and microhardness tests throughout longitudinal extension of the solidified part. The results showed an increase in hardness and microhardness with a decrease in the cooling rate, which may be related to the increase in size and the κ phase fraction with a decrease in the cooling rate, as analyzed via optical microscopy and scanning electron microscopy. Furthermore, in all positions, there was no significant change in the amount of the α phase retained, with the matrix being mainly composed of the β phase and a small content of approximately 2% of the α phase. Full article
Show Figures

Figure 1

9 pages, 2044 KiB  
Article
Preparation and Characterization of BXFO High-Entropy Oxides
by Saba Aziz, Anna Grazia Monteduro, Ritu Rawat, Silvia Rizzato, Angelo Leo, Shahid Khalid and Giuseppe Maruccio
Magnetochemistry 2024, 10(8), 60; https://doi.org/10.3390/magnetochemistry10080060 - 15 Aug 2024
Viewed by 1583
Abstract
Increasing demand for functional materials crucial for advancing new technologies has motivated significant scientific and industrial research efforts. High-entropy materials (HEMs), with tunable properties, are gaining attention for their use in high-frequency transformers, microwave devices, multiferroics, and high-density magnetic memory components. The initial [...] Read more.
Increasing demand for functional materials crucial for advancing new technologies has motivated significant scientific and industrial research efforts. High-entropy materials (HEMs), with tunable properties, are gaining attention for their use in high-frequency transformers, microwave devices, multiferroics, and high-density magnetic memory components. The initial exploration of HEMs started with high-entropy alloys (HASs), such as CrMnFeCoNi, CuCoNiCrAlxFe, and AlCoCrTiZn and paved the way for a multitude of HEM variations, including oxides, oxyfluorides, borides, carbides, nitrides, sulfides, and phosphides. In this study, we fabricated the high-entropy oxide (HEO) compound Bi0.5La0.1In0.1Y0.1Nd0.1Gd0.1FeO3 through the solid-state synthesis method. Magnetic measurements at 300 K show ferromagnetic behavior with significant coercivity. At the same time, this novel composition exhibits excellent dielectric properties and shows potential for electronic applications demonstrating that a high-entropy approach can expand the compositional range of rare earth multiferroics and improve the multifunctional properties in multiferroic applications. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

21 pages, 5494 KiB  
Article
Band Structure Calculations, Magnetic Properties and Magnetocaloric Effect of GdCo1.8M0.2 Compounds with M = Fe, Mn, Cu, Al
by Gabriela Souca, Roxana Dudric, Karsten Küpper, Coriolan Tiusan and Romulus Tetean
Magnetochemistry 2024, 10(8), 53; https://doi.org/10.3390/magnetochemistry10080053 - 24 Jul 2024
Cited by 1 | Viewed by 1709
Abstract
The magnetic properties, band structure results, and magnetocaloric effect of GdCo1.8M0.2 with M = Fe, Mn, Cu, and Al are reported. The band structure calculations demonstrate that all the samples have a ferrimagnetically ordered ground state, in perfect agreement with [...] Read more.
The magnetic properties, band structure results, and magnetocaloric effect of GdCo1.8M0.2 with M = Fe, Mn, Cu, and Al are reported. The band structure calculations demonstrate that all the samples have a ferrimagnetically ordered ground state, in perfect agreement with the magnetic measurements. Calculated magnetic moments and variation with the alloy composition are strongly influenced by hybridisation mechanisms as sustained by an analysis of the orbital projected local density of states. The XPS measurements reveal no significant shift in the binding energy of the investigated Co core levels with a change in the dopant element. The Co 3s core-level spectra gave us direct evidence of the local magnetic moments on Co sites and an average magnetic moment of 1.3 µB/atom was found, being in good agreement with the theoretical estimation and magnetic measurements. From the Mn 3s core-level spectra, a value of 2.1 µB/Mn was obtained. The symmetric shapes of magnetic entropy changes, the Arrott plots, and the temperature dependence of Landau coefficients clearly indicate a second-order phase transition. The relative cooling power, RCP(S), normalized relative cooling power, RCP(∆S)/∆B, and temperature-averaged entropy change values indicate that these compounds could be promising candidates for applications in magnetic refrigeration devices. Full article
(This article belongs to the Special Issue Advance of Magnetocaloric Effect and Materials)
Show Figures

Figure 1

13 pages, 5842 KiB  
Communication
A Comparative Analysis of a Microstructure and Properties for Monel K500 Hot-Rolled to a Round Bar and Wire Deposited on a Round Surface
by Andrii Kostryzhev, Olexandra Marenych, Zengxi Pan, Huijun Li and Stephen van Duin
Metals 2024, 14(7), 813; https://doi.org/10.3390/met14070813 - 13 Jul 2024
Viewed by 2013
Abstract
Metal manufacturing processes based on deformation (forging, rolling) result in a fine grain structure with a complex dislocation substructure, which positively influence mechanical properties. Casting and additive manufacturing (powder- or wire-based) usually produce a coarse grain structure with a poorly developed dislocation substructure, [...] Read more.
Metal manufacturing processes based on deformation (forging, rolling) result in a fine grain structure with a complex dislocation substructure, which positively influence mechanical properties. Casting and additive manufacturing (powder- or wire-based) usually produce a coarse grain structure with a poorly developed dislocation substructure, which negatively affect mechanical properties. Heat treatment may alter phase balance and stimulate precipitation strengthening; however, precipitation kinetics depends on the dislocation substructure. In this paper, a comparative study of the microstructure and strength is presented for Monel K500 alloy containing 63 Ni, 30 Cu, 2.0 Mn, and 2.0 Fe (wt.%), and microalloyed with Al, Ti, and C hot-rolled to a round bar and deposited on a round surface using wire additive manufacturing (WAAM) technology. An increased dislocation density and number density of fine precipitates resulted in 8–25% higher hardness and 1.8–2.6 times higher compression yield stress in the hot-rolled alloy compared to these in the WAAM-produced alloy. However, due to a high work hardening rate, only 3–10% cold deformation was necessary to increase the strength of the WAAM alloy to this of the hot-rolled one. Age hardening heat treatment, through the intensification of the precipitation strengthening mechanism, reduced the value of cold deformation strain required to equalise the properties. Based on the obtained results, a new technology consisting of additive manufacturing, heat treatment, and cold deformation can be proposed. It can produce WAAM components with strength and hardness improved to the level of hot-rolled components, which is a significant development of additive manufacturing. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop